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Many dynamical models used to describe processes in chemical engineering are given as
a set of first-order ordinary differential equations, the equations are very often nonlinear

® From the application of material and energy conservation laws

A body of commonly used techniques for system analysis and control uses linear models
® To access such a technology we need to simplify common process models
® This will require approximating the general state-space representation

® The model approximations of our interest are Jacobian linearisation

#(t) = f (2(t), u(t)|6a) = i(t) = Az(t) + Bu(t)
y(8) = g (2 (1), u(1)]8y) y(t) = Ca(t) + Du(t)

Nonlinear dynamics and read-out Linear dynamics and read-out

The main idea behind the linearisation of nonlinear process models in state-space form
~+ Approximate function / (nonlinear) with matrices A and B

~~ Approximate function ¢ (nonlinear) with matrices C' and D
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‘We discuss how to determine a linear approximation of a nonlinear state-space model

~ We study a number of cases, of increasing complexity

~+ As a result, we will be able to linearise any! model

&(t) = [ (2(t), u(t)[0z)
y(t) = g (z(1), u(t)|6y)

Nonlinear dynamics and read-out

In general, we have a general state-space model with variables of arbitrary dimension
~ z(t) € RNa
~ u(t) € RNu
~ y(t) € RNy

We start with NV, = 1 (one state), N, = 0 (no inputs) and N, = 1 (one measurement)

® Then, we will add complexity (we add more variables)

Twe only require that model functions f and g are continuous and differentiable.
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Single state var

A single state variable, no inputs

z(t) = f(z(t)), withz(t)eR

We suppose that function /(z(t¢)) can be approximated by a Taylor series expansion
® We are interested in an approximation around an fixed point, z(t) = zgg
® At the steady-state point zgg, time variations are zero (t) =0

® Thus, we also have that f (zss) = 0, whatever the time ¢

We can perfectly represent function f(z) by using an infinite Taylor series expansion

i df(z) 1d%f(z) .
f(z) = fzss) + ——| (z—zss)+ = 5 (z —z55)2 4+ O(z?)
——— dz lzgs 2 dz? lazgg ——
constant H.O. terms
linear in z quadratic in z

The expansion is a sum of polynomials of =, with the derivatives of [ as coefficients

® Given this representation of f, we want to use it to approximate |

Note that steady-state, stationary, fixed, equilibrium points are all equivalent terms
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Single state var

A single state variable, no inputs (cont.)

. . d/(2) 1d2%/(x) :
@) = fass) + L gy 2Oy 0w
~ 7 d x Tgs 2 d T zss N~
constant H.O. terms
linear in z quadratic in z

Suppose that we are interested in an approximation based only on first-order terms

® We accept to neglect (truncate out) second- and higher-order terms
(z — zss) + O(z?)
55

: d/ (=)
f(z) = flzss) +
constant v quadratic and H.O. terms

linear in =

After truncation, we get an approximation of / which is a linear function of =

d/ (2)
d:IZ x5S

f(z) = f(zss) + (z — zgg)

Note the complete expression of [ (z(t)) with explicit dependencies also wrt time ¢

Fao) ~ fass)+ LED o) )

d T A
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Single state var

df(z)
dx

f(z) = [(zss) + (z — zs5)
~—— 59
constant
linear in z

dz(t
Because zgg is chosen to be a fixed-point, we have (t) = z(t) = f(zss) =0
dt g5 T5g

Thus, we can write

. . df(z)

[(z) = LesgT+——| (v — zs5)

N —r dI xss
=0

~ T
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df (z(t
Single state var i) ~ M

Ia (z(t) — zs5)

TS

We can now introduce a perturbation or deviation variable z/(t) = z(t) — zgg
® Variable z/(t) encodes how far state variable z(¢) is from steady-state zgg

® (And, because variable z(t) varies with time, also z’(t) varies)

Therefore, we can also compute the time-derivative of perturbation variable z’(t)
® It describes the rate of change of variable z’(¢) with respect to time

® Or, equivalently, its dynamics
By differenting z'(¢) to get dz’(t)d¢, we have

d(z(t) —zss)  dz(?) B dJ/gb/
dt Cdt dt

=0

Deviation/perturbation variables and state variables have identical dynamics
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We obtained that M =/ (z(t)) and [ (z(t)) =~ M (z(t) — zgg)
Single state var dt dz 88
We can equate the two terms and write
d(z(t) — zss df (z(t
WO _ p oy LD o) - 2
x T3S
N—————

constant

We have derived the approximated state equation for the deviation variable z/(t)

. df (=
) TE o) - ass)

This is a linear time-invariant approximation of the (perturbed) state equation

df (x)

dz TS

#/(t) = az’(t), with constant o = ER

We also know how solve it for some initial condition z’(0)

2/ (t) = e*tz’(0)
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Single state var
and single input

z(t) = f(z(t),u(t)), withz,u€eR
We assume that function /(z,u) can be approximated by a Taylor series expansion
® We are interested in an approximation around some fixed-point point
(z = 255, u = uss)

® At fixed points (z = zg5, u = ugg), time-variations are zero i(¢) = 0

~ (The state remains fixed at zgs as long as the input is fixed, at ugs)

Because at steady-state there is no evolution, the right hand-side is zero

~  f(z =1z35,u =ugg) =0
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Single state var
and single input

A single state and a single input variable

Suppose that we can perfectly represent [ (z, u) by using an infinite Taylor expansion

| | 9/ (z, u) 8 (v, u)
[z, u) = [ (255, uss) + ——— (z — 255) + —— (u — uss)
N e’ ox LSS ,USS ou TGS, USS
constant
linear in z linear in u
0%f (x,u) 5 0%f(z,u) 9
_— T —x58)" + ———— U — USS
D2 m‘%m( ss) EWE ZSS‘USS( 55)
quadratic in z quadratic in u
&/ (w, u)
_— T — x5 )(u — ugsg
Oxdu l’SS,uSS( ss)( ss)

quadratic

+ H.O. terms

Suppose that we are interested in an approximation based only on first-order terms

® By truncation, we accept to neglect second- and higher-order terms
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Single state var

and single input We can again obtain a linear, first-order, approximation of function / by truncation
. A O (z, u) A (w, u)
J(z,u) = f(wss, uss) + —F— (v — 255) + —— (u — ugs)
0z luzgg,ugg Ou  lzgg,ugg
For completeness, again note the explicit dependencies
. , of (=(), u(t))
[ (@(t),u(t)) = f (w55, uss) + ——F5—"— (z(t) — zs5)
oz ZSS,USS
of (z(t),u(t))
+t— (u(t) — uss)
Ou ZS5,USS
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Single state var
and single input

A single state and a single input variable (cont.)

dz(t)

Since (zgs, ugs) is chosen to be a fixed-point, we have 2

= [ (zs5,uss) =0

TSS,USS
Thus, we can write

Of (z,u)

ox TSS,USS

of (z,
($_$S5')+%

(u — ugg)
55,usS

[z, u) ~ [(rss5755) +
—_———
=0
~ T
We can define again perturbation/deviation variables ©’ = = — 255 and v’ = u — ugg

By computing the time-derivative of the (perturbed) state variables, we get

d(2(t) —wss) _ da(t) dugd

dt dt dt
"~
=0
= i(t)

- [ (2(0), u(t)
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Single state va

Single state var
and single input

Multiple state
and multiple
input

A single state and a single input variable (cont.)

As a result, we have

' (t) =
' (t) o s
_ 9r (1), u(®))
oz 255, uss

@

= axz'(t) + Bu'(t)

with constants

0,
IR D) .
Oz lugs,uss
8 2
~ 3= M cR
Ou  lags,uss

(a(t) — a55) + 2L 10)

ou

TS5, USS

=0+ (1)

55,USS

(u(t) — uss)




CHEM-ET7190
2022

Single state var
and single input

A single state, a single input, and a single output variable

Now, suppose that there exists also a single measurement variable, y(t) = g (z(¢), u(t))

We treat function ¢ (z, u) similarly, by using a Taylor expansion around (zss, uss)

® Then, we truncate the expasiom to keep only first-order terms

9g(z,u) 9g(xz,u)
9(z,u) = g(zss, uss) + T’ (z —z55) + 87; (u — uss)
—— z TSS,USS 1 ZSS,USS
—_————

Yss -
o 9

yss = g(zss, uss) is the fixed-point yss of the measurement (not necessarily zero!)

y(t) = g(zss, uss)

4 29 (@), u(®)) (w(1) — z55) + 9g ((1), u(t))

u(t) — ugs
0z TS5, USS ou ‘77557'“55( ( ) SS)

And, we can also introduce a perturbation variable for the measurements, to get

y(t) — yss = ya'(t) + u' (1)
| —

y' ()
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Multiple states
and multiple
inputs

Multiple state and multiple input variables

We can easily generalise the procedure to process models of arbitrary dimensionality

® That is, with an arbitrary number of state, input and output variables

Consider a system with two state variables z = (21, 22)’, one input u, one output y
{ 1) = i (m(8), 22(), u(t) {w)] {/‘1 (1 (1), 32(t), u(®)

> (z

(¢

2(8) = fo (21 (), 22 (1), u(1)) i2(t) fa (21 (2), 22(1), u(t))
y(t) = g (@1 (1), z2(1), u(t))

We can linearise this system by using truncated Taylor series expansions of [/ and ¢
¢ Around a fixed point (zgs, uss) = (7, 257, ugg)
%,_/

Tss

Note that now function f is vector-valued (two values), it is two functions [ = Bﬂl EJ

® They need to be treated (linearised) individually
~~ With respect to each state variable

~» With respect to the input variable
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Multiple states
and multiple
inputs

Multiple state and multiple input variables (cont

)

We start with /1 (z1(¢), z2(¢), u(t)), then after expanding and truncating we obtain

fi @ (), 228, u(®) = fi (2,255, u55)
—_——

constant
Of1 (m1(8), z2(8), u(t))
+
o1

T35,USS

(ml(t) — T]SS‘)

linear in zp

ofi (11 (t), 5152(15)’ u(t))
+ O1o

T5S,UsS

(Ig(t) —z

9

linear in zo

Ofi (m1(t), 22(t), u(t))
+ ou

TSS,UsS

(u(t) = uss)

linear in u

At any fixed-point the constant term is equal to zero, thus fi(z

SS
i)

+ H.O. terms

$é(’b’ U'SS) =0
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By retaining only first-order terms, we get the linear approximation of function f(z, u)

Multiple states
and multiple
inputs

~ Ofi (m1(t), 22(t), u(t))

fi (@1 (1), 22(8), (1)) o

(ml(t) - If’s)

T5S,UsS

ail

Af1 (x1(t), m2(t), u(t))
+ 1o

(zg(t) — LQ“SS)

TSS,Uuss

a12

O (z1(1), m2(t), u(t))
+ du

by

(u(t) — uss)
T3S ,USS
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We can rewrite the linearised (perturbed) first state equation more compactly, to get
Multiple states

?,?Sui‘;“‘“p‘e fi(ar, z2,u) = a1 (21 — 20%) +a1o (22 — 25°) +b1 (u — ugs)
| S—— —_——— —_——
(I?i xé u!

The constants are the partials of /i with respect to z1, 22, and u, at (zss, ugs)

a1 = oh
e (9.”1}1 T3S ,USS
a1 = oh
e Oxzlzgs,ugs
~ by = %
8u TGS, USS
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Similarly for function f> (z1(t), z2(t), u(t)), by Taylor expansion and truncation we get

| fo (@1(0), 22(8), u(®) = fo (2, 255, S
Multiple states
and multiple —_—
inputs constant

Ofo (x1(t), z2(t), u(t
N f2 (1 (2), 22(¢), u(t)) (zl(t)_ﬂss)
Oxy Z3S,USS

lineair in z;

Of> (1 (1), w2(1), u(t))
+ O1o

(Ig(t) — Tfs)

T5S,UsS

linear in z2

Of2 (z1(¢), 22(1), u(t))
+ ou

(u(t) — uss)

TSS,USS

+ H.O. terms

Because at some fixed-point, we have again a zero constant term /> (1155, :ZZ2SS, ugs) =0
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Multiple states
and multiple
inputs

Multiple state and multiple input variables (cont.)

Again, by retaining only the first-order terms we get the second linear approximation

O (21 (1), z2(t), u(t))

o (w1 (8), w2(t), u(t)) = o

(xl(t) — Tfs)

T5S,USS
a1 3y
812 (wl(t)7w2(t)’u(t>) SS
o (1) —
+ 812 TGS ,USS (LEZ( ) 2 )

02 (w1(t), 2(1), u(t))

+
odu TGS ,USS

(71,(t) — usg)
| ———t

u’
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We can rewrite the linearised (perturbed) first state equation more compactly, to get
Multiple states

ia:;u;r;umple folar, 2, ) = as1 (11 — 2P%) +aoo (22 — 25%) +bs (u — ugs)
[\ — —_—— —_———
(I?i xé u’

The constants are the partials of /5> with respect to z1, 22, and u, at (zss, ugs)

o)
o= (9.”1}1 T3S ,USS
o)
T Oxzlzgs,ugs
b, = P2
o= 8u TGS, USS
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By collecting the linear approximation results for function f; and f>, we have
fi(z1, 22, u) = a1 (21 — ”EISS) +aro (2 — J}QSS) +01 (v — ugs)
—_——— —_—— (\—
z7 (t) x4 (t) u’(t)
Multiple s
an:ltr]r{)uleti[flaetes — dll(t)
inputs dt
— d (71(f) — TlSS) _ I'/(t)
dt !

~a] (U) = ana (t) + arswy(t) + biu'(t)
oz (8) = as @] (8) + asamh (8) + bar/ (t)

. d{EQ(t)
S dt

T — x5 .
=)y

folar, w2, u) = ag1 (21 — %) + a2 (2 — 25%) +b2 (u — ugs)
——— —_——— ————

1 (1) w2 () w! (t)
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We can combine the equations, to get the linearised state-space model
T{(f) _ [an a2 Tl;(f) " by (1)
x(t) az1 a2 |w(t) b
. —— e
Multiple states . A z/(t) b
and multiple @’ (t)

inputs

In matrix form, we get the compact formulation

o/ (t) = Az’ (t) + bu'(t)

Remember that matrix A and b contain the partials of / with respect to = and

Ofi (w1, w2, u)  Of1(z1, 12, 1)

4= |01 az) _ A1y o
as1  a92 Ofo (w1, 22, u)  Ofo(w1, 22, 1)
ox1 O 259 255 ugs
Ofi (w1, w2, u)

b= b1 — - Ou
ba] | Ol 22, u)

Ou o725 ugs
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We proceed similarly to linearise the read-out function g around the point (zss, uss)

In the case of a single output measurement y € R, we have
Multiple states

y(t) = g (21 (8), 22(1), u(?))
and multiple

SR The first-order approximation of ¢(z, u),

g (@ (1), w2(t),u(t)) = g (mfs,mfs, Uss)
N
4 0g (m1(t), (1), u(t)) (931 (t) — xis*s)

ox1

TS5,USS

cq

g (fL'l (t), wQ(t)v “(t))
+ (025

<m2(t) — m;‘b)

TSS,USS

c

L 80 @0, 20, u()

ou |-'1’SS:“SS

(u(t) — uss)
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y(t) = yss = c1 (21(t) — 2°) +ea (22(1) — 25°%) +d (u(t) — uss)
N———

y'(t) z (1) x5 (1) u’ (t)
Multiple states
and multiple . .
—— P We can again get a compact formulation,

y'(t)=[c1 2] [{2:8;} +du/(t)
C ‘( )
z’(t

Remember that matrix ' and d contain the partials of ¢ with respect to =z and u

C = [(31 (iz] = |:8H(Ig 2, u) 8!]($é7 T2, “)i| o
x1 T2 mfb,:rﬁ%,uss
d= [d] = |:a(]($1, *2, u)]
ou SS ,.SS

P,y uss
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For the general case where z € RY+, uw € RV and y € R, we have

~ State-space equation,
Multiple states
and multiple
inputs [ af I af ofi
(1) dxy dxy, i (t) dur dup, ug (1)
S Il I SR S Il I S :
zy (1) Ofn, 9w, zy, (1) afw, 9w, upy (1)
0 o O s, 00t ou Ounid ss )
A B
[a11 -+ ain, z7 (1) bia - b1, up (1)
= . . + . .
Lan, 1 - an, v |z, () by, oo b v [u, (1)
[ —— [ —
(Ng X Nz) (Nzx1) (Ng X Ny ) (Nyx1)
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Multiple states
and multiple
inputs

Multiple state and multiple input variables (cont.)

For general case where z € RV u € RV and y € R"v, we have

~- Read-out map,

[ 01 991
y1 (1) O Oz, 1 (1)
Yy, (1) g, dgn, zy, (1)
—_——
Y/ (t) L 8.7?1 87&\71: SS z (t)
[ ci C1,N, zy (1)
Len, 1 CN, N zy (1)
—_——
(Ny X Ny) (Nzx1)

dy 991
8u1 (911[\/u “{(f)
oov, oo | w0
—_———
Oup Oun, 1 gg u/(t)
D
di 1 (/] N “’{(t)
dn, 1 ([\" N UV“(t)
(Ny X Ny,) (Nyx1)
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