Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisatio

Modal matrix Transition mat

Aalto University

Linear time-invariant processes: Dynamics CHEM-E7190 (was E7140), 2023

Francesco Corona

Chemical and Metallurgical Engineering School of Chemical Engineering

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Disconstinution

Modal matri

Transition matrix

Representation and analysis

LTI systems - Dynamics

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation Modal matrix Transition matrix

Representation and analysis

Consider a linear and time-invariant system of order N_x , in state-space representation

 \rightsquigarrow Let N_x be the number of outputs \rightsquigarrow Let N_u be the number of inputs

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

System

A $(N_x \times N_x)$, B $(N_x \times N_u)$, C $(N_y \times N_x)$ and D $(N_y \times N_u)$ are the system matrices $\rightarrow x(t)$ is the state vector

- $(N_x \text{ components})$
- $\rightsquigarrow \dot{x}(t)$ is the derivative of the state vector
- $(N_x \text{ components})$
- $\rightsquigarrow u(t)$ is the input vector
- $(N_u \text{ components})$
- $\rightsquigarrow y(t)$ is the **output vector**
- $(N_y \text{ components})$

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisatio

Transition matri

Representation and analysis (cont.)

The analysis problem: Determine the behaviour of state x(t) and output y(t) for $t \ge t_0$

- We are given the input function u(t), for $t \ge t_0$
- We are given the initial state $x(t_0)$

The solution to the analysis, for $t \ge t_0$, an initial state $x(t_0)$ and an input $u(t \ge t_0)$

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau$$
$$y(t) = \underbrace{Ce^{A(t-t_0)}x(t_0) + C\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau}_{Cx(t)} + Du(t)$$

The solution is known as the Lagrange formula

• Based on the state transition matrix

 $\rightsquigarrow e^{At}$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisatic Modal matrix

Force-free and forced evolution

Note that we can write the state solution x(t), for $t \ge t_0$, as the sum of two terms

$$x(t) = \underbrace{e^{A(t-t_0)}x(t_0)}_{x_u(t)} + \underbrace{\int_{t_0}^t e^{A(t-\tau)} Bu(\tau) d\tau}_{x_f(t)}$$

= $x_u(t) + x_f(t)$

- \rightsquigarrow The force-free evolution of the state, $x_u(t)$
- \rightsquigarrow The forced evolution of the state, $x_f(t)$

The force-free evolution of the state, from the initial condition $x(t_0)$ $\rightsquigarrow e^{A(t-t_0)}$ determines the transition from $x(t_0)$ to x(t)

 \rightsquigarrow In the absence of contribution from the input

The forced evolution of the state, from the contribution of input u(t) \rightsquigarrow In the absence of an initial condition $x(t_0)$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation

Modal matri

Transition matrix

The state transition matrix

LTI systems - Dynamics

Representation

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation

Modal matrix Transition matri

The state transition matrix

Consider a square $(N_x \times N_x)$ matrix A, the exponential e^A is square $(N_x \times N_x)$ matrix

$$e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots$$
$$= \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

The state transition matrix is the matrix exponential e^{At} of the matrix At

 $\rightsquigarrow\,$ It is a matrix whose elements are functions of time

 \rightsquigarrow We discuss its meaning and how to compute it

Representation and analysis

State transition matrix

Some properties

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisatio Modal matrix Transition matri

The state transition matrix (cont.)

The exponential function

Let z be some scalar, by definition its exponential is a scalar

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \cdots$$

= $\sum_{k=0}^{\infty} \frac{z^{k}}{k!}$

The series always converges

The matrix exponential

Let A be a $(n \times n)$ matrix, by definition its exponential is a $(n \times n)$ matrix

$$e^{A} = I + A + \frac{A^{2}}{2!} + \frac{A^{3}}{3!} + \cdots$$

= $\sum_{k=0}^{\infty} \frac{A^{k}}{k!}$

The series always converges

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisatio Modal matrix

The state transition matrix (cont.)

The product of several matrices

The product of matrix A and B is only possible when the matrixes are compatible

• Number of columns of A must equal the number of rows of B

The same applies to the product of several matrixes

 $\underbrace{M}_{(m \times n)} = \underbrace{A_1}_{(m \times m_1)} \underbrace{A_2}_{(m_1 \times m_2)} \cdots \underbrace{A_{k-1}}_{(m_{k-2} \times m_{k-1})} \underbrace{A_k}_{(m_{k-1} \times n)}$

Powers of a matrix

Let A be an order-n square matrix, we want to define the k-th power of matrix A

The k-th power of matrix A is the n-order matrix A^k

$$A^k = \underbrace{A \times A \times \dots \times A}_{}$$

k times

Some special cases,

$$\stackrel{\rightsquigarrow}{\longrightarrow} A^{k=0} = I \\ \stackrel{\textstyle}{\longrightarrow} A^{k=1} = A$$

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisatic

Modal matrix

Transition matrix

The state transition matrix (cont.)

Definition

The state transition matrix

Consider a linear and time-invariant state-space model with $(N_x \times N_x)$ state matrix A

The state transition matrix of this system is given by the $(N_x \times N_x)$ matrix e^{At}

$$e^{At} = \underbrace{\frac{A^{0}t^{0}}{0!}}_{I} + \underbrace{\frac{A^{1}t^{1}}{1!}}_{At} + \underbrace{\frac{A^{2}t^{2}}{2!}}_{(A^{2}t^{2})/2!} + \cdots$$
$$= \sum_{k=0}^{\infty} \frac{A^{k}t^{k}}{k!}$$

The state transition matrix is well defined for any square matrix ${\cal A}$

• (The series always converges)

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

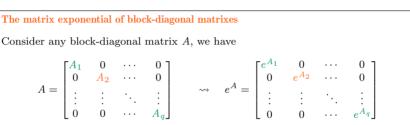
Diagonalisation

Modal matri

Transition matrix

The state transition matrix (cont.)

It is not convenient to determine the state transition matrix starting from its definition \rightsquigarrow One exception is when A is (block-)diagonal



The matrix exponential of diagonal matrixes (as special case)

For any diagonal $(n \times n)$ matrix A, we have

$$A = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \quad \rightsquigarrow \quad e^A = \begin{bmatrix} e^{\lambda_1} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & e^{\lambda_n} \end{bmatrix}$$

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisatio Modal matrix

Transition matri

The state transition matrix (cont.)

Example

Consider a linear and time-invariant state-space model with (2×2) diagonal matrix A

$$A = \begin{bmatrix} -1 & 0\\ 0 & -2 \end{bmatrix}$$

We are interested in the corresponding state transition matrix

We have,

$$e^{At} = \begin{bmatrix} e^{(-1)t} & 0\\ 0 & e^{(-2)t} \end{bmatrix}$$

Representation and analysis

State transition matrix

Some properties

Lagrange

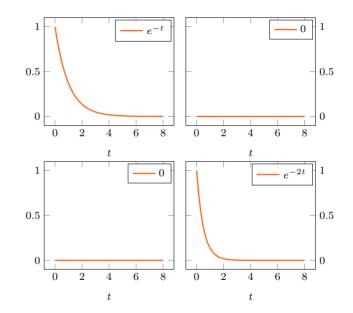
formula

Force-free and forced evolution

Similarity transformatio

Modal matri

Transition matrix



Representation and analysis

State transition matrix

Some properties

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matri

Transition matrix

Some properties

State transition matrix

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix

Transition matrix

Properties

We state without proof some fundamental results about a state transition matrix e^{At} \rightsquigarrow They are needed to derive Lagrange formula

Proposition

Derivative of the state transition matrix

Consider the state transition matrix e^{At} , we have,

$$\frac{\mathrm{d}}{\mathrm{d}t}e^{At} = Ae^{At}$$
$$= e^{At}A$$

By using the derivative property, we have that A commutes with e^{At} \rightsquigarrow (This result is important)

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation Modal matrix Transition matrix

Properties (cont.)

Proposition

Composition of two state transition matrices

Consider the two state transition matrices e^{At} and $e^{A\tau}$, we have

 $e^{At}e^{A\tau} = e^{A(t+\tau)}$

Proposition

Inverse of the state transition matrix

Let e^{At} be a state transition matrix, its inverse $(e^{At})^{-1}$ is matrix e^{-At}

$$e^{At}e^{-At} = e^{-At}e^{At}$$
$$= I$$

A state transition matrix e^{At} is always invertible (non-singular)

• Even if A were singular

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation

Modal matrix Transition ma

Properties (cont.)

Matrix inverse

Consider a square matrix A of order n

We define the **inverse** of A the square matrix of order n, A^{-1}

```
A^{-1}A = AA^{-1} = I
```

The inverse of matrix A exists if and only if A is non-singular

• When the inverse exists, it is also unique

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matri

Transition matrix

Sylvester's formula

The state transition matrix

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation Modal matrix Transition matrix

Sylvester's expansion

We determine the analytical expression of the state transition matrix e^{At}

- The procedure is known as Sylvester expansion
- (Does not require computing the infinite series)
- There are also other procedures (later)

Proposition

The Sylvester's expansion

Let A be a $(n \times n)$ matrix and let the corresponding state transition matrix be e^{At} . We have,

$$e^{At} = \beta_0(t)I + \beta_1(t)A + \beta_2(t)A^2 + \dots + \beta_{n-1}(t)A^{n-1}$$
$$= \sum_{i=0}^{n-1} \beta_i(t)A^i$$

The coefficients β_i of the expansion are appropriate functions of time

- \leadsto They can be determined by solving a set of linear equations
- \rightsquigarrow There is a finite number (n) of them

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisatio

Transition matrix

Sylvester's expansion (cont.)

We show how to determine the coefficients when A has eigenvalues of multiplicity one

We will not consider the other cases, because rather involved and tedious to derive

- \rightsquigarrow Matrix A has complex eigenvalues (with multiplicity larger one)
- \rightsquigarrow Matrix A has complex eigenvalues (with multiplicity one)
- \rightsquigarrow Eigenvalues of A have multiplicity larger than one

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisatio

Sylvester's expansion (cont.)

Eigenvalues with multiplicity one

Let matrix A have distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$

$$e^{At} = \sum_{i=0}^{n-1} \beta_i(t) A^i$$

= $\beta_0(t) I + \beta_1(t) A + \beta_2(t) A^2 + \dots + \beta_{n-1}(t) A^{n-1}$

The *n* unknown functions $\beta_i(t)$ are those that solve the system

$$\begin{cases} 1\beta_{0}(t) + \lambda_{1}\beta_{1}(t) + \lambda_{1}^{2}\beta_{2}(t) + \dots + \lambda_{1}^{n-1}\beta_{n-1}(t) = e^{\lambda_{1}t} \\ 1\beta_{0}(t) + \lambda_{2}\beta_{1}(t) + \lambda_{2}^{2}\beta_{2}(t) + \dots + \lambda_{2}^{n-1}\beta_{n-1}(t) = e^{\lambda_{2}t} \\ \dots \\ 1\beta_{0}(t) + \lambda_{n}\beta_{1}(t) + \lambda_{n}^{2}\beta_{2}(t) + \dots + \lambda_{n}^{n-1}\beta_{n-1}(t) = e^{\lambda_{n}t} \end{cases}$$

 $\sim \rightarrow$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix

Transition matrix

Sylvester's expansion (cont.)

Or, equivalently, in matrix form

 $V\beta = \eta$

• The vector of unknowns

 $\rightsquigarrow \quad \beta = \begin{bmatrix} \beta_0(t) & \beta_1(t) & \cdots & \beta_{n-1}(t) \end{bmatrix}^T$

• The coefficients matrix¹

• The known vector

 $^{1}\mathrm{A}$ matrix in this form is known to be a Vandermonde matrix.

~

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation Modal matrix Transition matrix

Sylvester's expansion (cont.)

$$\eta = \begin{bmatrix} e^{\lambda_1 t} & e^{\lambda_2 t} & \cdots & e^{\lambda_n t} \end{bmatrix}^T$$

The components of vector η are special functions of time, $e^{\lambda t}$ \rightsquigarrow Functions $e^{\lambda t}$ are the modes of matrix A

 \rightsquigarrow Mode $e^{\lambda t}$ associates with eigenvalue λ

Each element of e^{At} is a linear combination of such modes

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation Modal matrix Transition matrix

Sylvester expansion (cont.)

Example

Consider a (2×2) matrix A, we want to determine the state transition matrix e^{At}

$$A = \begin{bmatrix} -1 & 1\\ 0 & -2 \end{bmatrix}$$

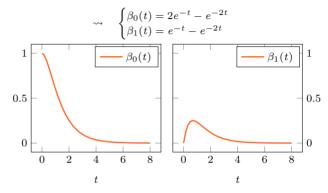
Matrix A is triangular, the eigenvalues correspond to the diagonal elements Matrix A has 2 distinct eigenvalues $\rightsquigarrow \lambda_1 = -1$ $\rightsquigarrow \lambda_2 = -2$

To determine e^{At} , we write the system

$$\begin{cases} 1\beta_0(t) + \lambda_1\beta_1(t) = e^{\lambda_1 t} \\ 1\beta_0(t) + \lambda_2\beta_1(t) = e^{\lambda_2 t} \end{cases} \xrightarrow{\sim} \qquad \begin{cases} \beta_0(t) + (-1)\beta_1(t) = e^{(-1)\alpha_1 t} \\ \beta_0(t) + (-2)\beta_1(t) = e^{(-2)\alpha_1 t} \end{cases}$$

Sylvester's expansion (cont.)

By simple manipulation, we get



Thus,

$$e^{At} = \beta_0(t)I_2 + \beta_1(t)A$$

= $(2e^{-t} - e^{-2t})\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix} + (e^{-t} - e^{-2t})\begin{bmatrix}-1 & 1\\ 0 & -2\end{bmatrix}$
= $\begin{bmatrix}e^{-t} & (e^{-t} - e^{-2t})\\ 0 & e^{-2t}\end{bmatrix}$

State transitio

Some properties

Sylvester's formula

Lagrange

formula

Force-free and forced evolution

Similarity transformatio

Diagonalisatio

Modal matri

Transition matrix

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

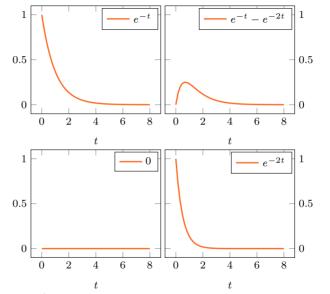
Force-free and forced evolution

Similarity transformatio

.

Modal matri:

Transition matrix



Each element of e^{At} is a linear combination of the two system modes, e^{-t} and e^{-2t}

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation Modal matrix

Sylvester's expansion (cont.)

Eigenvalues and eigenvectors

Let $\lambda \in \mathcal{R}$ be some scalar and let $v \neq 0$ be some $(n \times 1)$ column vector

Consider a square matrix A of order n, suppose that the identify holds

```
Av = \lambda v
```

The scalar λ is called an **eigenvalue** of A

Vector v is the associated **eigenvector**

Consider a square matrix A of order n whose elements are real numbers

Matrix A has n (not necessarily distinct) eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$

- They can be real numbers or conjugate-complex pairs
- If $\lambda_i \neq \lambda_j$ for $i \neq j$, A has multiplicity one

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatic

Diagonalisatio:

Transition matri:

Sylvester's expansion (cont.)

Eigenvalues of triangular and diagonal matrices

Let matrix $A = \{a_{i,j}\}$ be a triangular or a diagonal matrix

• The eigenvalues of A are the n diagonal elements $\{a_{i,i}\}$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation Modal matrix Transition matrix

Sylvester's expansion (cont.)

Characteristic polynomial

The characteristic polynomial of a square matrix A of order n

• The *n*-order polynomial in the variable s

$$P(s) = \det\left(sI - A\right)$$

Computing eigenvalues and eigenvectors

The eigenvalues of matrix A of order n solve its characteristic polynomial \rightsquigarrow The roots of the equation $P(s) = \det (sI - A) = 0$

Let λ be an eigenvalue of matrix A

Each eigenvector v associated to it is a non-trivial solution to the system

 $(\lambda I - A)v = 0$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisatio Modal matrix

Transition matrix

Sylvester's expansion (cont.)

Systems of linear equations

Consider a system of n linear equations in n unknowns Ax = b $\rightsquigarrow A$ is a $(n \times n)$ matrix of coefficients

- $\rightsquigarrow b$ is a $(n \times 1)$ vector of known terms
- $\rightsquigarrow x$ is a $(n \times 1)$ vector of unknowns

If A is non-singular, the system admits one and only one solution

If matrix A is singular, let M = [A|b] be a $[n \times (n+1)]$ matrix

- If rank(A) = rank(M), system has infinite solutions
- If rank(A) < rank(M), system has no solutions

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation Modal matrix

Transition matrix

Sylvester's expansion (cont.)

Matrix rank

The rank of a $(m \times n)$ matrix A is equal to the number of columns (or rows) of the matrix that are linearly independent, rank(A)

Matrix kernel or null space

Consider a $(m \times n)$ matrix A, we define its null space or kernel

 $\ker(A) = \left\{ x \in \mathbb{R}^n | Ax = 0 \right\}$

It is the set of all vectors $x \in \mathbb{R}^n$ that left-multiplied by A produce the null vector

The set is a vector space, its dimension is called the **nullity** of matrix A, null(A)

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation

Modal matri

Transition matrix

Lagrange formula

LTI systems - Dynamics

Representation and analysis

State transition matrix

Some properties

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisatio

Modal matri

Transition matrix

Lagrange formula

We can now prove the solution to the analysis problem for MIMO systems

• Lagrange formula

Theorem

Lagrange formula

Consider the state-space representation of a time-invariant linear system of order \boldsymbol{n}

The solution for $t \ge t_0$, for an initial state $x(t_0)$ and an input $u(t \ge t_0)$

$$\begin{aligned} x(t) &= e^{A(t-t_0)} x(t_0) + \int_{t_0}^t e^{A(t-\tau)} B u(\tau) \mathrm{d}\tau \\ y(t) &= C e^{A(t-t_0)} x(t_0) + C \int_{t_0}^t e^{A(t-\tau)} B u(\tau) \mathrm{d}\tau + D u(t) \end{aligned}$$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisatio

Modal matrix

Transition matrix

Lagrange formula (cont.)

Proof

By left-multiplying the state equation $\dot{x}(t) = Ax(t) + Bu(t)$ by e^{-At} , we get

$$e^{-At}\dot{x}(t) = e^{-At}Ax(t) + e^{-At}Bu(t)$$

The resulting state equation can be rewritten,

$$e^{-At}\dot{x}(t) - e^{-At}Ax(t) = e^{-At}Bu(t)$$

Then, by using the result on the derivative of the state transition $matrix^2$,

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big[e^{-At} x(t) \Big] = e^{-At} \dot{x}(t) - e^{-At} A x(t)$$
$$= e^{-At} B u(t)$$

 2 Derivative of the state transition matrix

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big[e^{-At} x(t) \Big] = e^{-At} \Big[\frac{\mathrm{d}}{\mathrm{d}t} x(t) \Big] + \Big[\frac{\mathrm{d}}{\mathrm{d}t} e^{At} \Big] x(t) = e^{-At} \dot{x}(t) - e^{-At} A x(t).$$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation Modal matrix

Lagrange formula (cont.)

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big[e^{-At} x(t) \Big] = e^{-At} Bu(t)$$

By integrating between t_0 and t, we obtain

$$\left[e^{-A\tau}x(\tau)\right]_{t_0}^t = \int_{t_0}^t e^{-A\tau} Bu(\tau) \mathrm{d}\tau$$

That is,

$$e^{-At}x(t) - e^{-At_0}x(t_0) = \int_{t_0}^t e^{-A\tau}Bu(t)d\tau$$

Thus,

$$e^{-At}x(t) = e^{-At_0}x(t_0) + \int_{t_0}^t e^{-A\tau}Bu(t)d\tau$$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation Modal matrix Transition matrix

Lagrange formula (cont.)

$$e^{-At}x(t) = e^{-At_0}x(t_0) + \int_{t_0}^t e^{-A\tau}Bu(t)$$

The first Lagrange formula is obtained by multiplying both sides by e^{At}

$$\Rightarrow \quad x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)\mathrm{d}\tau$$

The second formula is obtained by substituting x(t) in the output equation

$$y(t) = Cx(t) + Du(t)$$

$$\sim C\left[\underbrace{e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau}_{x(t)}\right] + Du(t)$$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation

Modal matri

Transition matrix

Force-free and forced evolution

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatic

Diagonalisatio

Modal matri

Transition matrix

Force-free and forced evolution

$$x(t) = \underbrace{e^{A(t-t_0)}x(t_0)}_{x_u(t)} + \underbrace{\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)\mathrm{d}\tau}_{x_f(t)}$$

We can write the state solution (for $t \ge t_0$) as the sum of two terms

$$\rightsquigarrow$$
 $x(t) = x_u(t) + x_f(t)$

- \rightsquigarrow The force-free evolution of the state, $x_u(t)$
- \rightsquigarrow The forced evolution of the state, $x_f(t)$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatic

Diagonalisat Modal matrix

Transition matrix

Force-free and forced evolution (cont.)

$$x(t) = \underbrace{e^{A(t-t_0)}x(t_0)}_{x_u(t)} + \underbrace{\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau}_{x_f(t)}$$

The force-free evolution of the state, from the initial condition $x(t_0)$

 $\rightsquigarrow \quad x_l(t) = e^{A(t-t_0)} x(t_0)$

 $\rightsquigarrow e^{A(t-t_0)}$ indicates the transition from $x(t_0)$ to x(t) \rightsquigarrow In the absence of contribution from the input

The forced evolution of the state

$$\rightsquigarrow \quad x_{f}(t) = \int_{t_{0}}^{t} e^{A(t-\tau)} Bu(\tau) \mathrm{d} au$$

- \rightsquigarrow The contribution of $u(\tau)$ to state x(t)
- \rightsquigarrow Through a weighting function, $e^{A(t-\tau)}B$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisatio

Modal matrix

Transition matrix

Force-free and forced evolution (cont.)

$$y(t) = \underbrace{Ce^{A(t-t_0)}x(t_0)}_{y_u(t)} + \underbrace{C\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)\mathrm{d}\tau + Du(t)}_{y_f(t)}$$

We can write the output solution (for $t \ge t_0$) as the sum of two terms

$$\rightsquigarrow$$
 $y(t) = y_l(t) + y_f(t)$

- \rightarrow The force-free evolution of the output, $y_u(t)$
- \rightsquigarrow The forced evolution of the output, $y_f(t)$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation

Modal matri

Transition matrix

Free and forced evolution (cont.)

$$y(t) = \underbrace{Ce^{A(t-t_0)}x(t_0)}_{y_u(t)} + \underbrace{C\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)\mathrm{d}\tau + Du(t)}_{y_f(t)}$$

The force-free evolution of the output, from initial condition $y(t_0) = Cx(t_0)$

$$y_u(t) = Ce^{A(t-t_0)}x(t_0)$$
$$= Cx_u(t)$$

The **forced-evolution** of the output

$$\Rightarrow \quad y_f(t) = C \int_{t_0}^t e^{A(t-\tau)} Bu(\tau) d\tau + Du(t)$$
$$= C x_f(t) + Du(t)$$

Free and forced evolution (cont.)

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatic

Modal matrix

Transition matrix

$$\begin{array}{c} u(t) \\ \hline \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{array} y(t)$$

System

Note that for $t_0 = 0$, we have

$$\begin{aligned} x(t) &= e^{At} x(0) + \int_0^t e^{A(t-\tau)} B u(\tau) d\tau \\ y(t) &= C e^{At} x(0) + C \int_0^t e^{A(t-\tau)} B u(\tau) d\tau + D u(t) \end{aligned}$$

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisatio

Transition matrix

Free and forced evolution (cont.)

Example

Consider a linear time-invariant system with the state-space representation,

$$\begin{cases} \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} &= \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) &= \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

We want to determine the state and the output evolution for $t \ge 0$

- We consider the input signal $u(t) = 2\delta_{-1}(t)$, a 2-step
- We consider the initial state $x(0) = (3, 4)^T$

The state transition matrix for this state-space representation,

$$e^{At} = \begin{bmatrix} e^{-t} & (e^{-t} - e^{-2t}) \\ 0 & e^{-2t} \end{bmatrix}$$

We computed it earlier

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatic

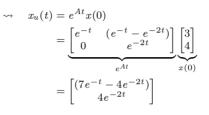
Diagonalizatio

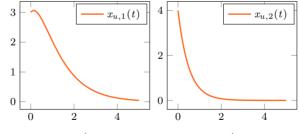
Modal matrix

Transition matrix

Free and forced evolution (cont.)

The force-free evolution of the state, for $t\geq 0$





t

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

That is,

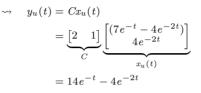
Diagonalisation

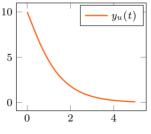
Modal matrix

Transition matrix

Free and forced evolution (cont.)

The force-free evolution of the output, for $t\geq 0$





t

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatic

Diagonalisation

Modal matri

Transition matrix

Free and forced evolution (cont.)

The forced evolution of the state, for $t\geq 0$

$$\begin{aligned} & \rightsquigarrow \quad x_f(t) = \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau \\ & = \int_0^t \underbrace{\left[e^{t-\tau} & (e^{t-\tau} - e^{-2(t-\tau)}) \right]}_{e^{A(t-\tau)}} \underbrace{\left[0 \atop 1 \right]}_B \underbrace{2}_{u(\tau)} d\tau \\ & = 2 \int_0^t \left[(e^{t-\tau} - e^{-2(t-\tau)}) \right]_e d\tau = 2 \left[\int_0^t (e^{t-\tau} - e^{-2(t-\tau)}) d\tau \right] \\ & = 2 \int_0^t \left[(e^{t-\tau} - e^{-2(t-\tau)}) \right]_e d\tau = 2 \left[\int_0^t (e^{t-\tau} - e^{-2(t-\tau)}) d\tau \right] \\ & = 2 \left[(1 - e^{-t}) - 1/2(1 - e^{-2t}) \right]_e = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t}) \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t} + e^{-2t} \right] \\ & 1/2(1 - e^{-2t}) = \left[(1 - 2e^{-t} + e^{-2t} + e^{-2t} + e^{-2t} \right] \\ & 1/2(1 - e^{-2t} + e^{-2t}$$

Free and forced evolution (cont.)

 \rightarrow

Since D = 0, the forced evolution of the output for $t \ge 0$

$$y_f(t) = Cx_f(t)$$

= $\underbrace{[2 \ 1]}_C \underbrace{ \begin{bmatrix} (1 - 2e^{-t} + e^{-2t}) \\ (1 - e^{-2t}) \end{bmatrix}}_{x_f(t)}$
= $3 - 4e^{-t} + e^{-2t}$

That is,

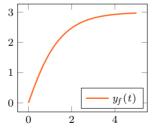
forced evolution Similarity transformation

Force-free and

Diagonalisatic

Modal matri

Transition matrix



Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix Transition mat

Similarity transformation

LTI systems - Dynamics

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisatio Modal matrix Transition matri:

Similarity transformation

The form of the state space representation depends on the choice of state variables

• The choice is not unique, even when we are coming from a physical model

There is an infinite number of different representations of the same system

- The representations are related by a similarity transformation
- These transformations allow flexibility in the analysis
- (We can change to easier system representations)

The state matrix can be transformed to have a canonical form

 \rightsquigarrow Diagonal form, Jordan form, ...

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix Transition mat

Similarity transformation (cont.)

Definition

Similarity transformation

Consider the state-space representation of a linear time-invariant system of order N_x

$$\begin{array}{c} u(t) \\ \hline \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{array} \begin{array}{c} y(t) \\ \hline \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{array}$$

System

- x(t) and $\dot{x}(t)$, state vector and its derivative (N_x components)
- u(t), input vector (N_u components)
- y(t), output vector (N_y components)

Let vector z(t) be related to x(t) by some linear transformation P, x(t) = Pz(t)

P can be any $(N_x \times N_x)$ non-singular matrix (its inverse always exists)

• Because of non-signularity, we have $z(t) = P^{-1}x(t)$

The transformation/matrix P is called a similarity transformation/matrix

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisatio: Modal matrix Transition matrix

Similarity transformation (cont.)

Proposition

Similar representations

Consider the state-space representation of a linear time-invariant system of order N_x

$$\begin{array}{c} u(t) \\ \hline \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{array} \begin{array}{c} y(t) \\ \hline \\ y(t) = Cx(t) + Du(t) \end{array} \end{array} \qquad \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \\ \hline \\ y(t) = Cx(t) + Du(t) \end{array}$$

Let P be some similarity transformation matrix such that x(t) = Pz(t)Vector $z(t) = P^{-1}x(t)$ satisfies the new state-space representation

$$u(t) \quad \dot{x}(t) = A'x(t) + B'u(t) \quad y(t)$$

$$y(t) = C'x(t) + D'u(t) \quad (x + D'u(t))$$

$$y(t) = C'x(t) + D'u(t) \quad (x + D'u(t))$$

$$y(t) = C'z(t) + D'u(t)$$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix

Transition matrix

Similarity transformation (cont.)

${\bf Proof}$

By taking the time-derivative of the state vector x(t) = Pz(t), we have

$$\rightsquigarrow \dot{x}(t) = P\dot{z}(t)$$

By substituting x(t) and $\dot{x}(t)$ into the state-space representation,

$$\rightsquigarrow \qquad \left\{ \underbrace{ \underbrace{P\dot{z}(t)}_{\dot{x}(t)} = A \underbrace{Pz(t)}_{x(t)} + Bu(t) }_{y(t) = C} \underbrace{Pz(t)}_{x(t)} + Du(t) \right.$$

Pre-multiply the state equation by P^{-1} , to complete the proof

$$P^{-1}\underbrace{P\dot{z}(t)}_{\dot{x}(t)} = P^{-1}A\underbrace{Pz(t)}_{x(t)} + P^{-1}Bu(t)$$
$$P^{-1}y(t) = P^{-1}C\underbrace{Pz(t)}_{x(t)} + P^{-1}Du(t)$$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matri

Transition matrix

Similarity transformation (cont.)

$$P^{-1}P\dot{z}(t) = P^{-1}APz(t) + P^{-1}Bu(t)$$
$$P^{-1}y(t) = P^{-1}CPz(t) + P^{-1}Du(t)$$

For the state equation, we have

$$\underbrace{\underline{P}^{-1}P}_{I}\dot{z}(t) = \underbrace{\underline{P}^{-1}AP}_{A'}z(t) + \underbrace{\underline{P}^{-1}B}_{B'}u(t)$$
$$\dot{z}(t) = A'z(t) + B'u(t)$$

For the measurements, we have

$$\underbrace{\frac{PP^{-1}}{I}y(t) = \underbrace{\frac{PP^{-1}}{I}CPz(t) + \underbrace{\frac{PP^{-1}}{I}Du(t)}_{I}}_{QP}$$
$$\underbrace{\frac{CP}{C'}z(t) + \underbrace{D}_{D'}u(t)}_{U'}$$
$$y(t) = C'z(t) + D'u(t)$$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisatic Modal matrix Transition matri

Similarity transformation (cont.)

U

$$\underbrace{\dot{x}(t) = A'x(t) + B'u(t)}_{y(t) = C'x(t) + D'u(t)} \underbrace{y(t)}_{y(t) = C'z(t) + D'u(t)} \left\{ \begin{aligned} \dot{z}(t) = A'z(t) + B'u(t) \\ y(t) = C'z(t) + D'u(t) \end{aligned} \right\}$$

We obtained a different state-space representation of the same dynamical system

- Input u(t) and output y(t) are left unchanged (problem data)
- We defined some new (transformed) state variables, z(t)

There is an infinite number of non-singular matrixes P that could be used \rightsquigarrow Thus, there is also an infinite number of equivalent representations $\rightsquigarrow A' = P^{-1}AP$ $\rightsquigarrow B' = P^{-1}B$ $\rightsquigarrow C' = CP$ $\rightsquigarrow D' = D$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix Transition mat

Similarity transformation (cont.)

Example

Consider a linear time-invariante system with state-space representation $\{A,B,C,D\}$

$$\begin{cases} \begin{bmatrix} \dot{x_1}(t) \\ \dot{x_2}(t) \end{bmatrix} = \overbrace{\begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}}^{A} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \overbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}^{B} u(t) \\ \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}}_{C} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \underbrace{\begin{bmatrix} 1.5 \\ 0 \end{bmatrix}}_{D} u(t) \end{cases}$$

Consider the similarity transformation of the state using some matrix ${\cal P}$

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}}_{P} \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix}$$

What is the $\{A', B', C', D'\}$ state-space representation for state z(t)

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisatic

Modal matrix Transition mat

Similarity transformation (cont.)

We are given the similarity transformation P,

$$P = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

We compute its inverse,

$$P^{-1} = \begin{bmatrix} 0 & 1\\ 1 & -1 \end{bmatrix}$$

Since
$$z(t) = P^{-1}x(t)$$
, we have

$$\begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$
$$= \begin{bmatrix} x_2(t) \\ x_1(t) - x_2(t) \end{bmatrix}$$

The second component of z is the difference between first and second component of x \rightsquigarrow The first component of z simply equals the second component of x

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matri

Transition matrix

Similarity transformation (cont.)

We conclude by calculating the resulting state-space representation

$$\begin{aligned} A' &= P^{-1}AP \\ &= \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 2 & -1 \end{bmatrix} \\ B' &= P^{-1}B \\ &= \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \\ C' &= CP \\ &= \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix} \\ D' &= D \\ &= \begin{bmatrix} 1.5 \\ 0 \end{bmatrix} \end{aligned}$$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix Transition matrix

Similarity transformation (cont.)

Proposition

Similarity and state transition matrix

Consider the state matrix $A' = P^{-1}AP$ from some similarity transformation P

The corresponding state transition matrix,

$$e^{A't} = P^{-1}e^{At}P$$

Proof

Note that

$$(A')^{k} = \underbrace{(P^{-1}AP) \cdot (P^{-1}AP) \cdots (P^{-1}AP)}_{k \text{ times}} = P^{-1}\underbrace{AA \cdots A}_{k \text{ times}} P = P^{-1}A^{k}P$$

Thus, by definition

$$e^{A't} = \sum_{k=0}^{\infty} \frac{(A')^k t^k}{k!} = \sum_{k=0}^{\infty} \frac{(P^{-1}A^k P)t^k}{k!} = P^{-1} \Big(\sum_{k=0}^{\infty} \frac{A^k t^k}{k!}\Big) P = P^{-1}e^{At}P$$

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisatio Modal matrix Transition matrix

Similarity transformation (cont.)

We show how two similar state-space representations describe the same IO relation

Proposition

Invariance of the IO relationship under similarity

Consider two similar state-space representations of a linear time-invariant system $% \left({{{\mathbf{x}}_{i}}} \right)$

- $\rightsquigarrow \{A, B, C, D\} \text{ and } \{A', B', C', D'\}$
- $\rightsquigarrow P$ is the transformation matrix

Suppose that the system be subjected to some known input $\rightsquigarrow u(t)$

The two representations produce the same forced response $\rightsquigarrow \ y_f(t)$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix Transition mat

Similarity transformation (cont.)

Proof

Consider the Lagrange formula

The forced response of the second representation due to input u(t)

$$y_{f}(t) = C' \underbrace{\int_{t_{0}}^{t} e^{A'(t-\tau)} B'u(\tau) d\tau}_{z_{f}(t)} + Du(t)$$

= $\underbrace{CP}_{C'} \int_{t_{0}}^{t} \underbrace{P^{-1} e^{A(t-\tau)} P}_{e^{A'(t-\tau)}} \underbrace{P^{-1} B}_{B'} u(\tau) d\tau + Du(t)$
= $C \int_{t_{0}}^{t} e^{A(t-\tau)} Bu(\tau) d\tau + Du(t)$

This response corresponds to the one of the original representation

$$y_f(t) = C \int_{t_0}^t e^{A(t-\tau)} Bu(\tau) \mathrm{d}\tau + Du(t)$$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix Transition mat

Similarity transformation (cont.)

Proposition

Invariance of the eigenvalues under similarity transformations

Matrix A and $P^{-1}AP$ have the same characteristic polynomial

Proof

The characteristic polynomial of matrix A'

$$\det (\lambda I - A') = \det (\lambda I - \underbrace{P^{-1}AP}_{A'})$$
$$= \det (\lambda \underbrace{P^{-1}P}_{I} - P^{-1}AP)$$
$$= \det [P^{-1}(\lambda I - A)P]$$
$$= \det (P^{-1}) \det (\lambda I - A) \det (P)$$
$$= \det (\lambda I - A)$$

The last equality is obtained from $\det(P^{-1})\det(P) = 1$

A and A^\prime share the same characteristic polynomial

 $\rightsquigarrow\,$ Thus, also the eigenvalues are the same

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisatio

Modal matrix Transition mat

Two similar representations have the same modes, the modes characterise the dynamics

The modes are therefore independent of the representation

Similarity transformation (cont.)

 \rightsquigarrow This is important

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix Transition mat

Similarity transformation (cont.)

lxample

Consider two similar state-space representations of a linear time-invariant system

$$A = \begin{bmatrix} -1 & 1\\ 0 & -2 \end{bmatrix}$$
$$A' = \begin{bmatrix} -2 & 0\\ 2 & -1 \end{bmatrix}$$

The similarity transformation matrix

$$P = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

We are interested in the eigenvalues and modes of the system

Matrix A and A have two eigenvectors

- $\lambda_1 = -1$
- $\lambda_2 = -2$

The system modes are e^{-t} and e^{-2t}

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix Transition matr

Diagonalisation

LTI systems - Dynamics

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix Transition matr

Diagonalisation

We consider a special similarity transformation P, we seek for a diagonal matrix $A' \rightarrow A$ state-space representation with a diagonal state matrix

 \rightsquigarrow Diagonal canonical form

 $\rightsquigarrow \Lambda = A' = P^{-1}AP$

Consider the linear time-invariant system with a single input (and, say, single output)

$$\begin{bmatrix} \dot{x}_1(t)\\ \dot{x}_2(t)\\ \vdots\\ \dot{x}_n(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0\\ 0 & \lambda_2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} x_1(t)\\ x_2(t)\\ \vdots\\ x_n(t) \end{bmatrix} + \begin{bmatrix} b_1\\ b_2\\ \vdots\\ b_n \end{bmatrix} u(t)$$

The evolution of the i-th component of the state vector

$$\rightsquigarrow \quad \dot{x}_i(t) = \lambda_i x_i(t) + b_i u(t)$$

State derivatives are not related to other components

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix Transition matr

Diagonalisation (cont.)

We can understand a system with diagonal matrix ${\cal A}$ as a collection of sub-systems

- $\rightsquigarrow\,$ Each sub-system is described by a single state component
- $\rightsquigarrow\,$ Each state component evolves independently
- \rightsquigarrow The representation is **decoupled**
- $\rightsquigarrow N_x$ first-order subsystems

The characteristic polynomial of the system for the i-th component

$$\rightsquigarrow P_i(s) = (s - \lambda_i)$$

This subsystem has mode $e^{-\lambda_i t}$

We show how to determine a similarity transformation that leads to a diagonal form

• This can be understood as a somehow special similarity transformation

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation

Modal matrix

Transition matrix

Modal matrix

Diagonalisation

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation

Modal matrix Transition mat

Diagonalisation (cont.)

Definition

Modal matrix

Consider a system in state-space representation with $(N_x \times N_x)$ matrix A

- Let v_1, v_2, \ldots, v_n be a set of all the eigenvectors of matrix A
- Suppose that they correspond to eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$

Suppose that eigenvectors in this set are also linearly independent

We define the **modal matrix** of A as the $(N_x \times N_x)$ matrix V

 $V = \begin{bmatrix} v_1 | v_2 | \cdots | v_n \end{bmatrix}$

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix Transition matr

Diagonalisation (cont.)

If a matrix A has N_x distinct eigenvalues λ, then the modal matrix A always exists
Its N_x eigenvectors v are linearly independent

Distinct eigenvalues

Let A be a n-order matrix whose n eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ are distinct

Then, there is a set of n linearly independent eigenvectors

• Vectors v_1, v_2, \ldots, v_n form a basis for \mathcal{R}^n

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation

Modal matrix Transition matr

Diagonalisation (cont.)

Example

Consider a state-space representation of a linear time-invariant system with matrix A

$$A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$$

We are interested in the modal matrix $\,V$ of A

The eigenvalues and eigenvectors of A

$$\stackrel{\sim}{\rightarrow} \lambda_1 = 1 \text{ and } v_1 = \begin{bmatrix} 1 & -1 \end{bmatrix}^T \\ \stackrel{\sim}{\rightarrow} \lambda_2 = 5 \text{ and } v_2 = \begin{bmatrix} 1 & 3 \end{bmatrix}^T$$

The modal matrix V,

$$V = \begin{bmatrix} v_1 | v_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix

Diagonalisation (cont.)

$$V = \begin{bmatrix} v_1 | v_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$$

It is important to note that the eigenvectors are determined up to a scaling constant

- (Plus, the ordering of the eigenvalues is arbitrary)
- There can be more than one modal matrix

These two modal matrices of matrix A are equivalent

$$V' = \begin{bmatrix} 2v_1 | 3v_2 \end{bmatrix} = \begin{bmatrix} 2 & 3\\ -2 & 9 \end{bmatrix}$$
$$V'' = \begin{bmatrix} v_2 | v_1 \end{bmatrix} = \begin{bmatrix} 1 & 1\\ 3 & -1 \end{bmatrix}$$

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation

Modal matrix

Diagonalisation (cont.)

Consider a matrix A with some eigenvalues λ that have multiplicity ν larger than one

• The modal matrix V exists if and only if to each eigenvalue λ_i with multiplicity ν_i is possible to associate ν_i linearly independent eigenvectors $\{v_{i,1}, v_{i,2}, \ldots, v_{i,\nu_i}\}$

This is not always possible

But, ...

If a matrix admits a modal matrix, then it can be diagonalised

• (This is what matters to us)

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatic

Diagonalisation

Modal matrix Transition matr

Diagonalisation (cont.)

Example

Consider a state space representation of a linear time-invariant system with matrix A

$$A = \begin{bmatrix} 2 & 0\\ 0 & 2 \end{bmatrix}$$

Its only eigenvalue $\lambda=2$ has multiplicity $\nu=2$

Its eigenvectors are obtained by solving the system $[\lambda I - A]v = 0$

$$\begin{bmatrix} 2I - A \end{bmatrix} v = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \rightsquigarrow \quad \begin{cases} 0 = 0 \\ 0 = 0 \end{cases}$$

We can choose any two linearly independent eigenvectors for λ

• As the equation is satisfied for any value of a and b

A modal matrix with the eigenvectors from the canonical basis

$$\rightsquigarrow \quad V = \begin{bmatrix} v_1 | v_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation

Modal matrix

Diagonalisation (cont.)

lxample

Consider a state space representation of a linear time-invariant system with matrix A

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

Its only eigenvalue $\lambda = 2$ has multiplicity $\nu = 2$

Its eigenvectors are obtained by solving the system $[\lambda I - A]v = 0$

$$[2I - A]v = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \rightsquigarrow \quad \begin{cases} -b = 0 \\ 0 = 0 \end{cases}$$

As b = 0, we can choose only one linearly independent eigenvector for λ

$$v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Matrix A does not admit a modal matrix

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation

Modal matrix

Diagonalisation (cont.)

Proposition

Diagonalisation

Consider a state-space representation of a linear time-invariant system with matrix ALet $\lambda_1, \lambda_2, \ldots, \lambda_n$ be its eigenvalues and $V = [v_1|v_2|\cdots|v_n]$ one of its modal matrices

Let Λ be the state matrix transformed according to $\Lambda = V^{-1}AV$ \rightsquigarrow Λ is diagonal

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation

Modal matrix Transition matr

Diagonalisation (cont.)

Example

Consider a linear time-invariant system with matrixes $\{A,B,C,D\}$

$$\begin{cases} \begin{bmatrix} \dot{x_1}(t) \\ \dot{x_2}(t) \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1.5 \\ 0 \end{bmatrix} u(t)$$

We are interested in a diagonal representation by similarity

We can compute the eigenvalues and eigenvectors of A

• $\lambda_1 = -1$ and $v_1 = \begin{bmatrix} 1\\ 0 \end{bmatrix}$ • $\lambda_2 = -2$ and $v_2 = \begin{bmatrix} 1\\ -1 \end{bmatrix}$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation

Modal matrix

Transition matrix

Diagonalisation (cont.)

Then, we can determine a modal matrix and its inverse

$$V = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$
$$V^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$

From the similarity transformation expressions, we get

$$\begin{aligned} A' &= V^{-1}AV = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} = \Lambda \\ B' &= V^{-1}B = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \\ C' &= CV = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & -2 \end{bmatrix} \\ D' &= D = \begin{bmatrix} 1.5 \\ 0 \end{bmatrix} \end{aligned}$$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Discourse

Modal matrix

Transition matrix

State transition matrix by diagonalisation Diagonalisation

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisatio

Modal matri

Transition matrix

State transition matrix by diagonalisation

We show a procedure alternative to Sylvester's formula for the state transition matrix

- We assume a linear time-invariant state-space system representation
- We assume that the state matrix A can be diagonalised

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation

Modal matri

Transition matrix

Transition matrix by diagonalisation (cont.)

roposition

State transition matrix by diagonalisation

Consider a $(n \times n)$ state matrix A and let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be its eigenvalues

Suppose that A admits the modal matrix V

We have for the state transition matrix

$$e^{At} = V e^{\Lambda t} V^{-1} = V \begin{bmatrix} e^{\lambda_1 t} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2 t} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{\lambda_n t} \end{bmatrix} V^{-1}$$

Because we have a diagonal state matrix

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisatic Modal matrix

Transition matrix

State transition matrix by diagonalisation (cont.)

Proof

We have shown that the identity holds (see similarity and state transition matrices³) $e^{\Lambda t} = V^{-1} e^{At} V$

To complete the proof, multiply both sides by V on the left and by V^{-1} on the right

³Given $A' = P^{-1}AP$, we have $e^{A't} = P^{-1}e^{At}P$.

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatio

Diagonalisation

Modal matri

Transition matrix

State transition matrix by diagonalisation (cont.)

Example

Consider a linear time-invariant system with matrixes $\{A, B, C, D\}$

$$\begin{cases} \begin{bmatrix} \dot{x_1}(t) \\ \dot{x_2}(t) \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1.5 \\ 0 \end{bmatrix} u(t) \end{cases}$$

We are interested in computing the state transition matrix e^{At}

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformatic

Diagonalisatio:

Modal matri

Transition matrix

State transition matrix by diagonalisation (cont.)

We have already computed the modal matrix of A and its inverse, V and V^{-1}

$$V = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$
$$V^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$

Thus, we have

$$e^{At} = V \begin{bmatrix} e^{\lambda_1 t} & 0\\ 0 & e^{\lambda_2 t} \end{bmatrix} V^{-1} = \begin{bmatrix} 1 & 1\\ 0 & -1 \end{bmatrix} \begin{bmatrix} e^{-t} & 0\\ 0 & e^{-2t} \end{bmatrix} \begin{bmatrix} 1 & 1\\ 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1\\ 0 & -1 \end{bmatrix} \begin{bmatrix} e^{-t} & e^{-t}\\ 0 & -e^{-2t} \end{bmatrix} = \begin{bmatrix} e^{-t} & (e^{-t} - e^{-2t})\\ 0 & e^{-2t} \end{bmatrix}$$

This is the same result we determined by using the Sylvester expansion