
CHEM-E7190/2021: Exercise IV - Luenberger + LQR for stirred
tank
The dynamic equations of the stirred tank system in state-space form (with some steady-state values, you
can use your own values) are the following:

ẋ(t) =

[
−0.5 0

0 −1

]
x(t) +

[
1 0 0

−0.1 1 1

]
u(t)

y(t) =

[
1 0
0 1

]
x(t) +

[
0 0 0
0 0 0

]
u(t)

1. The first step in designing a full-state feedback controller is to determine the open-loop poles of the
system. Implement the system in m-file and calculate the eigenvalues of the system.

2. Before we design our controller, we will first verify that the system is controllable. Satisfaction of this
property means that we can drive the state of the system anywhere we like in finite time (under the
physical constraints of the system). For the system to be completely state controllable, the controlla-
bility matrix must have rank n where the rank of a matrix is the number of linearly independent rows
(or columns). The number n corresponds to the number of state variables of the system. Calculate
rank of the system.

3. We will use the linear quadratic regulation method for determining our state-feedback control gain
matrix K. The MATLAB function lqr allows you to choose two parameters, R and Q, which will
balance the relative importance of the control effort (u) and error (deviation from 0), respectively, in
the cost function that you are trying to optimize. The simplest case is to assume R = 1, and Q = C ′C.
Design LQR control and simulate your system.

4. Modify your m-file so that the (1,1) element of Q is 100 and the (2,2) element is 5000, put more
emphasize for temperature.

5. To address the situation where not all state variables are measured, a state estimator must be designed.
Before we design our estimator, we will first verify that our system is observable. The property of
observability determines whether or not based on the measured outputs of the system we can estimate
the state of the system. Similar to the process for verifying controllability, a system is observable if its
observability matrix is full rank. Calculate the observability of the system.

6. The dynamics of the state estimate are described by the following equation.

˙̂x = Ax̂ + Bu + L(y − ŷ)

The spirit of this equation is similar to that of closed-loop control in that last term is a correction based
on feedback. Specifically, the last term corrects the state estimate based on the difference between the
actual output y and the estimated output ŷ. Now let’s look at the dynamics of the error in the state
estimate.

ė = ẋ− ˙̂x = (Ax + Bu) − (Ax̂ + Bu + L(Cx− Cx̂))

Therefore, the state estimate error dynamics are described by

ė = (A− LC)e

and the error will approach zero (x̂ will approach x) if the matrix A − LC is stable (has negative
eigenvalues). As is with the case for control, the speed of convergence depends on the poles of the
estimator (eigenvalues of A−LC). Since we plan to use the state estimate as the input to our controller,
we would like the state estimate to converge faster than is desired from our overall closed-loop system.
That is, we would like the observer poles to be faster than the controller poles. A common guideline is
to make the estimator poles 4-10 times faster than the slowest controller pole. Calculate the controllers
poles and calculate the L matrix with Matlab place command.
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7. We will combine our state-feedback controller from before with our state estimator to get the full
compensator. The resulting closed-loop system is described by the following matrix equations.

(8) [
ẋ
ė

]
=

[
A−BK BK

0 A− LC

] [
x
e

]
+

[
B
0

]
r

(9)

y =
[
C 0

] [ x
e

]
+
[

0
]
r

Implement the above system and simulate it in Matlab.
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