Exercise 01. The linearisation of a state-space and instrument process model around some steady-state operating point $\left(x_{S S}, u_{S S}\right)$ leads to the following linear and time-invariant (LTI) dynamics and measurement equations:

$$
\begin{align*}
\dot{x}(t) & =\left[\begin{array}{ll}
0 & -6 \\
1 & -5
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u(t) \tag{1a}\\
y(t) & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] x(t)+[0] u(t) \tag{1b}
\end{align*}
$$

(10%) Briefly define what is the meaning of Eq. (1a) and Eq. (1b). For each equation, use simple words and max two short sentences;
(10%) Briefly define what the process variables $\dot{x}(t), x(t), u(t)$, and $y(t)$ are and determine how many (their dimension) of each are used in Eq. (1). For each variable, use simple words and max two short sentences;
(10\%) Identify all the matrices involved in the model (state-state, input-state, state-output, and input-output matrix) and determine their size.

Exercise 02. We are interested in controlling the process system above using a state-feedback approach. For the task, we must firstly verify that the system is both controllable and observable and then design a state feedback controller and a state observer that operate together with the system.
(10%) Define the notion of controllability and what a feedback controller does. Use simple words and max three short sentences;
(10%) Define the notion of observability and what a state observer does. Use simple words and max three short sentences;
(10%) Define the controllability matrix and compute it for the system in Eq. (1). Can you determine from the controllability matrix that you computed whether the system if controllable?
(10%) Define the observability matrix and compute it for the system in Eq. (1). Can you determine from the observability matrix thst you computed whether the system if observable?

The block-diagram representing the system-observer-controller is below

The observer is given by

$$
\begin{align*}
& \dot{\widehat{x}}(t)=A \widehat{x}(t)+B u(t)+K_{L}(y(t)-\widehat{y}(t)) ; \tag{2a}\\
& \widehat{y}(t)=C \widehat{x}(t) \tag{2b}
\end{align*}
$$

The controller is given by

$$
\begin{equation*}
u(t)=K_{C} \widehat{x}(t) . \tag{3}
\end{equation*}
$$

(10%) Briefly define what is the meaning of Eq. (2a), Eq. (2b), and Eq. (3). For each equation, use simple words and max four short sentences;
(10%) Briefly define what the process variables $\dot{\hat{x}}(t), \widehat{y}(t)$ are and determine how many (their dimension) of each are used in the model in Eq. (1). For each variable, use simple words and max two short sentences;
(10%) Define all new matrices involved $\left(K_{L}\right.$ and $\left.K_{C}\right)$ and determine their size.

