CHEM-E7190/2023: Exercise I - Modelling + simulation (Euler)

Task 1.
Consider the three tank system. In the system, Q_{1} and Q_{3} are inflow rates and h_{1}, h_{2} and h_{3} are liquid levels. The process consists of three cylindrical tanks $\left(T_{i}, i=1,2,3\right)$ connected by two fixed valves $\left(V_{i}\right.$, $i=1,2$), with an outflow valve V_{0} for the last tank

1. h_{1}, h_{2} and h_{3} are the outputs and Q_{1} and Q_{3} are the inputs.

Additional assumptions:

1. Density of the liquid ρ is is constant.

Familiarise with programs ThreeTankSystemNonLinmain_template.m and ThreeTankSystemNonLin_template.m.
Experiment on how to simulate the system from different initial conditions $x(t=0)=\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0) \\ x_{3}(0)\end{array}\right]$ and varying inputs $u(t)=\left[\begin{array}{l}u_{1}(t) \\ u_{2}(t)\end{array}\right]$. Then implement your mode of the three tank system with programs named, for example, ThreeTankSystemNonLinmain.m and ThreeTankSystemNonLin.m.

Table 1: Three tank system parameters

Cross section area of the tank $\left(A_{b}\right)$	$0.0154 \mathrm{~m}^{2}$
Cross section area of the pipes $\left(A_{c}\right)$	$5 \cdot 10^{-5} \mathrm{~m}^{2}$
Valve V_{1} opening position with friction $\left(\alpha_{12}\right)$	$\alpha_{12}=0.476$
Valve V_{2} opening position with friction $\left(\alpha_{23}\right)$	$\alpha_{23}=0.479$
Valve V_{O} opening position with friction $\left(\alpha_{3 O}\right)$	$\alpha_{3 O}=0.771$
Maximum flow rate constraint $\left(Q_{\max }\right)$	$1.2 \cdot 10^{-4} \mathrm{~m}^{3} / \mathrm{s}$
Maximum level $\left(h_{\text {max }}\right)$	0.63 m

Questions to be answered:
Q1) Study the process diagram, then write the total mass balance equations for the liquid levels. Please note that the water level in tank 1 can be higher than tank 2, or vice versa, where the water level in tank 2 is higher than tank 1. The same applies to tank 2 and tank 3.

Q2) Compare the non-linear model with the data collected from the laboratory. Use the input and output values from the data.

Q3) Compare the non-linear model with different input signals and analyse the results.

- Utilize, for example, a step as an input signal.

You can use program plotThreeTankSystem_template.m.m to plot your results. You can also modify it to suit your needs.

