Linearisation of nonlinear state-space models

 CHEM-E7190 (was E7140), 2023Francesco Corona
Chemical and Metallurgical Engineering School of Chemical Engineering

Many dynamical models used to describe processes in chemical engineering are given as a set of first-order ordinary differential equations, the equations are very often nonlinear

- From the application of material and energy conservation laws

A body of commonly used techniques for system analysis and control uses linear models

- To access such a technology we need to simplify common process models
- This will require approximating the general state-space representation
- The model approximations of our interest are Jacobian linearisation

$$
\underbrace{\left\{\begin{array}{l}
\dot{x}(t)=f\left(x(t), u(t) \mid \theta_{x}\right) \\
y(t)=g\left(x(t), u(t) \mid \theta_{y}\right)
\end{array}\right.}_{\text {Nonlinear dynamics and read-out }} \quad \leadsto \quad \underbrace{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)+D u(t)
\end{array}}_{\text {Linear dynamics and read-out }}
$$

The main idea behind the linearisation of nonlinear process models in state-space form
\rightsquigarrow Approximate function f (nonlinear) with matrices A and B
\rightsquigarrow Approximate function g (nonlinear) with matrices C and D

Linearisation of nonlinear state-space models

We discuss how to determine a linear approximation of a nonlinear state-space model
\rightsquigarrow We study a number of cases, of increasing complexity
\rightsquigarrow As a result, we will be able to linearise any ${ }^{1}$ model

$$
\underbrace{\left\{\begin{array}{l}
\dot{x}(t)=f\left(x(t), u(t) \mid \theta_{x}\right) \\
y(t)=g\left(x(t), u(t) \mid \theta_{y}\right)
\end{array}\right.}_{\text {Nonlinear dynamics and read-out }}
$$

In general, we have a general state-space model with variables of arbitrary dimension

$$
\begin{aligned}
& \rightsquigarrow x(t) \in \mathcal{R}^{N_{x}} \\
& \rightsquigarrow u(t) \in \mathcal{R}^{N_{u}} \\
& \rightsquigarrow y(t) \in \mathcal{R}^{N_{y}}
\end{aligned}
$$

We start with $N_{x}=1$ (one state), $N_{u}=0$ (no inputs) and $N_{y}=1$ (one measurement)

- Then, we will add complexity (we add more variables)

[^0]$$
\dot{x}(t)=f(x(t)), \quad \text { with } x(t) \in \mathcal{R}
$$

We suppose that function $f(x(t))$ can be approximated by a Taylor series expansion

- We are interested in an approximation around an fixed point, $x(t)=x_{S S}$
- At the steady-state point $x_{S S}$, time variations are zero $\dot{x}(t)=0$
- Thus, we also have that $f\left(x_{S S}\right)=0$, whatever the time t

We can perfectly represent function $f(x)$ by using an infinite Taylor series expansion

$$
f(x)=\underbrace{f\left(x_{S S}\right)}_{\text {constant }}+\underbrace{\left.\frac{\mathrm{d} f(x)}{\mathrm{d} x}\right|_{x_{S S}}\left(x-x_{S S}\right)}_{\text {linear in } x}+\underbrace{\left.\frac{1}{2} \frac{\mathrm{~d}^{2} f(x)}{\mathrm{d} x^{2}}\right|_{x_{S S}}\left(x-x_{S S}\right)^{2}}_{\text {quadratic in } x}+\underbrace{\mathcal{O}\left(x^{3}\right)}_{\text {H.O. terms }}
$$

The expansion is a sum of polynomials of x, with the derivatives of f as coefficients

- Given this representation of f, we want to use it to approximate f

Note that steady-state, stationary, fixed, equilibrium points are all equivalent terms

A single state variable, no inputs (cont.)

$$
f(x)=\underbrace{f\left(x_{S S}\right)}_{\text {constant }}+\underbrace{\left.\frac{\mathrm{d} f(x)}{\mathrm{d} x}\right|_{x_{S S}}\left(x-x_{S S}\right)}_{\text {linear in } x}+\underbrace{\left.\frac{1}{2} \frac{\mathrm{~d}^{2} f(x)}{\mathrm{d} x^{2}}\right|_{x_{S S}}\left(x-x_{S S}\right)^{2}}_{\text {quadratic in } x}+\underbrace{\mathcal{O}\left(x^{3}\right)}_{\text {H.O. terms }}
$$

Suppose that we are interested in an approximation based only on first-order terms

- We accept to neglect (truncate out) second- and higher-order terms

$$
f(x)=\underbrace{f\left(x_{S S}\right)}_{\text {constant }}+\underbrace{\left.\frac{\mathrm{d} f(x)}{\mathrm{d} x}\right|_{x_{S S}}\left(x-x_{S S}\right)}_{\text {linear in } x}+\underbrace{\mathcal{O}\left(x^{2}\right)}_{\text {quadratic and H.O. terms }}
$$

After truncation, we get an approximation of f which is a linear function of x

$$
f(x) \approx f\left(x_{S S}\right)+\left.\frac{\mathrm{d} f(x)}{\mathrm{d} x}\right|_{x_{S S}}\left(x-x_{S S}\right)
$$

Note the complete expression of $f(x(t))$ with explicit dependencies also wrt time t

$$
f(x(t)) \approx f\left(x_{S S}\right)+\left.\frac{\mathrm{d} f(x(t))}{\mathrm{d} x}\right|_{x_{S S}}\left(x(t)-x_{S S}\right)
$$

A single state variable, no inputs (cont.)

$$
f(x) \approx \underbrace{f\left(x_{S S}\right)}_{\text {constant }}+\underbrace{\left.\frac{\mathrm{d} f(x)}{\mathrm{d} x}\right|_{x_{S S}}\left(x-x_{S S}\right)}_{\text {linear in } x}
$$

Because $x_{S S}$ is chosen to be a fixed-point, we have $\left.\frac{\mathrm{d} x(t)}{\mathrm{d} t}\right|_{x_{S S}}=\left.\dot{x}(t)\right|_{x_{S S}}=f\left(x_{S S}\right)=0$
Thus, we can write

$$
\begin{aligned}
f(x) & \approx \underbrace{f(x 5 S)}_{=0}+\left.\frac{\mathrm{d} f(x)}{\mathrm{d} x}\right|_{x_{S S}}\left(x-x_{S S}\right) \\
& \rightsquigarrow \dot{x}
\end{aligned}
$$

A single state variable, no inputs (cont.)

$$
\left.\dot{x}(t) \approx \frac{\mathrm{d} f(x(t))}{\mathrm{d} x}\right|_{x_{S S}}\left(x(t)-x_{S S}\right)
$$

We can now introduce a perturbation or deviation variable $x^{\prime}(t)=x(t)-x_{S S}$

- Variable $x^{\prime}(t)$ encodes how far state variable $x(t)$ is from steady-state $x_{S S}$
- (And, because variable $x(t)$ varies with time, also $x^{\prime}(t)$ varies)

Therefore, we can also compute the time-derivative of perturbation variable $x^{\prime}(t)$

- It describes the rate of change of variable $x^{\prime}(t)$ with respect to time
- Or, equivalently, its dynamics

By differenting $x^{\prime}(t)$ to get $\mathrm{d} x^{\prime}(t) \mathrm{d} t$, we have

$$
\begin{aligned}
\frac{\mathrm{d}\left(x(t)-x_{S S}\right)}{\mathrm{d} t} & =\frac{\mathrm{d} x(t)}{\mathrm{d} t}-\underbrace{\frac{\mathrm{d} x \not / \mathrm{s}}{\mathrm{~d} t}}_{=0} \\
& =\dot{x}(t) \\
& \rightsquigarrow f(x(t))
\end{aligned}
$$

Deviation/perturbation variables and state variables have identical dynamics

A single state variable, no inputs (cont.)
We obtained that $\frac{\mathrm{d}\left(x(t)-x_{S S}\right)}{\mathrm{d} t}=f(x(t))$ and $\left.f(x(t)) \approx \frac{\mathrm{d} f(x(t))}{\mathrm{d} x}\right|_{x_{S S}}\left(x(t)-x_{S S}\right)$
We can equate the two terms and write

$$
\frac{\mathrm{d}\left(x(t)-x_{S S}\right)}{\mathrm{d} t}=f(x(t)) \approx \underbrace{\left.\frac{\mathrm{d} f(x(t))}{\mathrm{d} x}\right|_{x_{S S}}}_{\text {constant }}\left(x(t)-x_{S S}\right)
$$

We have derived the approximated state equation for the deviation variable $x^{\prime}(t)$

$$
\left.\dot{x}^{\prime}(t) \approx \frac{\mathrm{d} f(x(t))}{\mathrm{d} x}\right|_{x_{S S}}\left(x(t)-x_{S S}\right)
$$

This is a linear time-invariant approximation of the (perturbed) state equation

$$
\dot{x}^{\prime}(t)=\alpha x^{\prime}(t), \quad \text { with constant } \alpha=\left.\frac{\mathrm{d} f(x)}{\mathrm{d} x}\right|_{x_{S S}} \in \mathcal{R}
$$

We also know how solve it for some initial condition $x^{\prime}(0)$

$$
x^{\prime}(t)=e^{\alpha t} x^{\prime}(0)
$$

$$
\dot{x}(t)=f(x(t), u(t)), \quad \text { with } x, u \in \mathcal{R}
$$

We assume that function $f(x, u)$ can be approximated by a Taylor series expansion

- We are interested in an approximation around some fixed-point point

$$
\left(x=x_{S S}, u=u_{S S}\right)
$$

- At fixed points $\left(x=x_{S S}, u=u_{S S}\right)$, time-variations are zero $\dot{x}(t)=0$
\rightsquigarrow (The state remains fixed at $x_{S S}$ as long as the input is fixed, at $u_{S S}$)
Because at steady-state there is no evolution, the right hand-side is zero

$$
\rightsquigarrow \quad f\left(x=x_{S S}, u=u_{S S}\right)=0
$$

Suppose that we can perfectly represent $f(x, u)$ by using an infinite Taylor expansion

$$
\begin{aligned}
f(x, u)= & \underbrace{f\left(x_{S S}, u_{S S}\right)}_{\text {constant }}+\underbrace{\left.\frac{\partial f(x, u)}{\partial x}\right|_{x_{S S}, u_{S S}}\left(x-x_{S S}\right)}_{\text {linear in } x}+\underbrace{\left.\frac{\partial f(x, u)}{\partial u}\right|_{x_{S S}, u_{S S}}\left(u-u_{S S}\right)}_{\text {quadratic in } x} \\
& +\underbrace{\left.\frac{\partial^{2} f(x, u)}{\partial x^{2}}\right|_{x_{S S}, u_{S S}}\left(x-x_{S S}\right)^{2}}_{\text {quadratic in } u}+\underbrace{\left.\frac{\partial^{2} f(x, u)}{\partial u^{2}}\right|_{x_{S S}, u_{S S}}\left(u-u_{S S}\right)^{2}}_{\text {quadratic }} \\
& +\underbrace{}_{\underbrace{\left.\frac{\partial^{2} f(x, u)}{\partial x \partial u}\right|_{x_{S S}, u_{S S}}\left(x-x_{S S}\right)\left(u-u_{S S}\right)}_{\text {dinear }}}
\end{aligned}
$$

$$
+ \text { H.O. terms }
$$

Suppose that we are interested in an approximation based only on first-order terms - By truncation, we accept to neglect second- and higher-order terms

A single state and a single input variable (cont.)

We can again obtain a linear, first-order, approximation of function f by truncation

$$
f(x, u) \approx f\left(x_{S S}, u_{S S}\right)+\left.\frac{\partial f(x, u)}{\partial x}\right|_{x_{S S}, u_{S S}}\left(x-x_{S S}\right)+\left.\frac{\partial f(x, u)}{\partial u}\right|_{x_{S S}, u_{S S}}\left(u-u_{S S}\right)
$$

For completeness, again note the explicit dependencies

$$
\begin{aligned}
f(x(t), u(t)) \approx f\left(x_{S S}, u_{S S}\right) & +\left.\frac{\partial f(x(t), u(t))}{\partial x}\right|_{x_{S S}, u_{S S}}\left(x(t)-x_{S S}\right) \\
& +\left.\frac{\partial f(x(t), u(t))}{\partial u}\right|_{x_{S S}, u_{S S}}\left(u(t)-u_{S S}\right)
\end{aligned}
$$

A single state and a single input variable (cont.)

Since $\left(x_{S S}, u_{S S}\right)$ is chosen to be a fixed-point, we have $\left.\frac{\mathrm{d} x(t)}{\mathrm{d} t}\right|_{x_{S S}, u_{S S}}=f\left(x_{S S}, u_{S S}\right)=0$
Thus, we can write

$$
\begin{aligned}
f(x, u) & \approx \underbrace{f\left(x_{S S}, u_{S S}\right)}_{=0}+\left.\frac{\partial f(x, u)}{\partial x}\right|_{x_{S S}, u_{S S}}\left(x-x_{S S}\right)+\left.\frac{\partial f(x, u)}{\partial u}\right|_{x_{S S}, u_{S S}}\left(u-u_{S S}\right) \\
& \rightsquigarrow \dot{x}
\end{aligned}
$$

We can define again perturbation/deviation variables $x^{\prime}=x-x_{S S}$ and $u^{\prime}=u-u_{S S}$ By computing the time-derivative of the (perturbed) state variables, we get

$$
\begin{aligned}
\frac{\mathrm{d}\left(x(t)-x_{S S}\right)}{\mathrm{d} t} & =\frac{\mathrm{d} x(t)}{\mathrm{d} t}-\underbrace{\frac{\mathrm{d} x / 5}{\mathrm{~d} t}}_{=0} \\
& =\dot{x}(t) \\
& \rightsquigarrow f(x(t), u(t))
\end{aligned}
$$

A single state and a single input variable (cont.)

As a result, we have

$$
\begin{aligned}
\dot{x}^{\prime}(t) & =\underbrace{\left.\frac{\partial f(x(t), u(t))}{\partial x}\right|_{x_{S S}, u_{S S}}\left(x(t)-x_{S S}\right)+\left.\frac{\partial f(x(t), u(t))}{\partial u}\right|_{x_{S S}, u_{S S}}\left(u(t)-u_{S S}\right)}_{\alpha} \begin{aligned}
\left.\frac{\partial f(x(t), u(t))}{\partial x}\right|_{x_{S S}, u_{S S}} & x^{\prime}(t)+\underbrace{\left.\frac{\partial f(x(t), u(t))}{\partial u}\right|_{x_{S S}, u_{S S}}}_{\beta} u^{\prime}(t) \\
& =\alpha x^{\prime}(t)+\beta u^{\prime}(t)
\end{aligned},=\underbrace{\frac{\partial u}{}} \quad l
\end{aligned}
$$

with constants

$$
\begin{aligned}
& \rightsquigarrow \alpha=\left.\frac{\partial f(x, u)}{\partial x}\right|_{x_{S S}, u_{S S}} \in \mathcal{R} \\
& \rightsquigarrow \beta=\left.\frac{\partial f(x, u)}{\partial u}\right|_{x_{S S}, u_{S S}} \in \mathcal{R}
\end{aligned}
$$

A single state, a single input, and a single output variable

Now, suppose that there exists also a single measurement variable, $y(t)=g(x(t), u(t))$

We treat function $g(x, u)$ similarly, by using a Taylor expansion around ($x_{S S}, u_{S S}$)

- Then, we truncate the expasiom to keep only first-order terms

$$
g(x, u) \approx \underbrace{g\left(x_{S S}, u_{S S}\right)}_{y_{S S}}+\underbrace{\left.\frac{\partial g(x, u)}{\partial x}\right|_{x_{S S}, u_{S S}}}_{\gamma}\left(x-x_{S S}\right)+\underbrace{\left.\frac{\partial g(x, u)}{\partial u}\right|_{x_{S S}, u_{S S}}}_{\delta}\left(u-u_{S S}\right)
$$

$y_{S S}=g\left(x_{S S}, u_{S S}\right)$ is the fixed-point $y_{S S}$ of the measurement (not necessarily zero!)

$$
\begin{aligned}
y(t) & \approx g\left(x_{S S}, u_{S S}\right) \\
& +\left.\frac{\partial g(x(t), u(t))}{\partial x}\right|_{x_{S S}, u_{S S}}\left(x(t)-x_{S S}\right)+\left.\frac{\partial g(x(t), u(t))}{\partial u}\right|_{x_{S S}, u_{S S}}\left(u(t)-u_{S S}\right)
\end{aligned}
$$

And, we can also introduce a perturbation variable for the measurements, to get

$$
\underbrace{y(t)-y_{S S}}_{y^{\prime}(t)}=\gamma x^{\prime}(t)+\delta u^{\prime}(t)
$$

We can easily generalise the procedure to process models of arbitrary dimensionality

- That is, with an arbitrary number of state, input and output variables

Consider a system with two state variables $x=\left(x_{1}, x_{2}\right)^{\prime}$, one input u, one output y

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\dot{x}_{1}(t)=f_{1}\left(x_{1}(t), x_{2}(t), u(t)\right) \\
\dot{x}_{2}(t)=f_{2}\left(x_{1}(t), x_{2}(t), u(t)\right) \\
y(t)=g\left(x_{1}(t), x_{2}(t), u(t)\right)
\end{array} \rightsquigarrow\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
f_{1}\left(x_{1}(t), x_{2}(t), u(t)\right) \\
f_{2}\left(x_{1}(t), x_{2}(t), u(t)\right)
\end{array}\right]\right.
\end{array}\right.
$$

We can linearise this system by using truncated Taylor series expansions of f and g

- Around a fixed point $\left(x_{S S}, u_{S S}\right)=(\underbrace{\left(x_{1}^{S S}, x_{2}^{S S}\right)}_{x_{S S}}, u_{S S})$

Note that now function \boldsymbol{f} is vector-valued (two values), it is two functions $f=\left[\begin{array}{l}f_{1}(\cdot) \\ f_{2}(\cdot)\end{array}\right]$

- They need to be treated (linearised) individually
\rightsquigarrow With respect to each state variable
\rightsquigarrow With respect to the input variable

We start with $f_{1}\left(x_{1}(t), x_{2}(t), u(t)\right)$, then after expanding and truncating we obtain

$$
\begin{aligned}
f_{1}\left(x_{1}(t), x_{2}(t), u(t)\right) & =\underbrace{f_{1}\left(x_{1}^{S S}, x_{2}^{S S}, u^{S S}\right)}_{\text {constant }} \\
& +\underbrace{\left.\frac{\partial f_{1}\left(x_{1}(t), x_{2}(t), u(t)\right)}{\partial x_{1}}\right|_{x_{S S}, u_{S S}}\left(x_{1}(t)-x_{1}^{S S}\right)}_{\text {linear in } x_{1}} \\
& +\underbrace{\left.\frac{\partial f_{1}\left(x_{1}(t), x_{2}(t), u(t)\right)}{\partial x_{2}}\right|_{x_{S S}, u_{S S}}\left(x_{2}(t)-x_{2}^{S S}\right)}_{\text {linear in } x_{2}} \\
& +\underbrace{\left.\frac{\partial f_{1}\left(x_{1}(t), x_{2}(t), u(t)\right)}{\partial u}\right|_{\text {linear in } u}\left(u(t)-u_{S S}\right)}_{x_{S S}, u_{S S}}
\end{aligned}
$$

+ H.O. terms

At any fixed-point the constant term is equal to zero, thus $f_{1}\left(x_{1}^{S S}, x_{2}^{S S}, u_{S S}\right)=0$

By retaining only first-order terms, we get the linear approximation of function $f(x, u)$

$$
\begin{aligned}
& f_{1}\left(x_{1}(t), x_{2}(t), u(t)\right) \approx \underbrace{\left.\frac{\partial f_{1}\left(x_{1}(t), x_{2}(t), u(t)\right)}{\partial x_{1}}\right|_{x_{S S}, u_{S S}}}_{a_{11}}\left(x_{1}(t)-x_{1}^{S S}\right) \\
&+\underbrace{\left.\frac{\partial f_{1}\left(x_{1}(t), x_{2}(t), u(t)\right)}{\partial x_{2}}\right|_{x_{S S}, u_{S S}}}_{a_{12}}\left(x_{2}(t)-x_{2}^{S S}\right) \\
&+\underbrace{\left.\frac{\partial f_{1}\left(x_{1}(t), x_{2}(t), u(t)\right)}{\partial u}\right|_{x_{S S}, u_{S S}}}_{b_{1}}\left(u(t)-u_{S S}\right)
\end{aligned}
$$

We can rewrite the linearised (perturbed) first state equation more compactly, to get

$$
f_{1}\left(x_{1}, x_{2}, u\right)=a_{11} \underbrace{\left(x_{1}-x_{1}^{S S}\right)}_{x_{1}^{\prime}}+a_{12} \underbrace{\left(x_{2}-x_{2}^{S S}\right)}_{x_{2}^{\prime}}+b_{1} \underbrace{\left(u-u_{S S}\right)}_{u^{\prime}}
$$

The constants are the partials of f_{1} with respect to x_{1}, x_{2}, and u, at $\left(x_{S S}, u_{S S}\right)$

$$
\begin{aligned}
& \rightsquigarrow a_{11}=\left.\frac{\partial f_{1}}{\partial x_{1}}\right|_{x_{S S}, u_{S S}} \\
& \rightsquigarrow a_{12}=\left.\frac{\partial f_{1}}{\partial x_{2}}\right|_{x_{S S}, u_{S S}} \\
& \rightsquigarrow b_{1}=\left.\frac{\partial f_{1}}{\partial u}\right|_{x_{S S}, u_{S S}}
\end{aligned}
$$

Similarly for function $f_{2}\left(x_{1}(t), x_{2}(t), u(t)\right)$, by Taylor expansion and truncation we get

$$
\begin{aligned}
f_{2}\left(x_{1}(t), x_{2}(t), u(t)\right) & =\underbrace{f_{2}\left(x_{1}^{S S}, x_{2}^{S S}, u^{S S}\right)}_{\text {constant }} \\
& +\underbrace{\left.\frac{\partial f_{2}\left(x_{1}(t), x_{2}(t), u(t)\right)}{\partial x_{1}}\right|_{x_{S S}, u_{S S}}\left(x_{1}(t)-x_{1}^{S S}\right)}_{\text {lineair in } x_{1}} \\
& +\underbrace{\left.\frac{\partial f_{2}\left(x_{1}(t), x_{2}(t), u(t)\right)}{\partial x_{2}}\right|_{x_{S S}, u_{S S}}\left(x_{2}(t)-x_{2}^{S S}\right)}_{\text {linear in } x_{2}} \\
& +\left.\frac{\partial f_{2}\left(x_{1}(t), x_{2}(t), u(t)\right)}{\partial u}\right|_{x_{S S}, u_{S S}}\left(u(t)-u_{S S}\right)
\end{aligned}
$$

$$
+ \text { H.O. terms }
$$

Because at some fixed-point, we have again a zero constant term $f_{2}\left(x_{1}^{S S}, x_{2}^{S S}, u_{S S}\right)=0$

Single state var Single state var and single input

Again, by retaining only the first-order terms we get the second linear approximation

$$
\begin{aligned}
& f_{2}\left(x_{1}(t), x_{2}(t), u(t)\right) \approx \underbrace{\left.\frac{\partial f_{2}\left(x_{1}(t), x_{2}(t), u(t)\right)}{\partial x_{1}}\right|_{x_{S S}, u_{S S}}}_{a_{21}} \underbrace{\left(x_{1}(t)-x_{1}^{S S}\right)}_{a_{22}^{\prime}} \\
&+\underbrace{\left.\frac{\partial f_{2}\left(x_{1}(t), x_{2}(t), u(t)\right)}{\partial x_{2}}\right|_{x_{S S}, u_{S S}}}_{x_{2}^{\prime}} \underbrace{+\underbrace{\left.\frac{\partial f_{2}\left(x_{1}(t), x_{2}(t), u(t)\right)}{\partial u}\right|_{x_{S S}, u_{S S}}}_{u^{\prime}} \underbrace{\left(u(t)-u_{S S}\right)}_{u^{\prime}}}_{x_{x_{2}^{\prime}}^{\left(x_{2}(t)-x_{2}^{S S}\right)}}
\end{aligned}
$$

We can rewrite the linearised (perturbed) first state equation more compactly, to get

$$
f_{2}\left(x_{1}, x_{2}, u\right)=a_{21} \underbrace{\left(x_{1}-x_{1}^{S S}\right)}_{x_{1}^{\prime}}+a_{22} \underbrace{\left(x_{2}-x_{2}^{S S}\right)}_{x_{2}^{\prime}}+b_{2} \underbrace{\left(u-u_{S S}\right)}_{u^{\prime}}
$$

The constants are the partials of f_{2} with respect to x_{1}, x_{2}, and u, at $\left(x_{S S}, u_{S S}\right)$

$$
\begin{aligned}
& \rightsquigarrow a_{21}=\left.\frac{\partial f_{2}}{\partial x_{1}}\right|_{x_{S S}, u_{S S}} \\
& \rightsquigarrow a_{22}=\left.\frac{\partial f_{2}}{\partial x_{2}}\right|_{x_{S S}, u_{S S}} \\
& \rightsquigarrow b_{2}=\left.\frac{\partial f_{2}}{\partial u}\right|_{x_{S S}, u_{S S}}
\end{aligned}
$$

Multiple state and multiple input variables (cont.)

By collecting the linear approximation results for function f_{1} and f_{2}, we have

$$
\begin{aligned}
f_{1}\left(x_{1}, x_{2}, u\right) & =a_{11} \underbrace{\left(x_{1}-x_{1}^{S S}\right)}_{x_{1}^{\prime}(t)}+a_{12} \underbrace{\left(x_{2}-x_{2}^{S S}\right)}_{x_{2}^{\prime}(t)}+b_{1} \underbrace{\left(u-u_{S S}\right)}_{u^{\prime}(t)} \\
& =\frac{\mathrm{d} x_{1}(t)}{\mathrm{d} t} \\
& =\frac{\mathrm{d}\left(x_{1}(t)-x_{1}^{S S}\right)}{\mathrm{d} t}=\dot{x}_{1}^{\prime}(t) \\
& \rightsquigarrow \dot{x}_{1}^{\prime}(t)=a_{11} x_{1}^{\prime}(t)+a_{12} x_{2}^{\prime}(t)+b_{1} u^{\prime}(t) \\
& \rightsquigarrow \dot{x}_{2}^{\prime}(t)=a_{21} x_{1}^{\prime}(t)+a_{22} x_{2}^{\prime}(t)+b_{2} u^{\prime}(t) \\
& =\frac{\mathrm{d} x_{2}(t)}{\mathrm{d} t} \\
& =\frac{\mathrm{d}\left(x_{2}(t)-x_{2}^{S S}\right)}{\mathrm{d} t}=\dot{x}_{2}^{\prime}(t) \\
f_{2}\left(x_{1}, x_{2}, u\right) & =a_{21} \underbrace{\left(x_{1}-x_{1}^{S S}\right)}_{x_{1}^{\prime}(t)}+a_{22} \underbrace{\left(x_{2}-x_{2}^{S S}\right)}_{x_{2}(t)}+b_{2} \underbrace{\left(u-u_{S S}\right)}_{u^{\prime}(t)}
\end{aligned}
$$

Multiple state and multiple input variables (cont.)

We can combine the equations, to get the linearised state-space model

$$
\underbrace{\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]}_{\dot{x}^{\prime}(t)}=\underbrace{\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]}_{x^{\prime}(t)}+\underbrace{\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]}_{b} u^{\prime}(t)
$$

In matrix form, we get the compact formulation

$$
\dot{x}^{\prime}(t)=A x^{\prime}(t)+b u^{\prime}(t)
$$

Remember that matrix A and b contain the partials of f with respect to x and u

$$
\begin{gathered}
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial f_{1}\left(x_{1}, x_{2}, u\right)}{\partial x_{1}} & \frac{\partial f_{1}\left(x_{1}, x_{2}, u\right)}{\partial x_{2}} \\
\frac{\partial f_{2}\left(x_{1}, x_{2}, u\right)}{\partial x_{1}} & \frac{\partial f_{2}\left(x_{1}, x_{2}, u\right)}{\partial x_{2}}
\end{array}\right]_{x_{1}^{S S}, x_{2}^{S S}, u_{S S}} \\
b=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\frac{\frac{\partial f_{1}\left(x_{1}, x_{2}, u\right)}{\partial u}}{\left.\frac{\partial f_{2}\left(x_{1}, x_{2}, u\right)}{\partial u}\right]_{x_{1}^{S S}, x_{2}^{S S}, u_{S S}}}{ }^{\frac{1}{\partial u}}\right.
\end{gathered}
$$

Multiple state and multiple input variables (cont.)

We proceed similarly to linearise the read-out function g around the point ($x_{S S}, u_{S S}$)
In the case of a single output measurement $y \in \mathcal{R}$, we have

$$
y(t)=g\left(x_{1}(t), x_{2}(t), u(t)\right)
$$

The first-order approximation of $g(x, u)$,

$$
\begin{aligned}
& g\left(x_{1}(t), x_{2}(t), u(t)\right) \approx \underbrace{g\left(x_{1}^{S S}, x_{2}^{S S}, u_{S S}\right)}_{y_{S S}} \\
& +\underbrace{\left.\frac{\partial g\left(x_{1}(t), x_{2}(t), u(t)\right)}{\partial x_{1}}\right|_{x_{S S}, u_{S S}}}_{c_{1}}\left(x_{1}(t)-x_{1}^{S S}\right) \\
& +\underbrace{\left.\frac{\partial g\left(x_{1}(t), x_{2}(t), u(t)\right)}{\partial x_{2}}\right|_{x_{S S}, u_{S S}}}_{c_{2}}\left(x_{2}(t)-x_{2}^{S S}\right) \\
& \\
& +\underbrace{}_{\underbrace{\left.\frac{\partial g\left(x_{1}(t), x_{2}(t), u(t)\right)}{\partial u}\right|_{i}}_{x_{S S}, u_{S S}}\left(u(t)-u_{S S}\right)}
\end{aligned}
$$

Multiple state and multiple input variables (cont.)

$$
\underbrace{y(t)-y_{S S}}_{y^{\prime}(t)}=c_{1} \underbrace{\left(x_{1}(t)-x_{1}^{S S}\right)}_{x_{1}^{\prime}(t)}+c_{2} \underbrace{\left(x_{2}(t)-x_{2}^{S S}\right)}_{x_{2}^{\prime}(t)}+d \underbrace{\left(u(t)-u_{S S}\right)}_{u^{\prime}(t)}
$$

We can again get a compact formulation,

$$
y^{\prime}(t)=\underbrace{\left[\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right]}_{C} \underbrace{\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]}_{x^{\prime}(t)}+d u^{\prime}(t)
$$

Remember that matrix C and d contain the partials of g with respect to x and u

$$
\begin{gathered}
C=\left[\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial g\left(x_{1}, x_{2}, u\right)}{\partial x_{1}} & \frac{\partial g\left(x_{1}, x_{2}, u\right)}{\partial x_{2}}
\end{array}\right]_{x_{1}^{S S}, x_{2}^{S S}, u_{S S}} \\
d=[d]=\left[\frac{\partial g\left(x_{1}, x_{2}, u\right)}{\partial u}\right]_{x_{1}^{S S}, x_{2}^{S S}, u_{S S}}
\end{gathered}
$$

Multiple state and multiple input variables (cont.)

For the general case where $x \in \mathcal{R}^{N_{x}}, u \in \mathcal{R}^{N_{u}}$ and $y \in \mathcal{R}^{N_{y}}$, we have

$$
\begin{aligned}
& \rightsquigarrow \text { State-space equation, } \\
& \underbrace{\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{N_{x}}^{\prime}(t)
\end{array}\right]}_{x^{\prime}(t)}=\underbrace{\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{N_{x}}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{N_{x}}}{\partial x_{1}} & \cdots & \frac{\partial f_{N_{x}}}{\partial x_{N_{x}}}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{N_{x}}^{\prime}(t)
\end{array}\right]}_{x_{S S}(t)}+\underbrace{\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial u_{1}} & \cdots & \frac{\partial f_{1}}{\partial u_{N_{u}}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{N_{x}}}{\partial u_{1}} & \cdots & \frac{\partial f_{N_{x}}}{\partial u_{N_{u}}}
\end{array}\right]}_{B} \underbrace{\left[\begin{array}{c}
u_{1}^{\prime}(t) \\
\vdots \\
u_{N_{u}}^{\prime}(t)
\end{array}\right]}_{S_{S S}} \\
& =\underbrace{\left[\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, N_{x}} \\
\vdots & \ddots & \vdots \\
a_{N_{x}, 1} & \cdots & a_{N_{x}, N_{x}}
\end{array}\right]}_{\left(N_{x} \times N_{x}\right)} \underbrace{\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{N_{x}}^{\prime}(t)
\end{array}\right]}_{\left(N_{x} \times 1\right)}+\underbrace{\left[\begin{array}{ccc}
b_{1,1} & \cdots & b_{1, N_{u}} \\
\vdots & \ddots & \vdots \\
b_{N_{x}, 1} & \cdots & b_{N_{x}, N_{u}}
\end{array}\right]}_{\left(N_{x} \times N_{u}\right)} \underbrace{\left[\begin{array}{c}
u_{1}^{\prime}(t) \\
\vdots \\
u_{N_{u}}^{\prime}(t)
\end{array}\right]}_{\left(N_{u} \times 1\right)}
\end{aligned}
$$

For general case where $x \in \mathcal{R}^{N_{x}}, u \in \mathcal{R}^{N_{u}}$ and $y \in \mathcal{R}^{N_{y}}$, we have

$$
\begin{aligned}
& \rightsquigarrow \text { Read-out map, } \\
& \underbrace{\left[\begin{array}{c}
y_{1}^{\prime}(t) \\
\vdots \\
y_{N_{y}}^{\prime}(t)
\end{array}\right]}_{y^{\prime}(t)}=\underbrace{\left[\begin{array}{ccc}
\frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{1}}{\partial x_{N_{x}}} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_{N_{y}}}{\partial x_{1}} & \cdots & \frac{\partial g_{N_{y}}}{\partial x_{N_{x}}}
\end{array}\right]}_{C} \underbrace{\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{N_{x}}^{\prime}(t)
\end{array}\right]}_{x_{S S}}+\underbrace{\left[\begin{array}{ccc}
\frac{\partial g_{1}}{\partial u_{1}} & \cdots & \frac{\partial g_{1}}{\partial u_{N_{u}}} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_{N_{y}}}{\partial u_{1}} & \cdots & \frac{\partial g_{N_{y}}}{\partial u_{N_{u}}}
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{c}
u_{1}^{\prime}(t) \\
\vdots \\
u_{N_{u}}^{\prime}(t)
\end{array}\right]}_{S S} \\
& =\underbrace{\left[\begin{array}{ccc}
c_{1,1} & \cdots & c_{1, N_{x}} \\
\vdots & \ddots & \vdots \\
c_{N_{y}, 1} & \cdots & c_{N_{y}, N_{x}}
\end{array}\right]}_{\left(N_{y} \times N_{x}\right)} \underbrace{\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{N_{x}}^{\prime}(t)
\end{array}\right]}_{\left(N_{x} \times 1\right)}+\underbrace{\left[\begin{array}{ccc}
d_{1,1} & \cdots & d_{1, N_{u}} \\
\vdots & \ddots & \vdots \\
d_{N_{y}, 1} & \cdots & d_{N_{x}, N_{u}}
\end{array}\right]}_{\left(N_{y} \times N_{u}\right)} \underbrace{\left[\begin{array}{c}
u_{1}^{\prime}(t) \\
\vdots \\
u_{N_{u}}^{\prime}(t)
\end{array}\right]}_{\left(N_{u} \times 1\right)}
\end{aligned}
$$

[^0]: ${ }^{1}$ We only require that model functions f and g are continuous and differentiable.

