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Many dynamical models used to describe processes in chemical engineering are given as
a set of first-order ordinary differential equations, the equations are very often nonlinear

® From the application of material and energy conservation laws

A body of commonly used techniques for system analysis and control uses linear models
® To access such a technology we need to simplify common process models
® This will require approximating the general state-space representation

® The model approximations of our interest are Jacobian linearisation

1) =
y(t) = g ((t), u(t)l6y) (t) = Ca(t) + Du(t)

Nonlinear dynamics and read-out Linear dynamics and read-out

{dﬁ(t) = f (z(t), u(t)|62) R {j;(, Az(t) + Bu(t)
Yy

The main idea behind the linearisation of nonlinear process models in state-space form

~» Approximate function / (nonlinear) with matrices A and B

~+ Approximate function ¢ (nonlinear) with matrices ¢ and D
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We discuss how to determine a linear approximation of a nonlinear state-space model
~~ We study a number of cases, of increasing complexity

~ As a result, we will be able to linearise any! model

{a’n(t) =/ (2(t), u(t)]62)
y(t) = g (x(t), u(1)|8y)

Nonlinear dynamics and read-out

In general, we have a general state-space model with variables of arbitrary dimension
~ z(t) € RN«
~ u(t) € RNw
~ y(t) € RNy

We start with NV, = 1 (one state), N, = 0 (no inputs) (and N, = 1 (one measurement)

® Then, we will add complexity (we add more variables)

Twe only require that model functions f and g are continuous and differentiable.
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Single state var

A single state variable, no inputs

z(t) = f(z(t)), withz(t)eR

We suppose that function /(z(t¢)) can be approximated by a Taylor series expansion
® We are interested in an approximation around an fixed point, z(t) = zgg
® At the steady-state point zgg, time variations are zero (t) =0

® Thus, we also have that f (zss) = 0, whatever the time ¢

We can perfectly represent function f(z) by using an infinite Taylor series expansion

i df(z) 1d%f(z) .
f(z) = fzss) + ——| (z—zss)+ = 5 (z —z55)2 4+ O(z?)
——— dz lzgs 2 dz? lazgg ——
constant H.O. terms
linear in z quadratic in z

The expansion is a sum of polynomials of =, with the derivatives of [ as coefficients

® Given this representation of f, we want to use it to approximate |

Note that steady-state, stationary, fixed, equilibrium points are all equivalent terms
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Single state var

A single state variable, no inputs (cont.)

. . d/(2) 1d2%/(x) :
@) = fass) + L gy 2Oy 0w
~ 7 d x Tgs 2 d T zss N~
constant H.O. terms
linear in z quadratic in z

Suppose that we are interested in an approximation based only on first-order terms
® We accept to neglect (truncate out) second- and higher-order terms

: : df (z)

f(z) = f(zss) + —| (= —zg5)+ O(z?)

—— dz lzgs ~——

constant T~ quadratic and H.O. terms

linear in =

After truncation, we get an approximation of / which is a linear function of =

d/(2)

d.’l? x5S

J(z) =~ [(wss) + (z — z35)

Note the complete expression of [ (z(t)) with explicit dependencies also wrt time ¢

£ o)~ fass)+ LA (o0 —age)

d T TSS
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Single state var

df(z)
dx

(@)= f(zss) + (z — zg3)
N—— 55
constant
linear in z

dz(t
Because zgg is chosen to be a fixed-point, we have (t) = z(t) = f(zss) =0
dt lags T5g
Thus, we can write
. . df(z)
[(z) = LesgT+——| (v — zs5)
| dz xss

=0

~ T
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. (z(t) — zs5)

Single state var (1) ————=

df (a()
dz

We can now introduce a perturbation or deviation variable z/(t) = z(t) — zgg
® Variable z/(t) encodes how far state variable z(¢) is from steady-state zgg

® (And, because variable z(t) varies with time, also z’(t) varies)

Therefore, we can also compute the time-derivative of perturbation variable z’(t)
® It describes the rate of change of variable z’(¢) with respect to time

® Or, equivalently, its dynamics
By differenting z'(¢) to get dz’(t)d¢, we have

d(z(t) —zss)  dz(i) B dJ/gb/
dt Cdt dt
=0

Deviation/perturbation variables and state variables have identical dynamics
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We obtained that M =/ (z(t)) and [ (z(t)) =~ M (z(t) — zgg)
Single state var dt dz 88
We can equate the two terms and write
d(z(t) — zss df (z(t
WO 59) _ f oy w LI o) — )
x T3S
N—————

constant

We have derived the approximated state equation for the deviation variable z/(t)

. df (=
) TE o) - ass)

This is a linear time-invariant approximation of the (perturbed) state equation

df (x)

dz TS

#/(t) = az’(t), with constant o = ER

We also know how solve it for some initial condition z’(0)

2/ (t) = e*tz’(0)
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Single state var
and single input

z(t) = f(z(t),u(t)), withz,u€eR
We assume that function /(z,u) can be approximated by a Taylor series expansion
® We are interested in an approximation around some fixed-point point
(z = 255, u = uss)

® At fixed points (z = zg5, u = ugg), time-variations are zero i(¢) = 0

~ (The state remains fixed at zgs as long as the input is fixed, at ugs)

Because at steady-state there is no evolution, the right hand-side is zero

~  f(z =1z35,u =ugg) =0



CHEM-E7190
2020-2021

Single state var
and single input

A single state and a single input variable

Suppose that we can perfectly represent [ (z, u) by using an infinite Taylor expansion

i i of (z,u) of (z,u)
[z, u) = [ (255, uss) + ——— (z — 255) + —— (u — uss)
N e’ ox LSS ,USS ou TGS, USS
constant
linear in z linear in u
0%f (x,u) 5 0%f(z,u) 9
_ T —1x39)" + ——— U — USS
dz? TS5 ,USS ( o ) du? TS5 ,USS ( e )
quadratic in z quadratic in u
[ (,u)
—_— r — xg55)(u — ugg
Oxdu ZSS,uSS( ss)( ss)

quadratic

+ H.O. terms

Suppose that we are interested in an approximation based only on first-order terms

® By truncation, we accept to neglect second- and higher-order terms
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Single state var

and single input We can again obtain a linear, first-order, approximation of function / by truncation
. A O (z, u) A (w, u)
J(z,u) = [(2ss, uss) + ———— (z —zgs) + —— (u — ugs)
0z luzgg,ugg Ou  lzgg,ugg
For completeness, again note the explicit dependencies
. , Of (x(t), u(t))
[ (z(t), u(t)) = f (zss,uss) + ——F—— (z(t) — zs5)
oz T3S, USS
of (=(1), u(t))
+t— (u(t) — uss)
Ou ZS5,USS
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Single state var
and single input

A single state and a single input variable (cont.)

dxz(t)
dit

Since (zgs, ugs) is chosen to be a fixed-point, we have =/ (zss,uss) =0

T5S,UsS

Thus, we can write

GCHDT R 0

(u — ugg)
55,usS

f(m,u) %M+
—_————

=0

ox TSS,USS
~ T

We can define again perturbation/deviation variables 2/ = z — 255 and v/ = u — ugg
g p SS SS

By computing the time-derivative of the (perturbed) state variables, we get

d(2(t) —wss) _ da(t) dugd

dt dt dt
"~
=0
= i(t)

- [ (2(0), u(t)
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Single state var

Single state var
and single input

Multiple state
and multiple

input

A single state and a single input variable (cont.)

As a result, we have

PPRACORIG)

o+ Of (z(1), u(t))

of (=(t), u(t))

aI TGS, USS
I ACORIO)
Oz TGS, UgS

= axz'(t) + Bu'(t)

with constants

7]
~ o= 77"(% u) ER
Oz T3S ,USS
8 I
~ = M cR
ou TSS,USS

(u(t) — uss)
ou 35 ,USS
w'(t)
TSS,USS
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Single state var
and single input

A single state, a single input, and a single output variable

Now, suppose that there exists also a single measurement variable, y(t) = g (z(¢), u(t))

We treat function ¢ (z, u) similarly, by using a Taylor expansion around (zss, uss)

® Then, we truncate the expasiom to keep only first-order terms

0g(z,u) 9g(x,u)
9(z,u) = g(zss, uss) + T’ (z —z55) + 87; (u — uss)
——— z TSS,USS 1 ZSS,USS
—_————

Yss
o 6

yss = g(zss, uss) is the fixed-point yss of the measurement (not necessarily zero!)

y(t) = g(zss, uss)
N 0y (w(t),u(t)) (w(1) — z55) + 09 (z(t),u(t))

u(t) — uss
0z TS5, USS ou ‘77557'“55( ( ) SS)

And, we can also introduce a perturbation variable for the measurements, to get

y(t) — yss = ya'(t) + u' (1)
| —

y' ()
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Multiple states
and multiple
inputs

Multiple state and multiple input variables

We can easily generalise the procedure to process models of arbitrary dimensionality

® That is, with an arbitrary number of state, input and output variables

Consider a system with two state variables © = (21, 22)’, one input u, one output y
a1(t) = fi (z1(2), 22(8), u(t)) | #1(F) fi (@1(2), 22(t), u(?))
I2(t) = fo

(a1(2), 22 (t), u(t)) aa(t)| | (e (), 2a(t), u(t))
y(t) = g (@1(t), 22(t), u(t))

We can linearise this system by using truncated Taylor series expansions of / and ¢

® Around a fixed point (zsg, ugs) = ((ml‘gs, IQSS), usg)

()

Note that now function f is vector-valued (two values), it is two functions / = VI ¢ }

® They need to be treated (linearised) individually
~ With respect to each state variable

~» With respect to the input variable
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Multiple states
and multiple
inputs

Multiple state and multiple input variables (cont.)

We start with /1 (z1(¢), z2(¢), u(t)), then after expanding and truncating we obtain

fi @ (), 228, u(®) = fi (2,255, u55)
—_——

constant
Of (z1 (1), z2(t), u(t))
+
o1

T35,USS

(m(t) - T{Sg)

linear in zp

af (Il (t), l‘z(t), u(t))
+ O1o

TS5 ,USs

(Iz(t) —z

9

linear in zo

Ofi (m1(t), 22(t), u(t))
+ ou

TSS,UsS

(u(t) = uss)

linear in u

At any fixed-point the constant term is equal to zero, thus fi(z

SS
i)

+ H.O. terms

$é86’ U'SS) =0
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By retaining only first-order terms, we get the linear approximation of function f(z, u)

Multiple states
and multiple
inputs

~ Ofi (m1(t), 22(t), u(t))

fi (@1(8), (1), u(1) o

(ml(t) - If’s)

T5S,UsS

all

Af1 (x1(t), m2(t), u(t))
+ 1o

(zg(t) — LQ“SS)

TSS,Uuss

a12

Of1 (z1(t), z2(t), u(t))
+ du

by

(u(t) — uss)

T5S,UsS
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We can rewrite the linearised (perturbed) first state equation more compactly, to get
Multiple states

?,?Sui‘;“‘“p‘e fi(ar, z2,u) = a1 (21 — 20%) +a1a (22 — 25°) +b1 (u — ugs)
—_——— —_——— —_——
(I?i xé u!

The constants are the partials of /i with respect to z1, 22, and u, at (zss, ugs)

a1 = oh
e (9.”1}1 T3S ,USS
a1 = oh
e Oxzlzgs,ugs
~ by = %
8u TGS, USS
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Similarly for function f> (z1(t), z2(t), u(t)), by Taylor expansion and truncation we get

fo (@1(), 22(8), u(®) = fo (2, 255, S

Multiple states

and multiple ——
inputs constant
Ofo (x1(t), z2(t), u(t
N f2 (1 (2), 22(¢), u(t)) (zl(t) _,T]SS)
Oxy Z3S,USS

lineair in z;

Of (z1(1), m2(t), u(t))
+ oo

(Iz(t) — Tfs)

T5S,UsS

linear in z2

Of2 (z1(¢), 22(1), u(t))
+ ou

(u(t) — uss)

TSS,USS

+ H.O. terms

Because at some fixed-point, we have again a zero constant term /> (1155, 213255, ugs) =0
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Multiple states
and multiple
inputs

Multiple state and multiple input variables (cont.)

Again, by retaining only the first-order terms we get the second linear approximation

O (21 (1), z2(t), u(t))

fa (1 (1), @2 (), u(t)) du1

(zl(t) — Tfs)

——

a1 ]

4 Ofa (z1(t), z2(t), u(t)) (Ig(t) _ izbs)

O1o
———
0fa (z1(t), 22(t), u(t))
+
ou

T5S,USS

TS5 ,USs

I5S,USS

(u(t) — ugs)
| ——

u’



cuem.eriso Multiple state and multiple input variables (cont.)

2020-2021

We can rewrite the linearised (perturbed) first state equation more compactly, to get
Multiple states

ia:;u;r;umple folar, a2, ) = as1 (11 — 2P%) +azs (22 — 25%) +bs (u — ugs)
[\ —— —_—— —_———
a:i xé u’

The constants are the partials of /5> with respect to z1, 22, and u, at (zss, ugs)

af
o= (9.”1}1 T3S ,USS
af
T Omlzgs,ugs
b, = P2
o= du TGS, USS
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By collecting the linear approximation results for function f; and f>, we have

Single state va filz, zo,u) = a1y (21 — 20%) a12 (22 — 25°) +b1 (u — ugs)
[\— —_—— —_———

ingl tate

ind single inpu 2 () wh(t) w (1)
Multiple s
an:ltr]r{)uleti[flaetes — dxl(t)
inputs dt
_ d (71(f) — Iigs) _ x./(t)
dt !

~ o (t) = a7y (t) + arozh () + bru'(t)
oz (8) = as @] (8) + asamh (8) + bar/ (t)

. d{EQ(t)
S dt

T — 55 .
=)y

fo(zr, 2, u) = az1 (21 — wlss) +aoo (22 — J}QSS) +02 (u — ugs)
[\—— —_——— —_——

1 (1) w2 () w! (t)
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We can combine the equations, to get the linearised state-space model

@] (t) arr a2 [#4(2) by

1 = < 1 /
Lé(t) az1 aga] |z5(t) T, u (1)
—_— e =
Multiple states

and multiple @’ (t)
inputs

A z/(t) b

In matrix form, we get the compact formulation

o/ (t) = Az’ (t) + bu'(t)

Remember that matrix A and b contain the partials of / with respect to = and

Ofi (w1, w2, u)  Of1(z1, 12, 1)

4= |01 az) _ A1y o
as1  a92 Ofo (w1, 22, u)  Ofo(w1, 22, 1)
ox1 O 259 255 ugs
Ofi (w1, w2, u)

b= b1 — - Ou
ba] | Ol 22, u)

Ou o725 ugs
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We proceed similarly to linearise the read-out function g around the point (zss, uss)
In the case of a single output measurement y € R, we have
y(t) = g (z1(t), 22(1), u(t))
Multiple §tate:;
?,:‘;u?;umple The first-order approximation of ¢(z, u),
9 (@1 (), 22(t), u(t) ~ g (a5, 25, uss )

N e’
4 0g (m1(t), (1), u(t)) (931 (t) xis*s)

ox1

T5S,USS

cq

g (fL'l (t), wQ(t)v “(t))
+ (025

<m2(t) — x25‘5>

TSS,USS

c

L 80 @0, 20, u()

ou |-'1’SS:“SS

(u(t) — uss)
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y(t) = yss = c1 (21(t) — 2°) +ea (22(1) — 25°%) +d (u(t) — uss)
N———

y'(t) z (1) x5 (1) u’ (t)
Multiple states
and multiple . .
—— P We can again get a compact formulation,

y'(t)=[c1 2] [;ngg} +du'(t)
V )
z/(t

Remember that matrix ' and d contain the partials of ¢ with respect to =z and u

C=la c]= |:89(Ig T2, u) afl(-Tg Z2, “)i| w
x1 T2 mfb,:rgs,uss
= (4 = [P
ou SS ..SS

P,y uss
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Multiple states
and multiple
inputs

Multiple state and multiple input variables (cont.)

For the general case where z € R+, € RN« and y € R"v, we have

~» State-space equation,
[ o5 ofi afi afi
1 (t) Om Oy, 7 (t) o duy, up (1)
= A R I z
ay, (t) ofv, Ol oy, (O] |0y, Oy, N, (1)
I L Ox1 Oy, | ¢ Y Ouy duy, 1 4o >
2/ (t) = z/(t) i L u’(t)
A B
[a11 -~ a1, N, z{ () b - b1, N, ug (1)
= : o : :
Lan, 1 -+ aw,.n, ‘EJ,V, (1) by, 1 o b, ux‘-” (t)
———
(Ng X Ng) (Ngzx1) (Nz X Ny) (Nyx1)
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Multiple states
and multiple
inputs

Multiple state and multiple input variables (cont.)

For general case where z € RV v € RN and y € R"v, we have

~ Read-out map,
[ 01 991 991 991
vy (¢) on ozy, zq (t) ou ouy,
S e N Bl o
Yy, () gy, 9w, oy, (1) 99n, 9w,
\ﬁ’—/ L Oz ozy, Ss‘%/_/ Ouq Oun, J g4
y'(t) z/ (t)
( D
fci1 - C1,N, z{ () dyg - di.n,
= ] ]
Leny, CN, N zy (1) dn, 1 dn, N
(Ny X Ng) (Nzx1) (Ny X Ny)




	Single state var
	Single state var and single input
	Multiple states and multiple inputs

