$\begin{array}{c} \text{CHEM-E7190} \\ 2022 \end{array}$

State feedback and estimation

Duality

Controlled LTI processes, with an observer CHEM-E7190 (was E7140), 2022

Francesco Corona

Chemical and Metallurgical Engineering School of Chemical Engineering

State feedback and estimation

Duality

Putting things together

LTI systems

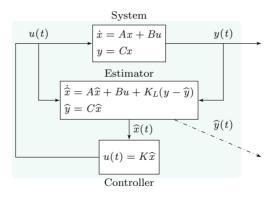
State feedback and estimation

Duality

Putting things together

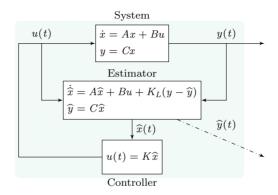
The state-feedback controller when the state is not-measurable requires a state-observer

- This is possible, if and only if the system is observable
- Asymptotic state observer, the Luenberger observer



State feedback and estimation

Putting things together (cont.)



We can determine the controller gain K, by placing the eigenvalues of A - BK

• Possible, iff the system if controllable

$$\dot{x}(t) = (A - KB) x(t)$$

We can determine the observer gain K_L , by placing the eigenvalues of $A - K_L C$

$$\dot{e}(t) = (A - K_L C) e(t)$$

State feedback and estimation

Duality

Theorem

Consider the linear time-invariant system in $x(t) \in \mathbb{R}^{N_x}$, $u(t) \in \mathbb{R}^{N_u}$, and $y(t) \in \mathbb{R}^{N_y}$

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t)$$

Consider the state-feedback control law

$$u(t) = -K\widehat{x}(t)$$

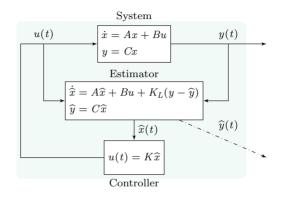
 $\hat{x}(t) \in \mathcal{R}^{N_x}$ denotes the estimate of state x(t) obtained with the Luenberger observer

$$\dot{\widehat{x}}(t) = A\widehat{x}(t) + Bu(t) + K_L(y(t) - \widehat{y}(t))
\widehat{y}(t) = C\widehat{x}(t)$$

The resulting closed-loop system is a dynamical system of order $2 \times N_x$ whose eigenvalues are the union of the N_x eigenvalues of A - KB and the N_x eigenvalues of $A - K_LC$

Putting things together (cont.)

State feedback and estimation



$$\begin{bmatrix} \dot{x}(t) \\ \dot{\hat{x}}(t) \end{bmatrix} = \underbrace{ \begin{bmatrix} A & -BK \\ K_LC & A-BK-K_LC \end{bmatrix}}_{A_{CLL}} \underbrace{ \begin{bmatrix} x(t) \\ \hat{x}(t) \end{bmatrix}}$$

Consider the dynamic equation for the system,

$$\dot{x}(t) = Ax(t) - Bu(t)$$
$$= Ax(t) - BK\widehat{x}(t)$$

Consider the dynamic equation for the Luenberger observer,

$$\dot{x}(t) = A\hat{x}(t) + Bu(t) + K_L(y(t) - \hat{y}(t))
= A\hat{x}(t) + Bu(t) + K_L(Cx(t) - C\hat{x}(t))
= A\hat{x}(t) + Bu(t) + K_LCx(t) - K_LC\hat{x}(t)
= (A - K_LC)\hat{x}(t) + Bu(t) + K_LCx(t)
= (A - K_LC)\hat{x}(t) - BK\hat{x}(t) + K_LCx(t)
= K_LCx(t) + (A - BK - K_LC)\hat{x}(t)$$

Therefore, we have the two dynamic equations

$$\dot{x}(t) = Ax(t) - BK\widehat{x}(t)$$

$$\dot{\widehat{x}}(t) = K_L Cx(t) + (A - BK - K_L C)\widehat{x}(t)$$

State feedback and estimation

$$\dot{x}(t) = Ax(t) - BK\widehat{x}(t)$$

$$\dot{\widehat{x}}(t) = K_L Cx(t) + (A - BK - K_L C)\widehat{x}(t)$$

In the more compact matrix notation, we have the closed-loop dynamics with observer

$$\begin{bmatrix} \dot{x}(t) \\ \dot{\hat{x}}(t) \end{bmatrix} = \underbrace{ \begin{bmatrix} A & -BK \\ K_LC & A-BK-K_LC \end{bmatrix} }_{A_{CLL}} \begin{bmatrix} x(t) \\ \hat{x}(t) \end{bmatrix}$$

We want to know about the eigenvalues of A_{CLL} , the dynamics of closed-loop system

• Are they the union of the eigenvalues of (A - BK) and $(A - K_L C)$?

State feedback and estimation

Consider the following similarity transformation P of the (augmented) state vector

$$\begin{bmatrix} x(t) \\ \widehat{x}(t) \end{bmatrix} = P \begin{bmatrix} z(t) \\ \widehat{z}(t) \end{bmatrix}$$

We consider a specific similarity transformation P such that

$$P = \underbrace{\begin{bmatrix} I_{N_x} & 0_{N_x} \\ I_{N_x} & -I_{N_x} \end{bmatrix}}_{(N_x \times N_x)} = P^{-1}$$

We have the relation between the (augmented) state vectors

$$\begin{bmatrix} x(t) \\ \widehat{x}(t) \end{bmatrix} = \begin{bmatrix} I_{N_x} & 0_{N_x} \\ I_{N_x} & -I_{N_x} \end{bmatrix} \begin{bmatrix} z(t) \\ \widehat{z}(t) \end{bmatrix}$$

- x(t) = z(t)
- $\widehat{x}(t) = z(t) \widehat{z}(t)$

Because the similarity transformation is invertible, for the transformed state we have

$$\begin{bmatrix} z(t) \\ \widehat{z}(t) \end{bmatrix} = P^{-1} \begin{bmatrix} x(t) \\ \widehat{x}(t) \end{bmatrix}$$

$$= \begin{bmatrix} I_{N_x} & 0_{N_x} \\ I_{N_x} & -I_{N_x} \end{bmatrix} \begin{bmatrix} x(t) \\ \widehat{x}(t) \end{bmatrix}$$

The augmented state satisfies the new state-space representation with state matrix A'

$$\begin{bmatrix} \dot{z}(t) \\ \dot{\overline{z}}(t) \end{bmatrix} = A'_{CLL} \begin{bmatrix} z(t) \\ \widehat{z}(t) \end{bmatrix}$$

 \rightarrow Where we have that $A'_{CLL} = P^{-1}A_{CLL}P$

For a similarity transformation
$$x(t) = Pz(t)$$
,
$$\begin{cases} \dot{z}(t) = A'z(t) + B'u(t) \\ y(t) = C'z(t) + D'u(t) \end{cases}$$

$$\begin{cases} \dot{z}(t) = A'z(t) + B'u(t) \\ y(t) = C'z(t) + D'u(t) \end{cases}$$

$$\Rightarrow A' = P^{-1}AP$$

$$\Rightarrow B' = P^{-1}B$$

$$\Rightarrow C' = CP$$

$$\Rightarrow D' = D$$

State feedback and estimation Duality

$$\begin{bmatrix} \dot{z}(t) \\ \dot{\hat{z}}(t) \end{bmatrix} = A'_{CLL} \begin{bmatrix} z(t) \\ \widehat{z}(t) \end{bmatrix}$$

For the state matrix A'_{CLL} , we have

$$\begin{split} A'_{CLL} &= P^{-1}A_{CLL}P \\ &= \begin{bmatrix} I_{N_x} & 0_{N_x} \\ I_{N_x} & -I_{N_x} \end{bmatrix} \begin{bmatrix} A & -BK \\ K_LC & A-BK-K_LC \end{bmatrix} \begin{bmatrix} I_{N_x} & 0_{N_x} \\ I_{N_x} & -I_{N_x} \end{bmatrix} \\ &= \begin{bmatrix} I_{N_x} & 0_{N_x} \\ I_{N_x} & -I_{N_x} \end{bmatrix} \begin{bmatrix} A-BK & BK \\ K_LC + A-BK-K_LC & -A+BK+K_LC \end{bmatrix} \\ &= \begin{bmatrix} I_{N_x} & 0_{N_x} \\ I_{N_x} & -I_{N_x} \end{bmatrix} \begin{bmatrix} A-BK & BK \\ A-BK & -A+BK+K_LC \end{bmatrix} \\ &= \begin{bmatrix} A-BK & BK \\ A-BK-A-BK & BK+A-BK-K_LC \end{bmatrix} \\ &= \begin{bmatrix} A-BK & BK \\ 0 & A-K_LC \end{bmatrix} \end{split}$$

The transformed dynamics A'_{CLL} are represented by an upper-block-triangular matrix

- \bullet Its eigenvalues are the eigenvalues of the blocks along the diagonal
- The controller A BK and the observer $A K_LC$ state matrix

$$\begin{bmatrix} \dot{z}(t) \\ \dot{\hat{z}}(t) \end{bmatrix} = \begin{bmatrix} A - BK & BK \\ 0 & A - K_L C \end{bmatrix} \begin{bmatrix} z(t) \\ \hat{z}(t) \end{bmatrix} \xrightarrow{\hat{y}(t)}$$

Similarity transformations do not modify the eigenvalues of the original state matrix

 \rightarrow The eigenvalues of A_{CLL} are equal to those of A_{CLL}'

$$\begin{bmatrix} \dot{x}(t) \\ \dot{\hat{x}}(t) \end{bmatrix} = \begin{bmatrix} A & -BK \\ K_L C & A - BK - K_L C \end{bmatrix} \begin{bmatrix} x(t) \\ \hat{x}(t) \end{bmatrix} \xrightarrow{\hat{y}(t)}$$

State feedback and estimation

Duality

Duality controllability-observability

LTI systems

Duality controllability-observability

State feedback and estimation

Consider the linear and time invariant state-space model (A, B, C)

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t)$$

• Dimensions $x(t) \in \mathcal{R}^{N_x}$, $u(t) \in \mathcal{R}^{N_u}$, and $y(t) \in \mathcal{R}^{N_y}$

Consider the linear time invariant state-space model (A^T, B^T, C^T)

$$\dot{z}(t) = A^T z(t) + C^T v(t)$$

$$s(t) = B^T z(t)$$

• Dimensions $z(t) \in \mathbb{R}^{N_x}$, $v(t) \in \mathbb{R}^{N_u}$, and $s(t) \in \mathbb{R}^{N_y}$

Duality controllability-observability (cont.)

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t)$$

$$\dot{z}(t) = A^{T}z(t) + C^{T}v(t)$$

$$s(t) = B^{T}z(t)$$

The dimension of all the system(s) matrices

$$A \in \mathcal{R}^{N_x \times N_x}$$

$$B \in \mathcal{R}^{N_x \times N_u}$$

$$C \in \mathcal{R}^{N_y \times N_x}$$

$$A^T \in \mathcal{R}^{N_x \times N_x}$$

$$B^T \in \mathcal{R}^{N_u \times N_x}$$

$$C^T \in \mathcal{R}^{N_x \times N_y}$$

Duality controllability-observability (cont.)

State feedback and estimation

Duality

Theorem

We have the linear and time invariant system

$$S_1 \quad \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

We have the linear and time-invariant system

$$S_2 \quad \begin{cases} \dot{z}(t) = A^T z(t) + C^T v(t) \\ s(t) = B^T z(t) \end{cases}$$

We have the follwing result,

- \rightarrow System S_1 is controllable if and only if system S_2 is observable
- \rightsquigarrow System S_1 is observable if and only if system S_2 is controllable

State feedback and estimation

Duality

Proof

Let C_i and O_i with i = 1, 2 be the controllability and the observability matrices of S_i . We have,

$$C_{1} = \begin{bmatrix} B & AB & A^{2}B & \cdots & A^{N_{x}-1}B \end{bmatrix}$$

$$= \begin{bmatrix} B^{T} \\ B^{T}A^{T} \\ B^{T}(A^{T})^{2} \\ \vdots \\ B^{T}(A^{T})^{N_{x}-1} \end{bmatrix}$$

$$= \mathcal{O}_{2}^{T}$$

Similarly, we have

$$\mathcal{O}_1 = \mathcal{C}_2^T$$

Duality controllability-observability (cont.)

Consider the linear and time-invariant dynamical system

$$\dot{x}(t) = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix} x(t) + \begin{bmatrix} 2 \\ 3 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 3 & 0 \end{bmatrix} x(t)$$

The dual system,

$$\dot{z}(t) = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} z(t) + \begin{bmatrix} 3 \\ 0 \end{bmatrix} v(t)$$
$$s(t) = \begin{bmatrix} 2 & 3 \end{bmatrix} z(t)$$

$$\mathcal{C}_1 = \begin{bmatrix} 2 & 4 \\ 3 & 11 \end{bmatrix} = \mathcal{O}_2^T$$

$$\mathcal{O}_1 = \begin{bmatrix} 3 & 0 \\ 6 & 0 \end{bmatrix} = \mathcal{C}_2^T$$