CHEM-E7190/2023: Exercise Extra - Dynamics

1. Find the eigenvalues and eigenvectors of

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]
$$

2. Find the matrix that diagonalizes

$$
\left[\begin{array}{cc}
2 & 6 \\
0 & -1
\end{array}\right]
$$

3. Consider a (2×2) matrix A, we want to determine the state transition matrix $e^{A t}$

$$
A=\left[\begin{array}{cc}
0 & 1 \\
0 & -2
\end{array}\right]
$$

Solve the $e^{A t}$ by using Sylvester's expansion and plot the results in Matlab
4. Determine the state transition matrix, and the response to the initial conditions $x_{1}(0)=2, x_{2}(0)=3$ of the system with state equations:

$$
\begin{aligned}
& \dot{x}_{1}=-2 x_{1}+u \\
& \dot{x}_{2}=x_{1}-x_{2}
\end{aligned}
$$

5. Find the response of the two state variables of the system

$$
\begin{aligned}
& \dot{x}_{1}=-2 x_{1}+u \\
& \dot{x}_{2}=x_{1}-x_{2}
\end{aligned}
$$

to a constant input $u(t)=5$ for $t>0$, if $x_{1}(0)=0$ and $x_{2}(0)=0$.
6. Find the response of the output variable

$$
y=2 x_{1}+x_{2}
$$

in the system described by state equations

$$
\begin{aligned}
& \dot{x}_{1}=-2 x_{1}+u \\
& \dot{x}_{2}=x_{1}-x_{2}
\end{aligned}
$$

to a constant input $u(t)=5$ for $t>0$, if $x_{1}(0)=0$, and $x_{2}(0)=0$

