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Linearisation of nonlinear state-space models

Many dynamical models used to describe processes in chemical engineering are given as
a set of first-order ordinary differential equations, the equations are very often nonlinear

• From the application of material and energy conservation laws

A body of commonly used techniques for system analysis and control uses linear models

• To access such a technology we need to simplify common process models

• This will require approximating the general state-space representation

• The model approximations of our interest are Jacobian linearisation

{
ẋ(t) = f (x(t), u(t)|θx )
y(t) = g (x(t), u(t)|θy )︸ ︷︷ ︸

Nonlinear dynamics and read-out

⇝

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) +Du(t)︸ ︷︷ ︸
Linear dynamics and read-out

The main idea behind the linearisation of nonlinear process models in state-space form

⇝ Approximate function f (nonlinear) with matrices A and B

⇝ Approximate function g (nonlinear) with matrices C and D
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Linearisation of nonlinear state-space models

We discuss how to determine a linear approximation of a nonlinear state-space model

⇝ We study a number of cases, of increasing complexity

⇝ As a result, we will be able to linearise any1 model

{
ẋ(t) = f (x(t), u(t)|θx )
y(t) = g (x(t), u(t)|θy )︸ ︷︷ ︸

Nonlinear dynamics and read-out

In general, we have a general state-space model with variables of arbitrary dimension

⇝ x(t) ∈ RNx

⇝ u(t) ∈ RNu

⇝ y(t) ∈ RNy

We start with Nx = 1 (one state), Nu = 0 (no inputs) and Ny = 1 (one measurement)

• Then, we will add complexity (we add more variables)

1We only require that model functions f and g are continuous and differentiable.
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A single state variable, no inputs

ẋ(t) = f (x(t)) , with x(t) ∈ R

We suppose that function f (x(t)) can be approximated by a Taylor series expansion

• We are interested in an approximation around an fixed point, x(t) = xSS
• At the steady-state point xSS , time variations are zero ẋ(t) = 0

• Thus, we also have that f (xSS ) = 0, whatever the time t

We can perfectly represent function f (x) by using an infinite Taylor series expansion

f (x) = f (xSS )︸ ︷︷ ︸
constant

+
df (x)

dx

∣∣∣
xSS

(x − xSS )︸ ︷︷ ︸
linear in x

+
1

2

d2f (x)

dx2

∣∣∣
xSS

(x − xSS )
2︸ ︷︷ ︸

quadratic in x

+ O(x3)︸ ︷︷ ︸
H.O. terms

The expansion is a sum of polynomials of x , with the derivatives of f as coefficients

• Given this representation of f , we want to use it to approximate f

Note that steady-state, stationary, fixed, equilibrium points are all equivalent terms
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A single state variable, no inputs (cont.)

f (x) = f (xSS )︸ ︷︷ ︸
constant

+
df (x)

dx

∣∣∣
xSS

(x − xSS )︸ ︷︷ ︸
linear in x

+
1

2

d2f (x)

dx2

∣∣∣
xSS

(x − xSS )
2︸ ︷︷ ︸

quadratic in x

+ O(x3)︸ ︷︷ ︸
H.O. terms

Suppose that we are interested in an approximation based only on first-order terms

• We accept to neglect (truncate out) second- and higher-order terms

f (x) = f (xSS )︸ ︷︷ ︸
constant

+
df (x)

dx

∣∣∣
xSS

(x − xSS )︸ ︷︷ ︸
linear in x

+ O(x2)︸ ︷︷ ︸
quadratic and H.O. terms

After truncation, we get an approximation of f which is a linear function of x

f (x) ≈ f (xSS ) +
df (x)

dx

∣∣∣
xSS

(x − xSS )

Note the complete expression of f (x(t)) with explicit dependencies also wrt time t

f (x(t)) ≈ f (xSS ) +
df (x(t))

dx

∣∣∣
xSS

(x(t)− xSS )
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A single state variable, no inputs (cont.)

f (x) ≈ f (xSS )︸ ︷︷ ︸
constant

+
df (x)

dx

∣∣∣
xSS

(x − xSS )︸ ︷︷ ︸
linear in x

Because xSS is chosen to be a fixed-point, we have
dx(t)

dt

∣∣∣
xSS

= ẋ(t)
∣∣∣
xSS

= f (xSS ) = 0

Thus, we can write

f (x) ≈���f (xSS )︸ ︷︷ ︸
=0

+
df (x)

dx

∣∣∣
xSS

(x − xSS )

⇝ ẋ
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A single state variable, no inputs (cont.)

ẋ(t) ≈
df (x(t))

dx

∣∣∣
xSS

(x(t)− xSS )

We can now introduce a perturbation or deviation variable x ′(t) = x(t)− xSS
• Variable x ′(t) encodes how far state variable x(t) is from steady-state xSS
• (And, because variable x(t) varies with time, also x ′(t) varies)

Therefore, we can also compute the time-derivative of perturbation variable x ′(t)

• It describes the rate of change of variable x ′(t) with respect to time

• Or, equivalently, its dynamics

By differenting x ′(t) to get dx ′(t)dt , we have

d (x(t)− xSS )

dt
=

dx(t)

dt
−
�

��dxSS

dt︸ ︷︷ ︸
=0

= ẋ(t)

⇝ f (x(t))

Deviation/perturbation variables and state variables have identical dynamics
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A single state variable, no inputs (cont.)

We obtained that
d (x(t)− xSS )

dt
= f (x(t)) and f (x(t)) ≈

df (x(t))

dx

∣∣∣
xSS

(x(t)− xSS )

We can equate the two terms and write

d (x(t)− xSS )

dt
= f (x(t)) ≈

df (x(t))

dx

∣∣∣
xSS︸ ︷︷ ︸

constant

(x(t)− xSS )

We have derived the approximated state equation for the deviation variable x ′(t)

ẋ ′(t) ≈
df (x(t))

dx

∣∣∣
xSS

(x(t)− xSS )

This is a linear time-invariant approximation of the (perturbed) state equation

ẋ ′(t) = αx ′(t), with constant α =
df (x)

dx

∣∣∣
xSS

∈ R

We also know how solve it for some initial condition x ′(0)

x ′(t) = eαtx ′(0)
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A single state and a single input variable

ẋ(t) = f (x(t), u(t)) , with x , u ∈ R

We assume that function f (x , u) can be approximated by a Taylor series expansion

• We are interested in an approximation around some fixed-point point

(x = xSS , u = uSS )

• At fixed points (x = xSS , u = uSS ), time-variations are zero ẋ(t) = 0

⇝ (The state remains fixed at xSS as long as the input is fixed, at uSS )

Because at steady-state there is no evolution, the right hand-side is zero

⇝ f (x = xSS , u = uSS ) = 0
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A single state and a single input variable

Suppose that we can perfectly represent f (x , u) by using an infinite Taylor expansion

f (x , u) = f (xSS , uSS )︸ ︷︷ ︸
constant

+
∂f (x , u)

∂x

∣∣∣
xSS ,uSS

(x − xSS )︸ ︷︷ ︸
linear in x

+
∂f (x , u)

∂u

∣∣∣
xSS ,uSS

(u − uSS )︸ ︷︷ ︸
linear in u

+
∂2f (x , u)

∂x2

∣∣∣
xSS ,uSS

(x − xSS )
2︸ ︷︷ ︸

quadratic in x

+
∂2f (x , u)

∂u2

∣∣∣
xSS ,uSS

(u − uSS )
2︸ ︷︷ ︸

quadratic in u

+
∂2f (x , u)

∂x∂u

∣∣∣
xSS ,uSS

(x − xSS )(u − uSS )︸ ︷︷ ︸
quadratic

+ H.O. terms

Suppose that we are interested in an approximation based only on first-order terms

• By truncation, we accept to neglect second- and higher-order terms
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A single state and a single input variable (cont.)

We can again obtain a linear, first-order, approximation of function f by truncation

f (x , u) ≈ f (xSS , uSS ) +
∂f (x , u)

∂x

∣∣∣
xSS ,uSS

(x − xSS ) +
∂f (x , u)

∂u

∣∣∣
xSS ,uSS

(u − uSS )

For completeness, again note the explicit dependencies

f (x(t), u(t)) ≈ f (xSS , uSS ) +
∂f (x(t), u(t))

∂x

∣∣∣
xSS ,uSS

(x(t)− xSS )

+
∂f (x(t), u(t))

∂u

∣∣∣
xSS ,uSS

(u(t)− uSS )
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A single state and a single input variable (cont.)

Since (xSS , uSS ) is chosen to be a fixed-point, we have
dx(t)

dt

∣∣∣
xSS ,uSS

= f (xSS , uSS ) = 0

Thus, we can write

f (x , u) ≈(((((f (xSS , uSS )︸ ︷︷ ︸
=0

+
∂f (x , u)

∂x

∣∣∣
xSS ,uSS

(x − xSS ) +
∂f (x , u)

∂u

∣∣∣
xSS ,uSS

(u − uSS )

⇝ ẋ

We can define again perturbation/deviation variables x ′ = x − xSS and u′ = u − uSS

By computing the time-derivative of the (perturbed) state variables, we get

d (x(t)− xSS )

dt
=

dx(t)

dt
−
�

��dxSS

dt︸ ︷︷ ︸
=0

= ẋ(t)

⇝ f (x(t), u(t))
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A single state and a single input variable (cont.)

As a result, we have

ẋ ′(t) =
∂f (x(t), u(t))

∂x

∣∣∣
xSS ,uSS

(x(t)− xSS ) +
∂f (x(t), u(t))

∂u

∣∣∣
xSS ,uSS

(u(t)− uSS )

=
∂f (x(t), u(t))

∂x

∣∣∣
xSS ,uSS︸ ︷︷ ︸

α

x ′(t) +
∂f (x(t), u(t))

∂u

∣∣∣
xSS ,uSS︸ ︷︷ ︸

β

u′(t)

= αx ′(t) + βu′(t)

with constants

⇝ α =
∂f (x , u)

∂x

∣∣∣
xSS ,uSS

∈ R

⇝ β =
∂f (x , u)

∂u

∣∣∣
xSS ,uSS

∈ R
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A single state, a single input, and a single output variable

Now, suppose that there exists also a single measurement variable, y(t) = g (x(t), u(t))

We treat function g (x , u) similarly, by using a Taylor expansion around (xSS , uSS )

• Then, we truncate the expasiom to keep only first-order terms

g(x , u) ≈ g(xSS , uSS )︸ ︷︷ ︸
ySS

+
∂g(x , u)

∂x

∣∣∣
xSS ,uSS︸ ︷︷ ︸

γ

(x − xSS ) +
∂g(x , u)

∂u

∣∣∣
xSS ,uSS︸ ︷︷ ︸

δ

(u − uSS )

ySS = g(xSS , uSS ) is the fixed-point ySS of the measurement (not necessarily zero!)

y(t) ≈ g(xSS , uSS )

+
∂g (x(t), u(t))

∂x

∣∣∣
xSS ,uSS

(x(t)− xSS ) +
∂g (x(t), u(t))

∂u

∣∣∣
xSS ,uSS

(u(t)− uSS )

And, we can also introduce a perturbation variable for the measurements, to get

y(t)− ySS︸ ︷︷ ︸
y′(t)

= γx ′(t) + δu′(t)
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Multiple state and multiple input variables

We can easily generalise the procedure to process models of arbitrary dimensionality

• That is, with an arbitrary number of state, input and output variables

Consider a system with two state variables x = (x1, x2)′, one input u, one output y
{
ẋ1(t) = f1 (x1(t), x2(t), u(t))

ẋ2(t) = f2 (x1(t), x2(t), u(t))
⇝

[
ẋ1(t)

ẋ2(t)

]
=

[
f1 (x1(t), x2(t), u(t))

f2 (x1(t), x2(t), u(t))

]
y(t) = g (x1(t), x2(t), u(t))

We can linearise this system by using truncated Taylor series expansions of f and g

• Around a fixed point (xSS , uSS ) = ((xSS
1 , xSS

2 )︸ ︷︷ ︸
xSS

, uSS )

Note that now function f is vector-valued (two values), it is two functions f =

[
f1(·)
f2(·)

]
• They need to be treated (linearised) individually

⇝ With respect to each state variable

⇝ With respect to the input variable
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Multiple state and multiple input variables (cont.)

We start with f1 (x1(t), x2(t), u(t)), then after expanding and truncating we obtain

f1 (x1(t), x2(t), u(t)) = f1
(
xSS
1 , xSS

2 , uSS
)

︸ ︷︷ ︸
constant

+
∂f1 (x1(t), x2(t), u(t))

∂x1

∣∣∣
xSS ,uSS

(
x1(t)− xSS

1

)
︸ ︷︷ ︸

linear in x1

+
∂f1 (x1(t), x2(t), u(t))

∂x2

∣∣∣
xSS ,uSS

(
x2(t)− xSS

2

)
︸ ︷︷ ︸

linear in x2

+
∂f1 (x1(t), x2(t), u(t))

∂u

∣∣∣
xSS ,uSS

(u(t)− uSS )︸ ︷︷ ︸
linear in u

+H.O. terms

At any fixed-point the constant term is equal to zero, thus f1(xSS
1 , xSS

2 , uSS ) = 0
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Multiple state and multiple input variables (cont.)

By retaining only first-order terms, we get the linear approximation of function f (x , u)

f1 (x1(t), x2(t), u(t)) ≈
∂f1 (x1(t), x2(t), u(t))

∂x1

∣∣∣
xSS ,uSS︸ ︷︷ ︸

a11

(
x1(t)− xSS

1

)

+
∂f1 (x1(t), x2(t), u(t))

∂x2

∣∣∣
xSS ,uSS︸ ︷︷ ︸

a12

(
x2(t)− xSS

2

)

+
∂f1 (x1(t), x2(t), u(t))

∂u

∣∣∣
xSS ,uSS︸ ︷︷ ︸

b1

(u(t)− uSS )



CHEM-E7190
2023

Single state var

Single state var
and single input

Multiple states
and multiple
inputs

Multiple state and multiple input variables (cont.)

We can rewrite the linearised (perturbed) first state equation more compactly, to get

f1(x1, x2, u) = a11 (x1 − xSS
1 )︸ ︷︷ ︸

x ′
1

+a12 (x2 − xSS
2 )︸ ︷︷ ︸

x ′
2

+b1 (u − uSS )︸ ︷︷ ︸
u′

The constants are the partials of f1 with respect to x1, x2, and u, at (xSS , uSS )

⇝ a11 =
∂f1

∂x1

∣∣∣
xSS ,uSS

⇝ a12 =
∂f1

∂x2

∣∣∣
xSS ,uSS

⇝ b1 =
∂f1

∂u

∣∣∣
xSS ,uSS
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Multiple state and multiple input variables

Similarly for function f2 (x1(t), x2(t), u(t)), by Taylor expansion and truncation we get

f2 (x1(t), x2(t), u(t)) = f2
(
xSS
1 , xSS

2 , uSS
)

︸ ︷︷ ︸
constant

+
∂f2 (x1(t), x2(t), u(t))

∂x1

∣∣∣
xSS ,uSS

(
x1(t)− xSS

1

)
︸ ︷︷ ︸

lineair in x1

+
∂f2 (x1(t), x2(t), u(t))

∂x2

∣∣∣
xSS ,uSS

(
x2(t)− xSS

2

)
︸ ︷︷ ︸

linear in x2

+
∂f2 (x1(t), x2(t), u(t))

∂u

∣∣∣
xSS ,uSS

(u(t)− uSS )

+ H.O. terms

Because at some fixed-point, we have again a zero constant term f2(xSS
1 , xSS

2 , uSS ) = 0
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Multiple state and multiple input variables (cont.)

Again, by retaining only the first-order terms we get the second linear approximation

f2 (x1(t), x2(t), u(t)) ≈
∂f2 (x1(t), x2(t), u(t))

∂x1

∣∣∣
xSS ,uSS︸ ︷︷ ︸

a21

(
x1(t)− xSS

1

)
︸ ︷︷ ︸

x ′
1

+
∂f2 (x1(t), x2(t), u(t))

∂x2

∣∣∣
xSS ,uSS︸ ︷︷ ︸

a22

(
x2(t)− xSS

2

)
︸ ︷︷ ︸

x ′
2

+
∂f2 (x1(t), x2(t), u(t))

∂u

∣∣∣
xSS ,uSS︸ ︷︷ ︸

b2

(u(t)− uSS )︸ ︷︷ ︸
u′
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Multiple state and multiple input variables (cont.)

We can rewrite the linearised (perturbed) first state equation more compactly, to get

f2(x1, x2, u) = a21 (x1 − xSS
1 )︸ ︷︷ ︸

x ′
1

+a22 (x2 − xSS
2 )︸ ︷︷ ︸

x ′
2

+b2 (u − uSS )︸ ︷︷ ︸
u′

The constants are the partials of f2 with respect to x1, x2, and u, at (xSS , uSS )

⇝ a21 =
∂f2

∂x1

∣∣∣
xSS ,uSS

⇝ a22 =
∂f2

∂x2

∣∣∣
xSS ,uSS

⇝ b2 =
∂f2

∂u

∣∣∣
xSS ,uSS
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Multiple state and multiple input variables (cont.)

By collecting the linear approximation results for function f1 and f2, we have

f1(x1, x2, u) = a11 (x1 − xSS
1 )︸ ︷︷ ︸

x ′
1(t)

+a12 (x2 − xSS
2 )︸ ︷︷ ︸

x ′
2(t)

+b1 (u − uSS )︸ ︷︷ ︸
u′(t)

=
dx1(t)

dt

=
d
(
x1(t)− xSS

1

)
dt

= ẋ ′
1(t)

⇝ ẋ ′
1(t) = a11x

′
1(t) + a12x

′
2(t) + b1u

′(t)

⇝ ẋ ′
2(t) = a21x

′
1(t) + a22x

′
2(t) + b2u

′(t)

=
dx2(t)

dt

=
d
(
x2(t)− xSS

2

)
dt

= ẋ ′
2(t)

f2(x1, x2, u) = a21 (x1 − xSS
1 )︸ ︷︷ ︸

x ′
1(t)

+a22 (x2 − xSS
2 )︸ ︷︷ ︸

x2(t)

+b2 (u − uSS )︸ ︷︷ ︸
u′(t)
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Multiple state and multiple input variables (cont.)

We can combine the equations, to get the linearised state-space model[
ẋ ′
1(t)

ẋ ′
2(t)

]
︸ ︷︷ ︸

ẋ ′(t)

=

[
a11 a12
a21 a22

]
︸ ︷︷ ︸

A

[
x ′
1(t)
x ′
2(t)

]
︸ ︷︷ ︸
x ′(t)

+

[
b1
b2

]
︸ ︷︷ ︸

b

u′(t)

In matrix form, we get the compact formulation

ẋ ′(t) = Ax ′(t) + bu′(t)

Remember that matrix A and b contain the partials of f with respect to x and u

A =

[
a11 a12
a21 a22

]
=


∂f1(x1, x2, u)

∂x1

∂f1(x1, x2, u)

∂x2
∂f2(x1, x2, u)

∂x1

∂f2(x1, x2, u)

∂x2


xSS
1 ,xSS

2 ,uSS

b =

[
b1
b2

]
=


∂f1(x1, x2, u)

∂u
∂f2(x1, x2, u)

∂u


xSS
1 ,xSS

2 ,uSS
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Multiple state and multiple input variables (cont.)

We proceed similarly to linearise the read-out function g around the point (xSS , uSS )

In the case of a single output measurement y ∈ R, we have

y(t) = g (x1(t), x2(t), u(t))

The first-order approximation of g(x , u),

g (x1(t), x2(t), u(t)) ≈ g
(
xSS
1 , xSS

2 , uSS

)
︸ ︷︷ ︸

ySS

+
∂g (x1(t), x2(t), u(t))

∂x1

∣∣∣
xSS ,uSS︸ ︷︷ ︸

c1

(
x1(t)− xSS

1

)

+
∂g (x1(t), x2(t), u(t))

∂x2

∣∣∣
xSS ,uSS︸ ︷︷ ︸

c2

(
x2(t)− xSS

2

)

+
∂g (x1(t), x2(t), u(t))

∂u

∣∣∣
xSS ,uSS︸ ︷︷ ︸

d

(u(t)− uSS )
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Multiple state and multiple input variables (cont.)

y(t)− ySS︸ ︷︷ ︸
y′(t)

= c1 (x1(t)− xSS
1 )︸ ︷︷ ︸

x ′
1(t)

+c2 (x2(t)− xSS
2 )︸ ︷︷ ︸

x ′
2(t)

+d (u(t)− uSS )︸ ︷︷ ︸
u′(t)

We can again get a compact formulation,

y ′(t) =
[
c1 c2

]︸ ︷︷ ︸
C

[
x ′
1(t)
x ′
2(t)

]
︸ ︷︷ ︸
x ′(t)

+du ′(t)

Remember that matrix C and d contain the partials of g with respect to x and u

C =
[
c1 c2

]
=

[
∂g(x1, x2, u)

∂x1

∂g(x1, x2, u)

∂x2

]
xSS
1 ,xSS

2 ,uSS

d =
[
d
]
=

[
∂g(x1, x2, u)

∂u

]
xSS
1 ,xSS

2 ,uSS
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Multiple state and multiple input variables (cont.)

For the general case where x ∈ RNx , u ∈ RNu and y ∈ RNy , we have

⇝ State-space equation,


x ′
1(t)
...

x ′
Nx

(t)


︸ ︷︷ ︸

ẋ ′(t)

=



∂f1

∂x1
· · ·

∂f1

∂xNx

...
. . .

...
∂fNx

∂x1
· · ·

∂fNx

∂xNx


SS︸ ︷︷ ︸

A


x ′
1(t)
...

x ′
Nx

(t)


︸ ︷︷ ︸

x ′(t)

+



∂f1

∂u1
· · ·

∂f1

∂uNu

...
. . .

...
∂fNx

∂u1
· · ·

∂fNx

∂uNu


SS︸ ︷︷ ︸

B


u′
1(t)
...

u′
Nu

(t)


︸ ︷︷ ︸

u′(t)

=

 a1,1 · · · a1,Nx

.

..
. . .

.

..
aNx ,1 · · · aNx ,Nx


︸ ︷︷ ︸

(Nx×Nx )


x ′
1(t)
...

x ′
Nx

(t)


︸ ︷︷ ︸
(Nx×1)

+

 b1,1 · · · b1,Nu

.

..
. . .

...
bNx ,1 · · · bNx ,Nu


︸ ︷︷ ︸

(Nx×Nu )


u′
1(t)
...

u′
Nu

(t)


︸ ︷︷ ︸
(Nu×1)
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Multiple state and multiple input variables (cont.)

For general case where x ∈ RNx , u ∈ RNu and y ∈ RNy , we have

⇝ Read-out map,


y ′
1(t)
...

y ′
Ny

(t)


︸ ︷︷ ︸

y′(t)

=



∂g1

∂x1
· · ·

∂g1

∂xNx

...
. . .

...
∂gNy

∂x1
· · ·

∂gNy

∂xNx


SS︸ ︷︷ ︸

C


x ′
1(t)
...

x ′
Nx

(t)


︸ ︷︷ ︸

x ′(t)

+



∂g1

∂u1
· · ·

∂g1

∂uNu

...
. . .

...
∂gNy

∂u1
· · ·

∂gNy

∂uNu


SS︸ ︷︷ ︸

D


u′
1(t)
...

u′
Nu

(t)


︸ ︷︷ ︸

u′(t)

=

 c1,1 · · · c1,Nx

...
. . .

...
cNy ,1 · · · cNy ,Nx


︸ ︷︷ ︸

(Ny×Nx )


x ′
1(t)
...

x ′
Nx

(t)


︸ ︷︷ ︸
(Nx×1)

+

 d1,1 · · · d1,Nu

...
. . .

...
dNy ,1 · · · dNx ,Nu


︸ ︷︷ ︸

(Ny×Nu )


u′
1(t)
...

u′
Nu

(t)


︸ ︷︷ ︸
(Nu×1)
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