CHEM-E7190/2022: Exercise I - Modelling + simulation (Euler)

Task 1.

- A jacketed vessel is used to cool a process stream. The following information is available:
- 1. The volume of coolant in the jacket V_J remain constant. Volumetric flow rate q_F and q_J vary with time.
- 2. Heat losses from the jacketed vessel are negligible.
- 3. Both the tank contents and the jacket contents are well mixed and have significant thermal capacitances.
- 4. The thermal capacitances of the tank wall and the jacket wall are negligible.
- 5. The overall heat transfer coefficient for transfer between the tank liquid and the coolant varies with coolant flow rate:
 - $U = K q_J^{0.8}$

Additional assumptions:

- 1. Density of the liquid, ρ , and density of the coolant, ρ_J are constant.
- 2. Specific heat of the liquid, C, and of the coolant, C_J , are constant.

Study the process diagram, then write the total mass balance equations.

 $Familiarise \ with \ programs \ \texttt{jacketedVesselNonLinmain_template.m} \ and \ \texttt{jacketedVesselNonLin_template.m}.$

Experiment on how to simulate the system from different initial conditions $x(t=0) = \begin{bmatrix} x_1(0) \\ x_2(0) \\ x_3(0) \end{bmatrix}$ and vary-

ing inputs $u(t) = \begin{bmatrix} u_1(t) \\ u_2(t) \\ u_3(t) \\ u_4(t) \\ u_5(t) \end{bmatrix}$. Then implement your jacked vessel model with programs named, for example,

jacketedVesselNonLinmain.m and jacketedVesselNonLin.m.

Col1	Col2
1	2
q_J	kgs^{-1}
T_F	$^{\circ}C$
T_i	$^{\circ}C$
q_F	kgs^{-1}
q	kgs^{-1}
T	$^{\circ}C$
T_J	$^{\circ}C$
$\mid V$	m^3

- 1. Simulate the system from initial condition T = 1, $T_J = 1$ and V = 1 for a constant input $q_J = 0$, $T_F = 0$, $T_i = 0$, $q_F = 0$ and q = 0. Constants are K = 1, $\rho = 1$, C = 1, A = 1, $\rho_J = 1$, $V_j = 1$ and $C_J = 1$
- 2. Simulate the system from initial condition T = 1, $T_J = 1$ and V = 1 for a constant input $q_J = 1$, $T_F = 0.1$, $T_i = 0.1$, $q_F = 0.1$ and q = 0.1
- 3. Simulate the system from initial condition T = 1, $T_J = 1$ and V = 1 for an input defined as follows
 - $q_J(t) = 1$ for $t \in [0, 2.5], q_J(t) = 2$ for $t \in [2.5, 5], q_J(t) = 1$ for $t \in [5, 7.5], q_J(t) = 3$ for $t \in [7.5, 10]$
 - $T_F(t) = 2$ for $t \in [0, 2.5]$, $T_F(t) = 0$ for $t \in [2.5, 5]$, $T_F(t) = 2$ for $t \in [5, 7.5]$, $T_F(t) = 1$ for $t \in [7.5, 10]$
 - $T_i(t) = 2$ for $t \in [0, 2.5], T_i(t) = 0$ for $t \in [2.5, 5], T_i(t) = 2$ for $t \in [5, 7.5], T_i(t) = 1$ for $t \in [7.5, 10]$
 - $q_F(t) = 2$ for $t \in [0, 2.5]$, $q_F(t) = 0$ for $t \in [2.5, 5]$, $q_F(t) = 2$ for $t \in [5, 7.5]$, $q_F(t) = 1$ for $t \in [7.5, 10]$
 - q(t) = 2 for $t \in [0, 2.5], q(t) = 0$ for $t \in [2.5, 5], q(t) = 2$ for $t \in [5, 7.5], q(t) = 1$ for $t \in [7.5, 10]$
- 4. What would be the realistic parameters for the constants in the real system?

You can use program plotJacketedVessel_template.m.m to plot your results. You can also modify it to suit your needs.