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State estimation

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ

From the forced response, we saw that controllability must depend only on A and B

We made some simplifying assumptions that helped us focusing on control

• We stated that the assumptions have no implications

We assumed that we can measure all state variables (and no feedthrough)

• That is, we have C = I and D = 0


y1(t)
y2(t)

...
yNy (t)


︸ ︷︷ ︸

y(t)

=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


︸ ︷︷ ︸

C=I


x1(t)
x2(t)

...
xNx (t)


︸ ︷︷ ︸

x(t)

+


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


︸ ︷︷ ︸

D=0


u1(t)
u2(t)

...
uNu (t)


︸ ︷︷ ︸

u(t)
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State estimation (cont.)

ẋ(t) = Ax(t) + Bu(t)

y(t) = Ix(t)

Process

u(t) = −Kx(t)

Controller

u(t) y(t) = x(t)

For linear time-invariant system, function h(x(t)) = −Kx(t) is optimal, in some sense
u1(t)
u2(t)

...
uNu (t)


︸ ︷︷ ︸

u(t)

= −


k11 k12 · · · k1,Nx

k21 k22 · · · k2,Nx

...
...

. . .
...

kNu ,1 kNu ,2 · · · kNu ,Nx


︸ ︷︷ ︸

K


x1(t)
x2(t)

...
xNx (t)


︸ ︷︷ ︸

x(t)︸ ︷︷ ︸
h(x(t))

• For a system in state x(t), the optimal control action is u(t) = −Kx(t)

• (We will briefly also discuss the underlaying optimality criterion)
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State estimation (cont.))

We assumed perfect measurement (observation) variables y(t) (from system’s sensors)

• We assumed that y(t) returns all state variables x(t), or y(t) = Ix(t)

Not always the case, what if we cannot measure the state of the system, x(t) 6= y(t)?

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

System

Controller

u(t) y(t)

How to design controllers that define an optimal control u(t), when x(t) is unknown?
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State estimation (cont.)

We could design another device capable to provide an estimate the state of the system

• Based on the measurable quantities of the system (data)

• That is, measurements y(t) and inputs u(t)

A device that approximates the state of the system is a state observer, or estimator

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

System

Estimator

u(t) = −K (x̂(t))

Controller

u(t) y(t)

x̂(t)

Were the state estimate x̂(t) accurate, we could use it with the optimal controller (−K )
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State estimation (cont.)

The state estimation problem has a solution only for those systems that are observable

Definition

One, formal, definition of observability

A linear and time-invariant system with state equation ẋ(t) = Ax(t) and measurement
equation y(t) = Cx(t) is said to be observable if and only if it is possible to determine
its state x(t) from the force-free response of its measurements over a finite time (tf <
∞), from any arbitrary initial state x(t0)
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Observability

Observability refers to the possibility for estimate the system state from measurements

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

u(t) y(t)

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Observability for linear and time-invariant systems depends only on the pair (A,C ){
ẋ(t) = Ax(t)

y(t) = Cx(t)

We present a formal definition of observability for linear time-invariant systems

• Necessary and sufficient conditions

• (Invariance under similarity)
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Observability

We analyse the observablity of a linear time-invariant system by using three criteria

• Observability gramian

• Observability matrix

• (Popov-Belevich-Hautus test)

As with controllability, all these criteria are complementary as for their usefulness
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Observability (cont.)

Definition
Observability gramian

Consider the linear and time-invariant system (A,C ), with x(t) ∈ RNx and y(t) ∈ RNy{
ẋ(t) = Ax(t)

y(t) = Cx(t)

The system’s observability gramian is a (Nx ×Nx ) matrix, real and symmetric

Wo(t) =

∫ t

0
eAT τCTCeAτdτ
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Observability (cont.)

Theorem
Observability test (I)

Consider the linear and time-invariant system (A,C ), with x(t) ∈ RNx and y(t) ∈ RNy{
ẋ(t) = Ax(t)

y(t) = Cx(t)

Let Wo(t) =
∫ t
0 eAT τCTCeAτdτ be the observability gramian of the system

• The system is observable iff Wo(t) is non-singular, for all t > 0
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Proof (Sufficient condition)

From the second Lagrangian equation, we have the force-free evolution of the output

y(τ) = CeAτ x(0)

We left-multiply the equation by eAT τ , then we integrate between 0 and some tf∫ tf

0
eAT τy(τ)dτ =

∫ tf

0
eAT τCeAτ x(0)dτ

= Wo(tf )x(0)

Thus, we have

x(0) = W−1
o (tf )

∫ tf

0
eAT τCy(τ)dτ

The initial state is given as a function of the inverse of the observability gramian Wo(tf )

and the integral
∫ tf
0 eAT τCeAτy(τ)dτ which can be computed from measurements y(τ)

• The observability gramian need be non-singular

• Needed for the inverse to exist

�
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Observability (cont.)

Example

Consider the linear and time-invariant system (A,B), with x(t) ∈ R2 and u(t) ∈ R
ẋ(t) =

[
0 1

0 0

]
x(t)

y(t) =
[
1 0

]
x(t)

We are interested in verifying the observability of the system and initial state x(0)

• We have measured the output, y(τ) = 1 + 2τ

• Over a finite interval, τ ∈ [0, 1]

We compute the observability gramian, then we determine whether its invertible
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To compute the observability gramian, we already computed the state transition matrix

eAτ =

[
1 τ
0 1

]

We can compute the observability gramian of the system, by applying the definition

Wo(t) =

∫ t

0
eAT τCTCeAτdτ

=

∫ t

0

[
1 0
τ 1

] [
1
0

] [
1 0

] [1 τ
0 1

]
dτ

=

[
t t2/2

t2/2 t3/3

]
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Observability (cont.)

0 0.5 1

0

0.5

1

t

t

0 0.5 1 1.5

0

0.5

1

t

t2/2

0 0.5 1 1.5

0

0.5

1

t

t2/2

0 0.5 1 1.5

0

0.5

1

t

t3/3
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Observability (cont.)

Wo(t) =

[
t t2/2

t2/2 t3/3

]

To verify the singularity of the observability gramian Wo(t), we check the determinant

• We need to check whether it is zero or it is non-zero

• Whatever the value of t (that is, at any time)

det (Wo(t)) = t4/12

> 0 (∀t > 0)

Since det (Wo(t)) 6= 0 for all t > 0, we can conclude that the system is observable
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Observability (cont.)

x(0) = W−1
o (tf )

∫ tf

0
eAT τCy(τ)dτ

For the observability gramian and its inverse at the final time tf = 1, we have

Wo(1) =

[
t t2/2

t2/2 t3/3

]
=

[
1 1/2

1/2 1/3

]
Then,

W−1
o (1) =

[
4 −6
−6 12

]
We also have, ∫ 1

0
eAT τCT y(τ)dτ =

∫ 1

0

[
1 0
τ 0

] [
1
0

]
(1 + 2τ)dτ

=

[
2

7/6

]
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After substituting, we have the initial state

x(0) = W−1
o (1)

∫ 1

0
eAT τCT y(τ)dτ

=

[
4 6
−6 12

] [
2

7/6

]
=

[
1
2

]

The trajectory of the state variable from the initial state x(0),

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ

�
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Observability (cont.)

Theorem
Observability matrix and observability test (II)

Consider a linear and time-invariant system (A,C ), with x(t) ∈ RNx and y(t) ∈ RNy{
ẋ(t) = Ax(t)

y(t) = Cx(t)

We define the (Nx × (Ny ×Nx )) observability matrix

O =


C

CA
CA2

...
CANx−1


Necessary and sufficient condition for observability,

rank(O) = Nx
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Observability (cont.)

Example

Consider the linear and time-invariant system (A,C ), with x(t) ∈ RNx and y(t) ∈ RNy
ẋ(t) =

2 4 0.5

0 4 0.5

0 0 2

 x(t)

y(t) =

[
1 0 0

0 0 3

]
x(t)

We are interested in verifying its observability using the observability matrix

The observability matrix has size ((Ny = 2×Nx = 3)×Nx = 3) = (6× 3)

O =

 C
CA
CA2
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Observability (cont.)

O =

 C
CA
CA2


We know C , we need to compute CA and CA2,

CA =

[
1 0 0
0 0 3

]2 4 0.5
0 4 0.5
0 0 2


=

[
2 4 0.5
0 0 6

]

CA2 = (CA)A

=

[
2 4 0.5
0 0 6

]2 4 0.5
0 4 0.5
0 0 2


=

[
4 24 4
0 0 12

]
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Thus, we have the observability matrix

C =


1 0 0
0 0 3
2 4 0.5
0 0 6
4 24 4
0 0 12



We check observability from its rank,

rank(C) = 3

= Nx

�
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Observability (cont.)

1 >> help ctrb % OBSV computes the observability matrix

2 % of pair (A,C)

3 % Read about it and how to use it

4

5 >> A = [?]; % Define state matrix A

6 >> C = [?]; % Define control matrix C

7

8 >> [Ny,Nx] = size(C); % Ny and Nx

9

10 >> Omat = obsv(A,C) % Observability matrix

11

12 >> rnkOmat = rank(Omat) % Rank of the observability matrix

13

14 >> rnkOmat == Nx % Return 0/1 for observability
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Example

Consider the linear and time-invariant system (A,B ,C ), x ∈ RNx , u ∈ RNu , y ∈ RNy
ẋ(t) =

[
1 2

1 0

]
x(t) +

[
−2

3

]
u(t)

y(t) =
[
1 0

]
x(t)

Determine the stability, controllability, and observability using matrix A, C, and O

What changes when we have C =
[
1 1

]
?

�
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Observability (cont.)

Example

Consider the linear and time-invariant system (A,B ,C ), x ∈ RNx , u ∈ RNu , y ∈ RNy
ẋ(t) =

2 1 3

3 1 4

1 0 1

 x(t) +

1

2

0

 u(t)

y(t) =
[
1 0 1

]
x(t)

Determine the stability, controllability, and observability using matrix A, C, and O

�
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Observability (cont.)

Example

Consider the linear and time-invariant system (A,B ,C ), x ∈ RNx , u ∈ RNu , y ∈ RNy
ẋ(t) =

 1.8 0.6 −0.2

0.8 1.6 −0.2

−0.4 −0.8 2.6

 x(t) +

1

1

0

 u(t)

y(t) =
[
0 1 2

]
x(t)

Determine the stability, controllability, and observability using matrix A, C, and O

�
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Example

Consider the linear and time-invariant system (A,B ,C ), x ∈ RNx , u ∈ RNu , y ∈ RNy
ẋ(t) =

[
−2 −2

1 0

]
x(t) +

[
1

1

]
u(t)

y(t) =
[
1 1

]
x(t)

Determine the stability, controllability, and observability using matrix A, C, and O

�
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Asymptotic state observers

We show that for linear and time-invariant systems which are observable it is possible
to exactly estimate the state vector at some infinite t →∞ (that is, asymptotically)

lim
t→∞

‖x(t)− x̂(t)‖ = 0

The device that estimates the state of s system is itself a dynamic system
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Definition

Luenberger observer

Consider a linear and time-invariant dynamical system{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
,

with x(t) ∈ RNx , u(t) ∈ RNu , and y(t) ∈ RNy

The linear and time-invariant dynamical system{
˙̂x(t) = Ax̂(t) + Bu(t) + KL (y(t)− ŷ(t))

ŷ(t) = C x̂(t)
,

with x̂ ∈ RNx , ŷ(t) ∈ RNy is a Luenberger observer of the system iff KL ∈ RNx×Ny is
any matrix such that the eigenvalues of matrix A−KLC all have a negative real part
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ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

System

˙̂x(t) = Ax̂(t) + Bu(t) + KL(y(t)− ŷ(t))

ŷ(t) = C x̂(t)

Estimator

u(t) = K (x̂(t))

Controller

u(t) y(t)

ŷ(t)x̂(t)

˙̂x(t) = Ax̂(t) + Bu(t) + KLy(t)−KLŷ(t)

= Ax̂(t) + Bu(t) + KLy(t)− C x̂(t)

= (A−KLC )x̂(t) + Bu(t) + KLy(t)

= (A−KLC )︸ ︷︷ ︸
AL

x̂(t) +
[
B KL

]︸ ︷︷ ︸
BL

[
u(t)
y(t)

]
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Asymptotic state observers (cont.)

Theorem
Consider a linear and time-invariant dynamical system{

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
,

with x(t) ∈ RNx , u(t) ∈ RNu , and y(t) ∈ RNy

The Luenberger observer is an asymptotic state observer{
˙̂x(t) = Ax̂(t) + Bu(t) + KL (y(t)− ŷ(t))

ŷ(t) = C x̂(t)
,

with x̂ ∈ RNx , ŷ(t) ∈ RNy
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Proof

Let us define the estimation error e(t), the difference between true state and estimate

e(t) = x(t)− x̂(t)

We want to show that the error has linear and time-invariant homogenous dynamics

 The state matrix of this system is given by A−KLC

 Because A−KLC is stable, the error vanishes

 (Asymptotically)
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We differentiate with respect to time the definition of estimation error and rearrange

ė(t) = ẋ(t)− ˙̂x(t)

= (Ax(t) + Bu(t))︸ ︷︷ ︸
ẋ(t)

− (Ax̂(t) + Bu(t) + KL (y(t)− ŷ(t)))︸ ︷︷ ︸
˙̂x(t)

= (Ax(t) +���Bu(t))− (Ax̂(t) +���Bu(t) + KL (y(t)− ŷ(t)))

= A

x(t)− x̂(t)︸ ︷︷ ︸
e(t)

−KLy(t) + KLŷ(t)

= A (x(t)− x̂(t))−KL (Cx(t))︸ ︷︷ ︸
y(t)

−KL (C x̂(t))︸ ︷︷ ︸
ŷ(t)

= A (x(t)− x̂(t))−KLC (x(t)− x̂(t))

= (A−KLC ) (x(t)− x̂(t))

= (A−KLC ) e(t)
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Asymptotic state observers (cont.)

The dynamics of the state estimation error e(0) = x(0)− x̂(0),

ė(t) = (A−KLC )︸ ︷︷ ︸
AL

e(t),

We have limt→∞ ‖x(t)− x̂(t)‖ = 0, for all inputs u(t) and initial states x(0) and x̂(0)

�
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Asymptotic state observers (cont.)

{
˙̂x(t) = Ax̂(t) + Bu(t) + KL (y(t)− ŷ(t))

ŷ(t) = x̂(t)
,

A Luenberger observer is a linear and time-invariant dynamical system

• The observer has the same order Nx of the original system

• The observer state variable is the state estimate x̂(t)

• The observer input variables are u(t) and y(t)

The system and observer share the same measurement equation

While the estimation error tends to zero as time tends to infinity, the rate at which
the error becomes practically negligible depends on the (estimated) initial state x̂(0)

• The closer to the actual state x(0), the better
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