Aalto University

Controlled LTI processes, with an observer CHEM-E7190 (was E7140), 2023

Francesco Corona
Chemical and Metallurgical Engineering School of Chemical Engineering

Putting things together

LTI systems

The state-feedback controller when the state is not-measurable requires a state-observer

- This is possible, if and only if the system is observable
- Asymptotic state observer, the Luenberger observer

We can determine the controller gain K, by placing the eigenvalues of $A-B K$

- Possible, iff the system if controllable

$$
\dot{x}(t)=(A-K B) x(t)
$$

We can determine the observer gain K_{L}, by placing the eigenvalues of $A-K_{L} C$

$$
\dot{e}(t)=\left(A-K_{L} C\right) e(t)
$$

Theorem

Consider the linear time-invariant system in $x(t) \in \mathcal{R}^{N_{x}}, u(t) \in \mathcal{R}^{N_{u}}$, and $y(t) \in \mathcal{R}^{N_{y}}$

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)
\end{aligned}
$$

Consider the state-feedback control law

$$
u(t)=-K \widehat{x}(t)
$$

$\widehat{x}(t) \in \mathcal{R}^{N_{x}}$ denotes the estimate of state $x(t)$ obtained with the Luenberger observer

$$
\begin{aligned}
& \dot{\widehat{x}}(t)=A \widehat{x}(t)+B u(t)+K_{L}(y(t)-\widehat{y}(t)) \\
& \widehat{y}(t)=C \widehat{x}(t)
\end{aligned}
$$

The resulting closed-loop system is a dynamical system of order $2 \times N_{x}$ whose eigenvalues are the union of the N_{x} eigenvalues of $A-K B$ and the N_{x} eigenvalues of $A-K_{L} C$

$$
\left[\begin{array}{l}
\dot{x}(t) \\
\dot{\widehat{x}}(t)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A & -B K \\
K_{L} C & A-B K-K_{L} C
\end{array}\right]}_{A_{C L L}}\left[\begin{array}{l}
x(t) \\
\widehat{x}(t)
\end{array}\right]
$$

Consider the dynamic equation for the system,

$$
\begin{aligned}
\dot{x}(t) & =A x(t)-B u(t) \\
& =A x(t)-B K \widehat{x}(t)
\end{aligned}
$$

Consider the dynamic equation for the Luenberger observer,

$$
\begin{aligned}
\dot{x}(t) & =A \widehat{x}(t)+B u(t)+K_{L}(y(t)-\widehat{y}(t)) \\
& =A \widehat{x}(t)+B u(t)+K_{L}(C x(t)-C \widehat{x}(t)) \\
& =A \widehat{x}(t)+B u(t)+K_{L} C x(t)-K_{L} C \widehat{x}(t) \\
& =\left(A-K_{L} C\right) \widehat{x}(t)+B u(t)+K_{L} C x(t) \\
& =\left(A-K_{L} C\right) \widehat{x}(t)-B K \widehat{x}(t)+K_{L} C x(t) \\
& =K_{L} C x(t)+\left(A-B K-K_{L} C\right) \widehat{x}(t)
\end{aligned}
$$

Therefore, we have the two dynamic equations

$$
\begin{aligned}
& \dot{x}(t)=A x(t)-B K \widehat{x}(t) \\
& \dot{\widehat{x}}(t)=K_{L} C x(t)+\left(A-B K-K_{L} C\right) \widehat{x}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \dot{x}(t)=A x(t)-B K \widehat{x}(t) \\
& \dot{\hat{x}}(t)=K_{L} C x(t)+\left(A-B K-K_{L} C\right) \widehat{x}(t)
\end{aligned}
$$

In the more compact matrix notation, we have the closed-loop dynamics with observer

$$
\left[\begin{array}{l}
\dot{x}(t) \\
\dot{\hat{x}}(t)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A & -B K \\
K_{L} C & A-B K-K_{L} C
\end{array}\right]}_{A_{C L L}}\left[\begin{array}{l}
x(t) \\
\widehat{x}(t)
\end{array}\right]
$$

We want to know about the eigenvalues of $A_{C L L}$, the dynamics of closed-loop system

- Are they the union of the eigenvalues of $(A-B K)$ and $\left(A-K_{L} C\right)$?

Putting things together (cont.)

Consider the following similarity transformation P of the (augmented) state vector

$$
\left[\begin{array}{l}
x(t) \\
\widehat{x}(t)
\end{array}\right]=P\left[\begin{array}{l}
z(t) \\
\widehat{z}(t)
\end{array}\right]
$$

We consider a specific similarity transformation P such that

$$
P=\underbrace{\left[\begin{array}{cc}
I_{N_{x}} & 0_{N_{x}} \\
I_{N_{x}} & -I_{N_{x}}
\end{array}\right]}_{\left(N_{x} \times N_{x}\right)}=P^{-1}
$$

We have the relation between the (augmented) state vectors

$$
\left[\begin{array}{l}
x(t) \\
\widehat{x}(t)
\end{array}\right]=\left[\begin{array}{cc}
I_{N_{x}} & 0_{N_{x}} \\
I_{N_{x}} & -I_{N_{x}}
\end{array}\right]\left[\begin{array}{c}
z(t) \\
\widehat{z}(t)
\end{array}\right]
$$

- $x(t)=z(t)$
- $\widehat{x}(t)=z(t)-\widehat{z}(t)$

Putting things together (cont.)

Because the similarity transformation is invertible, for the transformed state we have

$$
\begin{aligned}
{\left[\begin{array}{l}
z(t) \\
\widehat{z}(t)
\end{array}\right] } & =P^{-1}\left[\begin{array}{l}
x(t) \\
\widehat{x}(t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
I_{N_{x}} & 0_{N_{x}} \\
I_{N_{x}} & -I_{N_{x}}
\end{array}\right]\left[\begin{array}{l}
x(t) \\
\widehat{x}(t)
\end{array}\right]
\end{aligned}
$$

The augmented state satisfies the new state-space representation with state matrix A^{\prime}

$$
\left[\begin{array}{c}
\dot{z}(t) \\
\stackrel{\grave{z}}{z}(t)
\end{array}\right]=A_{C L L}^{\prime}\left[\begin{array}{l}
z(t) \\
\widehat{z}(t)
\end{array}\right]
$$

\rightsquigarrow Where we have that $A_{C L L}^{\prime}=P^{-1} A_{C L L} P$

For a similarity transformation $x(t)=P z(t)$,

$$
\xrightarrow{u(t)} \begin{aligned}
& \dot{x}(t)=A^{\prime} x(t)+B^{\prime} u(t) \\
& y(t)=C^{\prime} x(t)+D^{\prime} u(t)
\end{aligned} \xrightarrow{y(t)}
$$

System

$$
\begin{aligned}
& \quad\left\{\begin{array}{l}
\dot{z}(t)=A^{\prime} z(t)+B^{\prime} u(t) \\
y(t)=C^{\prime} z(t)+D^{\prime} u(t)
\end{array}\right. \\
& \rightsquigarrow A^{\prime}=P^{-1} A P \\
& \rightsquigarrow B^{\prime}=P^{-1} B \\
& \rightsquigarrow C^{\prime}=C P \\
& \rightsquigarrow D^{\prime}=D
\end{aligned}
$$

$$
\left[\begin{array}{l}
\dot{\dot{z}}(t) \\
\stackrel{\rightharpoonup}{z}(t)
\end{array}\right]=A_{C L L}^{\prime}\left[\begin{array}{l}
z(t) \\
\widehat{z}(t)
\end{array}\right]
$$

For the state matrix $A_{C L L}^{\prime}$, we have

$$
\begin{aligned}
A_{C L L}^{\prime} & =P^{-1} A_{C L L} P \\
& =\left[\begin{array}{cc}
I_{N_{x}} & 0_{N_{x}} \\
I_{N_{x}} & -I_{N_{x}}
\end{array}\right]\left[\begin{array}{cc}
A & -B K \\
K_{L} C & A-B K-K_{L} C
\end{array}\right]\left[\begin{array}{cc}
I_{N_{x}} & 0_{N_{x}} \\
I_{N_{x}} & -I_{N_{x}}
\end{array}\right] \\
& =\left[\begin{array}{ll}
I_{N_{x}} & 0_{N_{x}} \\
I_{N_{x}} & -I_{N_{x}}
\end{array}\right]\left[\begin{array}{cc}
A-B K & B K \\
K_{L} C+A-B K-K_{L} C & -A+B K+K_{L} C
\end{array}\right] \\
& =\left[\begin{array}{cc}
I_{N_{x}} & 0_{N_{x}} \\
I_{N_{x}} & -I_{N_{x}}
\end{array}\right]\left[\begin{array}{cc}
A-B K & B K \\
A-B K & -A+B K+K_{L} C
\end{array}\right] \\
& =\left[\begin{array}{cc}
A-B K & B K \\
A-B K-A-B K & B K+A-B K-K_{L} C
\end{array}\right] \\
& =\left[\begin{array}{cc}
A-B K & B K \\
0 & A-K_{L} C
\end{array}\right]
\end{aligned}
$$

Putting things together (cont.)

The transformed dynamics $A_{C L L}^{\prime}$ are represented by an upper-block-triangular matrix

- Its eigenvalues are the eigenvalues of the blocks along the diagonal
- The controller $A-B K$ and the observer $A-K_{L} C$ state matrix

$$
\left[\begin{array}{c}
\dot{\dot{z}}(t) \\
\dot{\rightharpoonup} z \\
\hline
\end{array}\right]=\left[\begin{array}{cc}
A-B K & B K \\
0 & A-K_{L} C
\end{array}\right]\left[\begin{array}{c}
z(t) \\
\widehat{z}(t)
\end{array}\right] \quad \begin{gathered}
\widehat{y}(t)
\end{gathered}
$$

Similarity transformations do not modify the eigenvalues of the original state matrix
\rightsquigarrow The eigenvalues of $A_{C L L}$ are equal to those of $A_{C L L}^{\prime}$

Duality controllability-observability

LTI systems

Consider the linear and time invariant state-space model (A, B, C)

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

- Dimensions $x(t) \in \mathcal{R}^{N_{x}}, u(t) \in \mathcal{R}^{N_{u}}$, and $y(t) \in \mathcal{R}^{N_{y}}$

Consider the linear time invariant state-space model $\left(A^{T}, B^{T}, C^{T}\right)$

$$
\begin{aligned}
& \dot{z}(t)=A^{T} z(t)+C^{T} v(t) \\
& s(t)=B^{T} z(t)
\end{aligned}
$$

- Dimensions $z(t) \in \mathcal{R}^{N_{x}}, v(t) \in \mathcal{R}^{N_{u}}$, and $s(t) \in \mathcal{R}^{N_{y}}$

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t) \\
& \dot{z}(t)=A^{T} z(t)+C^{T} v(t) \\
& s(t)=B^{T} z(t)
\end{aligned}
$$

The dimension of all the system(s) matrices

$$
\begin{aligned}
A & \in \mathcal{R}^{N_{x} \times N_{x}} \\
B & \in \mathcal{R}^{N_{x} \times N_{u}} \\
C & \in \mathcal{R}^{N_{y} \times N_{x}} \\
A^{T} & \in \mathcal{R}^{N_{x} \times N_{x}} \\
B^{T} & \in \mathcal{R}^{N_{u} \times N_{x}} \\
C^{T} & \in \mathcal{R}^{N_{x} \times N_{y}}
\end{aligned}
$$

Theorem

We have the linear and time invariant system

$$
\mathcal{S}_{1} \quad\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)
\end{array}\right.
$$

We have the linear and time-invariant system

$$
\mathcal{S}_{2} \quad\left\{\begin{array}{l}
\dot{z}(t)=A^{T} z(t)+C^{T} v(t) \\
s(t)=B^{T} z(t)
\end{array}\right.
$$

We have the follwing result,
\rightsquigarrow System \mathcal{S}_{1} is controllable if and only if system \mathcal{S}_{2} is observable
\rightsquigarrow System \mathcal{S}_{1} is observable if and only if system \mathcal{S}_{2} is controllable

Duality controllability-observability (cont.)

Proof

Let \mathcal{C}_{i} and \mathcal{O}_{i} with $i=1,2$ be the controllability and the observability matrices of \mathcal{S}_{i}
We have,

$$
\left.\begin{array}{rl}
\mathcal{C}_{1} & =\left[\begin{array}{llll}
B & A B & A^{2} B & \cdots
\end{array} A^{N_{x}-1} B\right.
\end{array}\right]
$$

Similarly, we have

$$
\mathcal{O}_{1}=\mathcal{C}_{2}^{T}
$$

Example

Consider the linear and time-invariant dynamical system

$$
\begin{aligned}
\dot{x}(t) & =\left[\begin{array}{ll}
2 & 0 \\
1 & 3
\end{array}\right] x(t)+\left[\begin{array}{l}
2 \\
3
\end{array}\right] u(t) \\
y(t) & =\left[\begin{array}{ll}
3 & 0
\end{array}\right] x(t)
\end{aligned}
$$

The dual system,

$$
\begin{aligned}
& \dot{z}(t)=\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right] z(t)+\left[\begin{array}{l}
3 \\
0
\end{array}\right] v(t) \\
& s(t)=\left[\begin{array}{ll}
2 & 3
\end{array}\right] z(t)
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{C}_{1}=\left[\begin{array}{cc}
2 & 4 \\
3 & 11
\end{array}\right]=\mathcal{O}_{2}^{T} \\
\mathcal{O}_{1}=\left[\begin{array}{ll}
3 & 0 \\
6 & 0
\end{array}\right]=\mathcal{C}_{2}^{T}
\end{gathered}
$$

