A!
 Aalto University

Linear time-invariant processes: Dynamics CHEM-E7190 (was E7140), 2020-2021

Francesco Corona

Chemical and Metallurgical Engineering School of Chemical Engineering

2020-2021

Representation and analysis

LTI systems - Dynamics

Representation and analysis
Consider a linear and time-invariant system of order N_{x}, in state-space representation
\rightsquigarrow Let N_{x} be the number of outputs

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)+D u(t)
\end{array}\right.
$$

$$
\xrightarrow{u(t)} \begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned} \xrightarrow{y(t)}
$$

System
$A\left(N_{x} \times N_{x}\right), B\left(N_{x} \times N_{u}\right), C\left(N_{y} \times N_{x}\right)$ and $D\left(N_{y} \times N_{u}\right)$ are the system matrices $\rightsquigarrow x(t)$ is the state vector

- (N_{x} components)
$\rightsquigarrow \dot{x}(t)$ is the derivative of the state vector
- (N_{x} components)
$\rightsquigarrow u(t)$ is the input vector
- (N_{u} components)
$\rightsquigarrow y(t)$ is the output vector
- (N_{y} components)

Representation and analysis (cont.)

The analysis problem: Determine the behaviour of state $x(t)$ and output $y(t)$ for $t \geq t_{0}$

- We are given the input function $u(t)$, for $t \geq t_{0}$
- We are given the initial state $x\left(t_{0}\right)$

The solution to the analysis, for $t \geq t_{0}$, an initial state $x\left(t_{0}\right)$ and an input $u\left(t \geq t_{0}\right)$

$$
\begin{aligned}
& x(t)=e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau \\
& y(t)=\underbrace{C e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)+C \int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau}+D u(t)
\end{aligned}
$$

The solution is known as the Lagrange formula

- Based on the state transition matrix
$\rightsquigarrow e^{A t}$

Force-free and forced evolution

Note that we can write the state solution $x(t)$, for $t \geq t_{0}$, as the sum of two terms

$$
\begin{aligned}
x(t) & =\underbrace{e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)}_{x_{u}(t)}+\underbrace{\int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau}_{x_{f}(t)} \\
& =x_{u}(t)+x_{f}(t)
\end{aligned}
$$

\rightsquigarrow The force-free evolution of the state, $x_{u}(t)$
\rightsquigarrow The forced evolution of the state, $x_{f}(t)$

The force-free evolution of the state, from the initial condition $x\left(t_{0}\right)$ $\rightsquigarrow e^{A\left(t-t_{0}\right)}$ determines the transition from $x\left(t_{0}\right)$ to $x(t)$
\rightsquigarrow In the absence of contribution from the input
The forced evolution of the state, from the contribution of input $u(t)$
\rightsquigarrow In the absence of an initial condition $x\left(t_{0}\right)$

The state transition matrix

LTI systems - Dynamics

2020-2021

Lagrange formula

The state transition matrix

Consider a square $\left(N_{x} \times N_{x}\right)$ matrix A, the exponential e^{A} is square $\left(N_{x} \times N_{x}\right)$ matrix

$$
\begin{aligned}
\rightsquigarrow \quad e^{A} & =I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{A^{k}}{k!}
\end{aligned}
$$

The state transition matrix is the matrix exponential $e^{A t}$ of the matrix $A t$
\rightsquigarrow It is a matrix whose elements are functions of time
\rightsquigarrow We discuss its meaning and how to compute it

The state transition matrix (cont.)

The exponential function

Let z be some scalar, by definition its exponential is a scalar

$$
\begin{aligned}
e^{z} & =1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{z^{k}}{k!}
\end{aligned}
$$

The series always converges
The matrix exponential
Let A be a $(n \times n)$ matrix, by definition its exponential is a $(n \times n)$ matrix

$$
\begin{aligned}
e^{A} & =I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{A^{k}}{k!}
\end{aligned}
$$

The series always converges

The state transition matrix (cont.)

The product of several matrices

The product of matrix A and B is only possible when the matrixes are compatible

- Number of columns of A must equal the number of rows of B

The same applies to the product of several matrixes

$$
\underbrace{M}_{(m \times n)}=\underbrace{A_{1}}_{\left(m \times m_{1}\right)} \underbrace{A_{2}}_{\left(m_{1} \times m_{2}\right)} \cdots \underbrace{A_{k-1}}_{\left(m_{k-2} \times m_{k-1}\right)} \underbrace{A_{k}}_{\left(m_{k-1} \times n\right)}
$$

Powers of a matrix

Let A be an order- n square matrix, we want to define the k-th power of matrix A The k-th power of matrix A is the n-order matrix A^{k}

$$
A^{k}=\underbrace{A \times A \times \cdots \times A}_{k \text { times }}
$$

Some special cases,

$$
\begin{aligned}
& \rightsquigarrow A^{k=0}=I \\
& \rightsquigarrow A^{k=1}=A
\end{aligned}
$$

The state transition matrix (cont.)

Definition

The state transition matrix
Consider a linear and time-invariant state-space model with $\left(N_{x} \times N_{x}\right)$ state matrix A

$$
\xrightarrow{u(t)} \begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned} \quad y(t) \quad\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)+D u(t)
\end{array}\right.
$$

System

The state transition matrix of this system is given by the $\left(N_{x} \times N_{x}\right)$ matrix $e^{A t}$

$$
\begin{aligned}
e^{A t} & =\underbrace{\frac{A^{0} t^{0}}{0!}}_{I}+\underbrace{\frac{A^{1} t^{1}}{1!}}_{A t}+\underbrace{\frac{A^{2} t^{2}}{2!}}_{\left(A^{2} t^{2}\right) / 2!}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{A^{k} t^{k}}{k!}
\end{aligned}
$$

The state transition matrix is well defined for any square matrix A

- (The series always converges)

The state transition matrix (cont.)

It is not convenient to determine the state transition matrix starting from its definition
\rightsquigarrow One exception is when A is (block-)diagonal

The matrix exponential of block-diagonal matrixes

Consider any block-diagonal matrix A, we have

$$
A=\left[\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_{q}
\end{array}\right] \rightsquigarrow \quad e^{A}=\left[\begin{array}{cccc}
e^{A_{1}} & 0 & \cdots & 0 \\
0 & e^{A_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & e^{A_{q}}
\end{array}\right]
$$

The matrix exponential of diagonal matrixes (as special case)
For any diagonal $(n \times n)$ matrix A, we have

$$
A=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right] \rightsquigarrow e^{A}=\left[\begin{array}{cccc}
e^{\lambda_{1}} & 0 & \cdots & 0 \\
0 & e^{\lambda_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & e^{\lambda_{n}}
\end{array}\right]
$$

CHEM-E7190 2020-2021

The state transition matrix (cont.)

Example

Consider a linear and time-invariant state-space model with (2×2) diagonal matrix A

$$
A=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right]
$$

We are interested in the corresponding state transition matrix

We have,

$$
e^{A t}=\left[\begin{array}{cc}
e^{(-1) t} & 0 \\
0 & e^{(-2) t}
\end{array}\right]
$$

Representation

 and analysisState transition matrix

Some properties Sylvester's formula

Lagrange
formula
Force-free and forced evolution
Similarity transformation Diagonalisation

Modal matrix

Transition matrix

CHEM-E7190

2020-2021

Some properties

State transition matrix 2020-2021

Properties

We state without proof some fundamental results about a state transition matrix $e^{A t}$
\rightsquigarrow They are needed to derive Lagrange formula

Proposition

Derivative of the state transition matrix
Consider the state transition matrix $e^{A t}$, we have,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} e^{A t} & =A e^{A t} \\
& =e^{A t} A
\end{aligned}
$$

By using the derivative property, we have that A commutes with $e^{A t}$
\rightsquigarrow (This result is important)

Properties (cont.)

Proposition

Composition of two state transition matrices

Consider the two state transition matrices $e^{A t}$ and $e^{A \tau}$, we have

$$
e^{A t} e^{A \tau}=e^{A(t+\tau)}
$$

Proposition

Inverse of the state transition matrix
Let $e^{A t}$ be a state transition matrix, its inverse $\left(e^{A t}\right)^{-1}$ is matrix $e^{-A t}$

$$
\begin{aligned}
e^{A t} e^{-A t} & =e^{-A t} e^{A t} \\
& =I
\end{aligned}
$$

A state transition matrix $e^{A t}$ is always invertible (non-singular)

- Even if A were singular

Properties (cont.)

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula
Force-free and forced evolution

Similarity transformation

Matrix inverse
Consider a square matrix A of order n
We define the inverse of A the square matrix of order n, A^{-1}

$$
A^{-1} A=A A^{-1}=I
$$

The inverse of matrix A exists if and only if A is non-singular

- When the inverse exists, it is also unique

2020-2021

Sylvester's formula

The state transition matrix

Similarity transformation

Sylvester's expansion
We determine the analytical expression of the state transition matrix $e^{A t}$

- The procedure is known as Sylvester expansion
- (Does not require computing the infinite series)
- There are also other procedures (later)

Proposition

The Sylvester's expansion
Let A be a $(n \times n)$ matrix and let the corresponding state transition matrix be $e^{A t}$ We have,

$$
\begin{aligned}
e^{A t} & =\beta_{0}(t) I+\beta_{1}(t) A+\beta_{2}(t) A^{2}+\cdots+\beta_{n-1}(t) A^{n-1} \\
& =\sum_{i=0}^{n-1} \beta_{i}(t) A^{i}
\end{aligned}
$$

The coefficients β_{i} of the expansion are appropriate functions of time
\rightsquigarrow They can be determined by solving a set of linear equations
\rightsquigarrow There is a finite number (n) of them 2020-2021

Sylvester's expansion (cont.)

We show how to determine the coefficients when A has eigenvalues of multiplicity one

We will not consider the other cases, because rather involved and tedious to derive
\rightsquigarrow Matrix A has complex eigenvalues (with multiplicity larger one)
\rightsquigarrow Matrix A has complex eigenvalues (with multiplicity one)
\rightsquigarrow Eigenvalues of A have multiplicity larger than one

Sylvester's expansion (cont.)

Eigenvalues with multiplicity one
Let matrix A have distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$

$$
\begin{aligned}
e^{A t} & =\sum_{i=0}^{n-1} \beta_{i}(t) A^{i} \\
& =\beta_{0}(t) I+\beta_{1}(t) A+\beta_{2}(t) A^{2}+\cdots+\beta_{n-1}(t) A^{n-1}
\end{aligned}
$$

The n unknown functions $\beta_{i}(t)$ are those that solve the system

$$
\rightsquigarrow\left\{\begin{array}{l}
1 \beta_{0}(t)+\lambda_{1} \beta_{1}(t)+\lambda_{1}^{2} \beta_{2}(t)+\cdots+\lambda_{1}^{n-1} \beta_{n-1}(t)=e^{\lambda_{1} t} \\
1 \beta_{0}(t)+\lambda_{2} \beta_{1}(t)+\lambda_{2}^{2} \beta_{2}(t)+\cdots+\lambda_{2}^{n-1} \beta_{n-1}(t)=e^{\lambda_{2} t} \\
\cdots \\
1 \beta_{0}(t)+\lambda_{n} \beta_{1}(t)+\lambda_{n}^{2} \beta_{2}(t)+\cdots+\lambda_{n}^{n-1} \beta_{n-1}(t)=e^{\lambda_{n} t}
\end{array}\right.
$$

2020-2021

Representation and analysis

State transition matrix
Some properties Sylvester's formula

Lagrange formula
Force-free and forced evolution

Similarity transformation Diagonalisation Modal matrix Transition matrix

Sylvester's expansion (cont.)

Or, equivalently, in matrix form

$$
V \beta=\eta
$$

- The vector of unknowns

$$
\rightsquigarrow \quad \beta=\left[\begin{array}{llll}
\beta_{0}(t) & \beta_{1}(t) & \cdots & \beta_{n-1}(t)
\end{array}\right]^{T}
$$

- The coefficients matrix ${ }^{1}$

$$
\rightsquigarrow \quad V=\left[\begin{array}{ccccc}
1 & \lambda_{1} & \lambda_{1}^{2} & \cdots & \lambda_{1}^{n-1} \\
1 & \lambda_{2} & \lambda_{2}^{2} & \cdots & \lambda_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \lambda_{n} & \lambda_{n}^{2} & \cdots & \lambda_{n}^{n-1}
\end{array}\right]
$$

- The known vector

$$
\rightsquigarrow \quad \eta=\left[\begin{array}{llll}
e^{\lambda_{1} t} & e^{\lambda_{2} t} & \cdots & e^{\lambda_{n} t}
\end{array}\right]^{T}
$$

[^0]2020-2021

Representation

 and analysisState transition matrix Some properties Sylvester's formula

Lagrange formula

Sylvester's expansion (cont.)

$$
\eta=\left[\begin{array}{llll}
e^{\lambda_{1} t} & e^{\lambda_{2} t} & \cdots & e^{\lambda_{n} t}
\end{array}\right]^{T}
$$

The components of vector η are special functions of time, $e^{\lambda t}$
\rightsquigarrow Functions $e^{\lambda t}$ are the modes of matrix A
\rightsquigarrow Mode $e^{\lambda t}$ associates with eigenvalue λ
Each element of $e^{A t}$ is a linear combination of such modes

Example

Consider a (2×2) matrix A, we want to determine the state transition matrix $e^{A t}$

$$
A=\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right]
$$

Matrix A is triangular, the eigenvalues correspond to the diagonal elements
Matrix A has 2 distinct eigenvalues

$$
\begin{aligned}
& \rightsquigarrow \lambda_{1}=-1 \\
& \rightsquigarrow \lambda_{2}=-2
\end{aligned}
$$

To determine $e^{A t}$, we write the system

$$
\left\{\begin{array} { l }
{ 1 \beta _ { 0 } (t) + \lambda _ { 1 } \beta _ { 1 } (t) = e ^ { \lambda _ { 1 } t } } \\
{ 1 \beta _ { 0 } (t) + \lambda _ { 2 } \beta _ { 1 } (t) = e ^ { \lambda _ { 2 } t } }
\end{array} \quad \rightsquigarrow \quad \left\{\begin{array}{l}
\beta_{0}(t)+(-1) \beta_{1}(t)=e^{(-1) t} \\
\beta_{0}(t)+(-2) \beta_{1}(t)=e^{(-2) t}
\end{array}\right.\right.
$$

By simple manipulation, we get

$$
\rightsquigarrow \quad\left\{\begin{array}{l}
\beta_{0}(t)=2 e^{-t}-e^{-2 t} \\
\beta_{1}(t)=e^{-t}-e^{-2 t}
\end{array}\right.
$$

Thus,

$$
\begin{aligned}
e^{A t} & =\beta_{0}(t) I_{2}+\beta_{1}(t) A=\left(2 e^{-t}-e^{-2 t}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left(e^{-t}-e^{-2 t}\right)\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right] \\
& =\left[\begin{array}{cc}
e^{-t} & \left(e^{-t}-e^{-2 t}\right) \\
0 & e^{-2 t}
\end{array}\right]
\end{aligned}
$$

Each element of $e^{A t}$ is a linear combination of the two system modes, e^{-t} and $e^{-2 t}$

Eigenvalues and eigenvectors
Let $\lambda \in \mathcal{R}$ be some scalar and let $v \neq 0$ be some $(n \times 1)$ column vector
Consider a square matrix A of order n, suppose that the identify holds

$$
A v=\lambda v
$$

The scalar λ is called an eigenvalue of A
Vector v is the associated eigenvector

Consider a square matrix A of order n whose elements are real numbers
Matrix A has n (not necessarily distinct) eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$

- They can be real numbers or conjugate-complex pairs
- If $\lambda_{i} \neq \lambda_{j}$ for $i \neq j, A$ has multiplicity one 2020-2021

Representation

 and analysisState transition matrix

Some properties Sylvester's formula

Lagrange formula
Force-free and forced evolution

Similarity transformation

Diagonalisation Modal matrix Transition matrix

Sylvester's expansion (cont.)

Eigenvalues of triangular and diagonal matrices
Let matrix $A=\left\{a_{i, j}\right\}$ be a triangular or a diagonal matrix

- The eigenvalues of A are the n diagonal elements $\left\{a_{i, i}\right\}$

State transition matrix

Some properties Sylvester's formula

Lagrange
formula
Force-free and forced evolution

Similarity transformation Diagonalisation Modal matrix Transition matrix

Characteristic polynomial

The characteristic polynomial of a square matrix A of order n

- The n-order polynomial in the variable s

$$
P(s)=\operatorname{det}(s I-A)
$$

Computing eigenvalues and eigenvectors

The eigenvalues of matrix A of order n solve its characteristic polynomial \rightsquigarrow The roots of the equation $P(s)=\operatorname{det}(s I-A)=0$

Let λ be an eigenvalue of matrix A
Each eigenvector v associated to it is a non-trivial solution to the system

$$
(\lambda I-A) v=0
$$

Sylvester's expansion (cont.)

Systems of linear equations
Consider a system of n linear equations in n unknowns $A x=b$
$\rightsquigarrow A$ is a $(n \times n)$ matrix of coefficients
$\rightsquigarrow b$ is a $(n \times 1)$ vector of known terms
$\rightsquigarrow x$ is a $(n \times 1)$ vector of unknowns

If A is non-singular, the system admits one and only one solution
If matrix A is singular, let $M=[A \mid b]$ be a $[n \times(n+1)]$ matrix

- If $\operatorname{rank}(A)=\operatorname{rank}(M)$, system has infinite solutions
- If $\operatorname{rank}(A)<\operatorname{rank}(M)$, system has no solutions

Sylvester's expansion (cont.)

Matrix rank

The rank of a $(m \times n)$ matrix A is equal to the number of columns (or rows) of the matrix that are linearly independent, $\operatorname{rank}(A)$

Matrix kernel or null space
Consider a $(m \times n)$ matrix A, we define its null space or kernel

$$
\operatorname{ker}(A)=\left\{x \in R^{n} \mid A x=0\right\}
$$

It is the set of all vectors $x \in \mathcal{R}^{n}$ that left-multiplied by A produce the null vector The set is a vector space, its dimension is called the nullity of matrix $A, \operatorname{null}(A)$

2020-2021

Lagrange formula

LTI systems - Dynamics

Similarity transformation

Lagrange formula
We can now prove the solution to the analysis problem for MIMO systems

- Lagrange formula

Theorem

Lagrange formula

Consider the state-space representation of a time-invariant linear system of order n

$$
\xrightarrow{u(t)} \begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned} \quad y(t) \quad\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)+D u(t)
\end{array}\right.
$$

System
The solution for $t \geq t_{0}$, for an initial state $x\left(t_{0}\right)$ and an input $u\left(t \geq t_{0}\right)$

$$
\begin{aligned}
& x(t)=e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau \\
& y(t)=C e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)+C \int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau+D u(t)
\end{aligned}
$$

Lagrange formula (cont.)

Proof

By left-multiplying the state equation $\dot{x}(t)=A x(t)+B u(t)$ by $e^{-A t}$, we get

$$
e^{-A t} \dot{x}(t)=e^{-A t} A x(t)+e^{-A t} B u(t)
$$

The resulting state equation can be rewritten,

$$
e^{-A t} \dot{x}(t)-e^{-A t} A x(t)=e^{-A t} B u(t)
$$

Then, by using the result on the derivative of the state transition matrix ${ }^{2}$,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[e^{-A t} x(t)\right] & =e^{-A t} \dot{x}(t)-e^{-A t} A x(t) \\
& =e^{-A t} B u(t)
\end{aligned}
$$

[^1]By integrating between t_{0} and t, we obtain

That is,

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[e^{-A t} x(t)\right]=e^{-A t} B u(t)
$$

$$
\left[e^{-A \tau} x(\tau)\right]_{t_{0}}^{t}=\int_{t_{0}}^{t} e^{-A \tau} B u(\tau) \mathrm{d} \tau
$$

$$
e^{A t} x(t)-e^{-A t_{0}} x\left(t_{0}\right)=\int_{t_{0}}^{t} e^{-A \tau} B u(t) \mathrm{d} \tau
$$

Thus,

$$
e^{-A t} x(t)=e^{-A t_{0}} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{-A \tau} B u(t) \mathrm{d} \tau
$$

$$
e^{-A t} x(t)=e^{-A t_{0}} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{-A \tau} B u(t)
$$

The first Lagrange formula is obtained by multiplying both sides by $e^{A t}$

$$
\rightsquigarrow \quad x(t)=e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau
$$

The second formula is obtained by substituting $x(t)$ in the output equation

$$
\begin{aligned}
y(t) & =C x(t)+D u(t) \\
& \rightsquigarrow C[\underbrace{e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau}_{x(t)}]+D u(t)
\end{aligned}
$$

2020-2021

Representation and analysis

State transition matrix
Some properties
Sylvester's formula
Lagrange
formula
Force-free and forced evolution

Similarity transformation Diagonalisation Modal matrix Transition matrix

Force-free and forced evolution

Lagrange formula

Force-free and forced evolution

$$
x(t)=\underbrace{e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)}_{x_{u}(t)}+\underbrace{\int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau}_{x_{f}(t)}
$$

We can write the state solution (for $t \geq t_{0}$) as the sum of two terms

$$
\rightsquigarrow \quad x(t)=x_{u}(t)+x_{f}(t)
$$

\rightsquigarrow The force-free evolution of the state, $x_{u}(t)$
\rightsquigarrow The forced evolution of the state, $x_{f}(t)$

Force-free and forced evolution (cont.)

$$
x(t)=\underbrace{e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)}_{x_{u}(t)}+\underbrace{\int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau}_{x_{f}(t)}
$$

The force-free evolution of the state, from the initial condition $x\left(t_{0}\right)$

$$
\rightsquigarrow \quad x_{l}(t)=e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)
$$

$\rightsquigarrow e^{A\left(t-t_{0}\right)}$ indicates the transition from $x\left(t_{0}\right)$ to $x(t)$
\rightsquigarrow In the absence of contribution from the input

The forced evolution of the state

$$
\rightsquigarrow \quad x_{f}(t)=\int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau
$$

\rightsquigarrow The contribution of $u(\tau)$ to state $x(t)$
\rightsquigarrow Through a weighting function, $e^{A(t-\tau)} B$

Force-free and forced evolution (cont.)

$$
y(t)=\underbrace{C e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)}_{y_{u}(t)}+\underbrace{C \int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau+D u(t)}_{y_{f}(t)}
$$

We can write the output solution (for $t \geq t_{0}$) as the sum of two terms

$$
\rightsquigarrow \quad y(t)=y_{l}(t)+y_{f}(t)
$$

\rightsquigarrow The force-free evolution of the output, $y_{u}(t)$
\rightsquigarrow The forced evolution of the output, $y_{f}(t)$

Free and forced evolution (cont.)

$$
y(t)=\underbrace{C e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)}_{y_{u}(t)}+\underbrace{C \int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau+D u(t)}_{y_{f}(t)}
$$

The force-free evolution of the output, from initial condition $y\left(t_{0}\right)=C x\left(t_{0}\right)$

$$
\begin{aligned}
\rightsquigarrow \quad y_{u}(t) & =C e^{A\left(t-t_{0}\right)} x\left(t_{0}\right) \\
& =C x_{u}(t)
\end{aligned}
$$

The forced-evolution of the output

$$
\begin{aligned}
\rightsquigarrow \quad y_{f}(t) & =C \int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau+D u(t) \\
& =C x_{f}(t)+D u(t)
\end{aligned}
$$

Free and forced evolution (cont.)

$$
\xrightarrow{u(t)} \begin{gathered}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)+D u(t)
\end{gathered} \xrightarrow{y(t)}
$$

Note that for $t_{0}=0$, we have

$$
\begin{aligned}
& x(t)=e^{A t} x(0)+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau \\
& y(t)=C e^{A t} x(0)+C \int_{0}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau+D u(t)
\end{aligned}
$$

Example

Consider a linear time-invariant system with the state-space representation,

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)} \\
y(t)
\end{array}=\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]\right.
$$

We want to determine the state and the output evolution for $t \geq 0$

- We consider the input signal $u(t)=2 \delta_{-1}(t)$
- We consider the initial state $x(0)=(3,4)^{T}$

The state transition matrix for this state-space representation,

$$
e^{A t}=\left[\begin{array}{cc}
e^{-t} & \left(e^{-t}-e^{-2 t}\right) \\
0 & e^{-2 t}
\end{array}\right]
$$

We computed it earlier

Free and forced evolution (cont.)

The force-free evolution of the state, for $t \geq 0$

$$
\begin{aligned}
\rightsquigarrow \quad x_{u}(t) & =e^{A t} x(0) \\
& =\left[\begin{array}{cc}
e^{-t} & \left(e^{-t}-e^{-2 t}\right) \\
0 & e^{-2 t}
\end{array}\right]\left[\begin{array}{l}
3 \\
4
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(7 e^{-t}-4 e^{-2 t}\right) \\
4 e^{-2 t}
\end{array}\right]
\end{aligned}
$$

That is,

Free and forced evolution (cont.)

The force-free evolution of the output, for $t \geq 0$

$$
\begin{aligned}
\rightsquigarrow \quad y_{u}(t) & =C x_{u}(t) \\
& =\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{c}
\left(7 e^{-t}-4 e^{-2 t}\right) \\
4 e^{-2 t}
\end{array}\right] \\
& =14 e^{-t}-4 e^{-2 t}
\end{aligned}
$$

That is,

Free and forced evolution (cont.)
The forced evolution of the state, for $t \geq 0$

$$
\begin{aligned}
\rightsquigarrow \quad x_{f}(t) & =\int_{0}^{t} e^{A t} B u(t-\tau) \mathrm{d} \tau=\int_{0}^{t}\left[\begin{array}{cc}
e^{-\tau} & \left(e^{-\tau}-e^{-2 \tau}\right) \\
0 & e^{-2 \tau}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] 2 \mathrm{~d} \tau \\
& =2 \int_{0}^{t}\left[\begin{array}{c}
\left(e^{-\tau}-e^{-2 \tau}\right) \\
e^{-2 \tau}
\end{array}\right] \mathrm{d} \tau=2\left[\begin{array}{c}
\int_{0}^{t}\left(e^{-\tau}-e^{-2 \tau}\right) \mathrm{d} \tau \\
\int_{0}^{t} e^{-2 t} \mathrm{~d} \tau
\end{array}\right] \\
& =2\left[\begin{array}{c}
\left(1-e^{-t}\right)-1 / 2\left(1-e^{-2 t}\right) \\
1 / 2\left(1-e^{-2 t}\right)
\end{array}\right]=\left[\begin{array}{c}
\left(1-2 e^{-t}+e^{-2 t}\right) \\
\left(1-e^{-2 t}\right)
\end{array}\right]
\end{aligned}
$$

Free and forced evolution (cont.)
Since $D=0$, the forced evolution of the output for $t \geq 0$

$$
\begin{aligned}
\rightsquigarrow \quad y_{f}(t) & =C x_{f}(t) \\
& =\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{c}
\left(1-2 e^{-t}+e^{-2 t}\right) \\
\left(1-e^{-2 t}\right)
\end{array}\right] \\
& =3-4 e^{-t}+e^{-2 t}
\end{aligned}
$$

That is,

2020-2021

Similarity transformation
 LTI systems - Dynamics

 2020-2021Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange
formula
Force-free and forced evolution

Similarity transformation Diagonalisation Modal matrix Transition matrix

Similarity transformation

The form of the state space representation depends on the choice of state variables

- The choice is not unique, even when we are coming from a physical model

There is an infinite number of different representations of the same system

- They are all related by a similarity transformation
- These transformations allow flexibility in the analysis
- We can change to easier system representations

The state matrix can be set to a canonical form
\rightsquigarrow Diagonal form
\rightsquigarrow Jordan form
$\leadsto \ldots$

State transition matrix Some properties Sylvester's formula

Lagrange
formula
Force-free and forced evolution

Similarity transformation

Diagonalisation Modal matrix
Transition matrix

Similarity transformation (cont.)

Definition

Similarity transformation

Consider the state-space representation of a linear time-invariant system of order N_{x}

$$
\xrightarrow{u(t)} \begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned} \quad y(t) \quad\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)+D u(t)
\end{array}\right.
$$

System

- $x(t)$ and $\dot{x}(t)$, state vector and its derivative (N_{x} components)
- $u(t)$, input vector (N_{u} components)
- $y(t)$, output vector (N_{y} components)

Let vector $z(t)$ be related to $x(t)$ by some linear transformation $P, x(t)=P z(t)$ P is any $\left(N_{x} \times N_{x}\right)$ non-singular matrix of constants (its inverse always exists)

- Because of non-signularity, we have $z(t)=P^{-1} x(t)$

The transformation/matrix P is called a similarity transformation/matrix

Similarity transformation (cont.)

Proposition

Similar representations

Consider the state-space representation of a linear time-invariant system of order N_{x}

$$
\xrightarrow{u(t)} \begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned} \quad y(t) \quad\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)+D u(t)
\end{array}\right.
$$

System

Let P be some similarity transformation matrix such that $x(t)=P z(t)$
Vector $z(t)=P^{-1} x(t)$ satisfies the new state-space representation

$$
\begin{aligned}
& \left.\xrightarrow{u(t)} \begin{array}{l}
\dot{x}(t)=A^{\prime} x(t)+B^{\prime} u(t) \\
y(t)=C^{\prime} x(t)+D^{\prime} u(t)
\end{array}\right] y(t) \quad\left\{\begin{array}{l}
\dot{z}(t)=A^{\prime} z(t)+B^{\prime} u(t) \\
y(t)=C^{\prime} z(t)+D^{\prime} u(t)
\end{array}\right. \\
& \text { System } \\
& \rightsquigarrow B^{\prime}=P^{-1} B \\
& \rightsquigarrow C^{\prime}=C P \\
& \rightsquigarrow D^{\prime}=D
\end{aligned}
$$

Similarity transformation (cont.)

Proof

By taking the time-derivative of the state vector $x(t)=P z(t)$, we have

$$
\rightsquigarrow \quad \dot{x}(t)=P \dot{z}(t)
$$

By substituting $x(t)$ and $\dot{x}(t)$ into the state-space representation,

$$
\rightsquigarrow \quad\left\{\begin{array}{l}
\underbrace{P \dot{z}(t)}_{\dot{x}(t)}=A \underbrace{P z(t)}_{x(t)}+B u(t) \\
y(t)=C \underbrace{P z(t)}_{x(t)}+D u(t)
\end{array}\right.
$$

Pre-multiply the state equation by P^{-1}, to complete the proof

$$
\begin{aligned}
P^{-1} P \dot{z}(t) & =P^{-1} A P z(t)+P^{-1} B u(t) \\
P^{-1} y(t) & =P^{-1} C P z(t)+P^{-1} D u(t)
\end{aligned}
$$

Similarity transformation (cont.)

$$
\begin{aligned}
P^{-1} P \dot{z}(t) & =P^{-1} A P z(t)+P^{-1} B u(t) \\
P^{-1} y(t) & =P^{-1} C P z(t)+P^{-1} D u(t)
\end{aligned}
$$

For the state equation, we have

$$
\underbrace{P^{-1} P}_{I} \dot{z}(t)=\underbrace{P^{-1} A P}_{A^{\prime}} z(t)+\underbrace{P^{-1} B}_{B^{\prime}} u(t)
$$

For the measurements, we have

$$
\begin{gathered}
\underbrace{P P^{-1}}_{I} y(t)=\underbrace{P P^{-1}}_{I} C P z(t)+\underbrace{P P^{-1}}_{I} D u(t) \\
\underbrace{C P}_{C^{\prime}} z(t)+\underbrace{D}_{D^{\prime}} u(t)
\end{gathered}
$$ 2020-2021

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange
formula
Force-free and forced evolution

Similarity transformation

Similarity transformation (cont.)

$$
\xrightarrow{u(t)} \begin{aligned}
& \dot{x}(t)=A^{\prime} x(t)+B^{\prime} u(t) \\
& y(t)=C^{\prime} x(t)+D^{\prime} u(t)
\end{aligned} \quad y(t) \quad\left\{\begin{array}{l}
\dot{z}(t)=A^{\prime} z(t)+B^{\prime} u(t) \\
y(t)=C^{\prime} z(t)+D^{\prime} u(t)
\end{array}\right.
$$

System

We obtained a different state-space representation of the same dynamical system

- Input $u(t)$ and output $y(t)$ are left unchanged (problem data)
- We defined a new (transformed) state variables, $z(t)$

There is an infinite number of non-singular matrixes P that could be used
\rightsquigarrow Thus, there is also an infinite number of equivalent representations
$\rightsquigarrow A^{\prime}=P^{-1} A P$
$\rightsquigarrow B^{\prime}=P^{-1} B$
$\rightsquigarrow C^{\prime}=C P$
$\rightsquigarrow D^{\prime}=D$

Example

Consider a linear time-invariante system with state-space representation $\{A, B, C, D\}$

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
\dot{x_{1}}(t) \\
\dot{x_{2}}(t)
\end{array}\right]=\overbrace{\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right]}^{A}\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\overbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}^{B} u(t)} \\
{\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]}_{C}\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\underbrace{\left[\begin{array}{c}
1.5 \\
0
\end{array}\right]}_{D} u(t)}
\end{array}\right.
$$

Consider the similarity transformation of the state using some matrix P

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]}_{P}\left[\begin{array}{l}
z_{1}(t) \\
z_{2}(t)
\end{array}\right]
$$

What is the $\left\{A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}\right\}$ state-space representation for state $z(t)$ 2020-2021

Representation and analysis

State transition matrix
Some properties Sylvester's formula

Lagrange formula

Similarity transformation (cont.)

We are given the similarity transformation P,

$$
P=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

We compute its inverse,

$$
P^{-1}=\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]
$$

Since $z(t)=P^{-1} x(t)$, we have

$$
\begin{aligned}
{\left[\begin{array}{l}
z_{1}(t) \\
z_{2}(t)
\end{array}\right] } & =\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] \\
& =\left[\begin{array}{c}
x_{2}(t) \\
x_{1}(t)-x_{2}(t)
\end{array}\right]
\end{aligned}
$$

The second component of z is the difference between first and second component of x
\rightsquigarrow The first component of z simply equals the second component of x

Representation and analysis

State transition matrix Some properties Sylvester's formula

Lagrange formula

Similarity transformation (cont.)

We conclude by calculating the resulting state-space representation

$$
\begin{aligned}
A^{\prime} & =P^{-1} A P \\
& =\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
-2 & 0
\end{array}\right]=\left[\begin{array}{cc}
-2 & 0 \\
2 & -1
\end{array}\right] \\
B^{\prime} & =P^{-1} B \\
& =\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
C^{\prime} & =C P \\
& =\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 2 \\
2 & 0
\end{array}\right] \\
D^{\prime} & =D \\
& =\left[\begin{array}{cc}
1.5 \\
0
\end{array}\right]
\end{aligned}
$$

Similarity transformation (cont.)

Proposition

Similarity and state transition matrix
Consider the state matrix $A^{\prime}=P^{-1} A P$ from some similarity transformation P
The corresponding state transition matrix,

$$
e^{A^{\prime} t}=P^{-1} e^{A t} P
$$

Proof

Note that

$$
\left(A^{\prime}\right)^{k}=\underbrace{\left(P^{-1} A P\right) \cdot\left(P^{-1} A P\right) \cdots\left(P^{-1} A P\right)}_{k \text { times }}=P^{-1} \underbrace{A A \cdots A}_{k \text { times }} P=P^{-1} A^{k} P
$$

Thus, by definition

$$
e^{A^{\prime} t}=\sum_{k=0}^{\infty} \frac{\left(A^{\prime}\right)^{k} t^{k}}{k!}=\sum_{k=0}^{\infty} \frac{\left(P^{-1} A^{k} P\right) t^{k}}{k!}=P^{-1}\left(\sum_{k=0}^{\infty} \frac{A^{k} t^{k}}{k!}\right) P=P^{-1} e^{A t} P
$$

2020-2021

Representation and analysis State transition matrix

Some properties Sylvester's formula

Lagrange
formula
Force-free and forced evolution

Similarity transformation Diagonalisation Modal matrix Transition matrix

We show how two similar state-space representations describe the same IO relation

Proposition

Invariance of the IO relationship under similarity
Consider two similar state-space representations of a linear time-invariant system
$\rightsquigarrow\{A, B, C, D\}$ and $\left\{A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}\right\}$
$\rightsquigarrow P$ is the transformation matrix
Suppose that the system be subjected to some known input

$$
\rightsquigarrow u(t)
$$

The two representations produce the same forced response

$$
\rightsquigarrow y_{f}(t)
$$

Similarity transformation (cont.)

Proof

Consider the Lagrange formula
The forced response of the second representation due to input $u(t)$

$$
\begin{aligned}
y_{f}(t) & =C^{\prime} \int_{t_{0}}^{t} e^{A^{\prime}(t-\tau)} B^{\prime} u(\tau) \mathrm{d} \tau+D u(t) \\
& =C P \int_{t_{0}}^{t} \underbrace{P^{-1} e^{A(t-\tau)} P}_{e^{A^{\prime}(t-\tau)}} \underbrace{P^{-1} B}_{B^{\prime}} u(\tau) \mathrm{d} \tau+D u(t) \\
& =C \int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau+D u(t)
\end{aligned}
$$

This response corresponds to the one of the original representation

$$
y_{f}(t)=C \int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau+D u(t)
$$

Similarity transformation (cont.)

Proposition

Invariance of the eigenvalues under similarity transformations
Matrix A and $P^{-1} A P$ have the same characteristic polynomial

Proof

The characteristic polynomial of matrix A^{\prime}

$$
\begin{aligned}
\operatorname{det}\left(\lambda I-A^{\prime}\right) & =\operatorname{det}\left(\lambda I-P^{-1} A P\right) \\
& =\operatorname{det}(\lambda \underbrace{P^{-1} P}_{I}-P^{-1} A P) \\
& =\operatorname{det}\left[P^{-1}(\lambda I-A) P\right] \\
& =\operatorname{det}\left(P^{-1}\right) \operatorname{det}(\lambda I-A) \operatorname{det}(P) \\
& =\operatorname{det}(\lambda I-A)
\end{aligned}
$$

The last equality is obtained from $\operatorname{det}\left(P^{-1}\right) \operatorname{det}(P)=1$
A and A^{\prime} share the same characteristic polynomial
\rightsquigarrow Thus, also the eigenvalues are the same 2020-2021

Representation and analysis

State transition matrix
Some properties
Sylvester's formula
Lagrange
formula
Force-free and forced evolution

Similarity transformation Diagonalisation Modal matrix Transition matrix

Similarity transformation (cont.)

Two similar representations have the same modes, the modes characterise the dynamics
The modes are therefore independent of the representation
\rightsquigarrow This is important

Similarity transformation (cont.)

Example

Consider two similar state-space representations of a linear time-invariant system

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right] \\
A^{\prime} & =\left[\begin{array}{cc}
-2 & 0 \\
2 & -1
\end{array}\right]
\end{aligned}
$$

The similarity transformation matrix

$$
P=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

We are interested in the eigenvalues and modes of the system

Matrix A and A have two eigenvectors

- $\lambda_{1}=-1$
- $\lambda_{2}=-2$

The system modes are e^{-t} and $e^{-2 t}$

CHEM-E7190

2020-2021

Representation

 and analysisState transition matrix
Some properties Sylvester's formula

Lagrange formula

Diagonalisation

LTI systems - Dynamics

2020-2021

Representation and analysis

State transition matrix

Some properties
Sylvester's formula
Lagrange
formula
Force-free and forced evolution

Similarity transformation

We consider a special similarity transformation P, we seek for a diagonal matrix A^{\prime}
\rightsquigarrow A state-space representation with a diagonal state matrix
\rightsquigarrow Diagonal canonical form
$\rightsquigarrow \Lambda=A^{\prime}=P^{-1} A P$

Consider the linear time-invariant system with a single input (and, say, single output)

$$
\left[\begin{array}{c}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t) \\
\vdots \\
\dot{x}_{n}(t)
\end{array}\right]=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right] u(t)
$$

The evolution of the i-th component of the state vector

$$
\rightsquigarrow \quad \dot{x}_{i}(t)=\lambda_{i} x_{i}(t)+b_{i} u(t)
$$

State derivatives are not related to other components

Diagonalisation (cont.)

We can understand a system with diagonal matrix A as a collection of sub-systems
\rightsquigarrow Each sub-system is described by a single state component
\rightsquigarrow Each state component evolves independently
\rightsquigarrow The representation is decoupled
$\rightsquigarrow N_{x}$ first-order subsystems
The characteristic polynomial of the system for the i-th component

$$
\rightsquigarrow \quad P_{i}(s)=\left(s-\lambda_{i}\right)
$$

This subsystem has mode $e^{-\lambda_{i} t}$

We show how to determine a similarity transformation that leads to a diagonal form

- This can be understood as a somehow special similarity transformation

CHEM-E7190

2020-2021

Modal matrix

Diagonalisation

Diagonalisation (cont.)

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix

 Transition matrix
Definition

Modal matrix
Consider a system in state-space representation with $\left(N_{x} \times N_{x}\right)$ matrix A

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be a set of all the eigenvectors of matrix A
- Suppose that they correspond to eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$

Suppose that eigenvectors in this set are also linearly independent
We define the modal matrix of A as the $\left(N_{x} \times N_{x}\right)$ matrix V

$$
V=\left[v_{1}\left|v_{2}\right| \cdots \mid v_{n}\right]
$$

Diagonalisation (cont.)

If a matrix A has N_{x} distinct eigenvalues λ, then the modal matrix A always exists

- Its N_{x} eigenvectors v are linearly independent

Distinct eigenvalues

Let A be a n-order matrix whose n eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are distinct
Then, there is a set of n linearly independent eigenvectors

- Vectors $v_{1}, v_{2}, \ldots, v_{n}$ form a basis for \mathcal{R}^{n}

CHEM-E7190 2020-2021

Representation

 and analysisState transition matrix
Some properties Sylvester's formula

Lagrange formula

Diagonalisation (cont.)

Example

Consider a state-space representation of a linear time-invariant system with matrix A

$$
A=\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right]
$$

We are interested in the modal matrix V of A

The eigenvalues and eigenvectors of A

$$
\begin{aligned}
& \rightsquigarrow \lambda_{1}=1 \text { and } v_{1}=\left[\begin{array}{ll}
1 & -1
\end{array}\right]^{T} \\
& \rightsquigarrow \lambda_{2}=5 \text { and } v_{2}=\left[\begin{array}{ll}
1 & 3
\end{array}\right]^{T}
\end{aligned}
$$

The modal matrix V,

$$
V=\left[v_{1} \mid v_{2}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right]
$$

2020-2021
Diagonalisation (cont.)

Representation and analysis

State transition matrix
Some properties Sylvester's formula

Lagrange formula

Similarity transformation

$$
V=\left[v_{1} \mid v_{2}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right]
$$

It is important to note that the eigenvectors are determined up to a scaling constant

- (Plus, the ordering of the eigenvalues is arbitrary)
- There can be more than one modal matrix

These two modal matrices of matrix A are equivalent

$$
\begin{aligned}
V^{\prime} & =\left[2 v_{1} \mid 3 v_{2}\right]=\left[\begin{array}{cc}
2 & 3 \\
-2 & 9
\end{array}\right] \\
V^{\prime \prime} & =\left[v_{2} \mid v_{1}\right]=\left[\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right]
\end{aligned}
$$ 2020-2021

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Diagonalisation (cont.)

Consider a matrix A with some eigenvalues λ that have multiplicity ν larger than one

- The modal matrix V exists if and only if to each eigenvalue λ_{i} with multiplicity ν_{i} is possible to associate ν_{i} linearly independent eigenvectors $\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, \nu_{i}}\right\}$

This is not always possible

But, ...
If a matrix admits a modal matrix, then it can be diagonalised

- (This is what matters to us) 2020-2021

Diagonalisation (cont.)

Example

Consider a state space representation of a linear time-invariant system with matrix A

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

Its only eigenvalue $\lambda=2$ has multiplicity $\nu=2$

Its eigenvectors are obtained by solving the system $[\lambda I-A] v=0$

$$
[2 I-A] v=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \rightsquigarrow \quad\left\{\begin{array}{l}
0=0 \\
0=0
\end{array}\right.
$$

We can choose any two linearly independent eigenvectors for λ

- As the equation is satisfied for any value of a and b

A modal matrix with the eigenvectors from the canonical basis

$$
\rightsquigarrow \quad V=\left[v_{1} \mid v_{2}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Diagonalisation (cont.)

Example

Consider a state space representation of a linear time-invariant system with matrix A

$$
A=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
$$

Its only eigenvalue $\lambda=2$ has multiplicity $\nu=2$

Its eigenvectors are obtained by solving the system $[\lambda I-A] v=0$

$$
[2 I-A] v=\left[\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \rightsquigarrow \quad\left\{\begin{array}{l}
-b=0 \\
0=0
\end{array}\right.
$$

As $b=0$, we can choose only one linearly independent eigenvector for λ

$$
v_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Matrix A does not admit a modal matrix

2020-2021

Representation

 and analysisState transition matrix

Some properties
Sylvester's formula
Lagrange
formula
Force-free and forced evolution

Similarity transformation

Diagonalisation Modal matrix Transition matrix

Diagonalisation (cont.)

Proposition

Diagonalisation

Consider a state-space representation of a linear time-invariant system with matrix A
Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be its eigenvalues and $V=\left[v_{1}\left|v_{2}\right| \cdots \mid v_{n}\right]$ one of its modal matrices
Let Λ be the state matrix transformed according to $\Lambda=V^{-1} A V$
$\rightsquigarrow \Lambda$ is diagonal

Example

Consider a linear time-invariant system with matrixes $\{A, B, C, D\}$

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
\dot{x_{1}}(t) \\
\dot{x_{2}}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)} \\
{\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
1.5 \\
0
\end{array}\right] u(t)}
\end{array}\right.
$$

We are interested in a diagonal representation by similarity

We can compute the eigenvalues and eigenvectors of A

- $\lambda_{1}=-1$ and $v_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- $\lambda_{2}=-2$ and $v_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$

Representation and analysis

State transition matrix
Some properties Sylvester's formula

Lagrange

formula

Diagonalisation (cont.)

Then, we can determine a modal matrix and its inverse

$$
\begin{aligned}
V & =\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right] \\
V^{-1} & =\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

From the similarity transformation expressions, we get

$$
\begin{aligned}
A^{\prime} & =V^{-1} A V=\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & -2 \\
0 & 2
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right]=\Lambda \\
B^{\prime} & =V^{-1} B=\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
C^{\prime} & =C V=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
0 & -2
\end{array}\right] \\
D^{\prime} & =D=\left[\begin{array}{c}
1.5 \\
0
\end{array}\right]
\end{aligned}
$$

2020-2021

State transition matrix by diagonalisation

Diagonalisation 2020-2021

Representation

 and analysisState transition matrix
Some properties Sylvester's formula

Lagrange formula
Force-free and forced evolution

Similarity transformation Diagonalisation Modal matrix Transition matrix

State transition matrix by diagonalisation

We show a procedure alternative to Sylvester's formula for the state transition matrix

- We assume a linear time-invariant state-space system representation
- We assume that the state matrix A can be diagonalised

Transition matrix by diagonalisation (cont.)

Proposition

State transition matrix by diagonalisation

Consider a $(n \times n)$ state matrix A and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be its eigenvalues Suppose that A admits the modal matrix V

We have for the state transition matrix

$$
e^{A t}=V e^{\Lambda t} V^{-1}=V\left[\begin{array}{cccc}
e^{\lambda_{1} t} & 0 & \cdots & 0 \\
0 & e^{\lambda_{2} t} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & e^{\lambda_{n} t}
\end{array}\right] V^{-1}
$$

Because we have a diagonal state matrix

$$
\Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

State transition matrix by diagonalisation (cont.)

Proof

We have shown that the identity holds (see similarity and state transition matrices ${ }^{3}$)

$$
e^{\Lambda t}=V^{-1} e^{A t} V
$$

To complete the proof, multiply both sides by V on the left and by V^{-1} on the right

[^2]CHEM-E7190 2020-2021

Representation and analysis

State transition matrix
Some properties
Sylvester's formula
Lagrange
formula
Force-free and forced evolution

Similarity transformation Diagonalisation Modal matrix Transition matrix

State transition matrix by diagonalisation (cont.)

Example

Consider a linear time-invariant system with matrixes $\{A, B, C, D\}$

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
\dot{x_{1}}(t) \\
\dot{x_{2}}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)} \\
{\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
1.5 \\
0
\end{array}\right] u(t)}
\end{array}\right.
$$

We are interested in computing the state transition matrix $e^{A t}$

State transition matrix by diagonalisation (cont.)

We have already computed the modal matrix of A and its inverse, V and V^{-1}

$$
\begin{aligned}
V & =\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right] \\
V^{-1} & =\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
e^{A t} & =V\left[\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right] V^{-1}=\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{-2 t}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
e^{-t} & e^{-t} \\
0 & -e^{-2 t}
\end{array}\right]=\left[\begin{array}{cc}
e^{-t} & \left(e^{-t}-e^{-2 t}\right) \\
0 & e^{-2 t}
\end{array}\right]
\end{aligned}
$$

This is the same result we determined by using the Sylvester expansion

[^0]: ${ }^{1}$ A matrix in this form is known to be a Vandermonde matrix.

[^1]: ${ }^{2}$ Derivative of the state transition matrix

 $$
 \frac{\mathrm{d}}{\mathrm{~d} t}\left[e^{-A t} x(t)\right]=e^{-A t}\left[\frac{\mathrm{~d}}{\mathrm{~d} t} x(t)\right]+\left[\frac{\mathrm{d}}{\mathrm{~d} t} e^{A t}\right] x(t)=e^{-A t} \dot{x}(t)-e^{-A t} A x(t)
 $$

[^2]: ${ }^{3}$ Given $A^{\prime}=P^{-1} A P$, we have $e^{A^{\prime} t}=P^{-1} e^{A t} P$.

