CHEM-E7190/2022: Exercise I - Modelling + simulation (Euler)

Task 1.
A jacketed vessel is used to cool a process stream. The following information is available:

1. The volume of coolant in the jacket V_{J} remain constant. Volumetric flow rate q_{F} and q_{J} vary with time.
2. Heat losses from the jacketed vessel are negligible.
3. Both the tank contents and the jacket contents are well mixed and have significant thermal capacitances.
4. The thermal capacitances of the tank wall and the jacket wall are negligible.
5. The overall heat transfer coefficient for transfer between the tank liquid and the coolant varies with coolant flow rate:
$U=K q_{J}^{0.8}$

Additional assumptions:

1. Density of the liquid, ρ, and density of the coolant, ρ_{J} are constant.
2. Specific heat of the liquid, C, and of the coolant, C_{J}, are constant.

Study the process diagram, then write the total mass balance equations.

Familiarise with programs jacketedVesselNonLinmain_template.m and jacketedVesselNonLin_template.m.
Experiment on how to simulate the system from different initial conditions $x(t=0)=\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0) \\ x_{3}(0)\end{array}\right]$ and vary-
ing inputs $u(t)=\left[\begin{array}{l}u_{1}(t) \\ u_{2}(t) \\ u_{3}(t) \\ u_{4}(t) \\ u_{5}(t)\end{array}\right]$. Then implement your jacked vessel model with programs named, for example,
jacketedVesselNonLinmain.m and jacketedVesselNonLin.m.

Col1	$\mathrm{Col2}$
1	2
q_{J}	kgs^{-1}
T_{F}	${ }^{\circ} \mathrm{C}$
T_{i}	${ }^{\circ} \mathrm{C}$
q_{F}	kgs^{-1}
q	kgs^{-1}
T	${ }^{\circ} \mathrm{C}$
T_{J}	${ }^{\circ} \mathrm{C}$
V	$\mathrm{~m}^{3}$

1. Simulate the system from initial condition $T=1, T_{J}=1$ and $V=1$ for a constant input $q_{J}=0$, $T_{F}=0, T_{i}=0, q_{F}=0$ and $q=0$. Constants are $K=1, \rho=1, C=1, A=1, \rho_{J}=1, V_{j}=1$ and $C_{J}=1$
2. Simulate the system from initial condition $T=1, T_{J}=1$ and $V=1$ for a constant input $q_{J}=1$, $T_{F}=0.1, T_{i}=0.1, q_{F}=0.1$ and $q=0.1$
3. Simulate the system from initial condition $T=1, T_{J}=1$ and $V=1$ for an input defined as follows

- $q_{J}(t)=1$ for $t \in[0,2.5], q_{J}(t)=2$ for $t \in[2.5,5], q_{J}(t)=1$ for $t \in[5,7.5], q_{J}(t)=3$ for $t \in[7.5,10]$
- $T_{F}(t)=2$ for $t \in[0,2.5], T_{F}(t)=0$ for $t \in[2.5,5], T_{F}(t)=2$ for $t \in[5,7.5], T_{F}(t)=1$ for $t \in[7.5,10]$
- $T_{i}(t)=2$ for $t \in[0,2.5], T_{i}(t)=0$ for $t \in[2.5,5], T_{i}(t)=2$ for $t \in[5,7.5], T_{i}(t)=1$ for $t \in[7.5,10]$
- $q_{F}(t)=2$ for $t \in[0,2.5], q_{F}(t)=0$ for $t \in[2.5,5], q_{F}(t)=2$ for $t \in[5,7.5], q_{F}(t)=1$ for $t \in[7.5,10]$
- $q(t)=2$ for $t \in[0,2.5], q(t)=0$ for $t \in[2.5,5], q(t)=2$ for $t \in[5,7.5], q(t)=1$ for $t \in[7.5,10]$

4. What would be the realistic parameters for the constants in the real system?

You can use program plotJacketedVessel_template.m.m to plot your results. You can also modify it to suit your needs.

