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‘We combined the notions on dynamic systems and simulation with the notions on non-
linear programming, to formulate a general discrete-time optimal control problem

® We understood and treated them as special forms of nonlinear programs

K—-1
zo,zllﬂ,l}lqz;( E (IK) + Z L(Ik’ uk)
UQ, UL 5y UK — 1 k=0

subject to  zp41 — f (2, ukl0:) =0, k=0,1,...,K—1
h (2, ux) <0, k=0,1,...,K -1
7 (20, 7x) <0

In general, the system dynamics are defined in continuous time

~~ The control inputs are continuous functions of time

We are interested in the continuous-time formulation

® We discuss more precisely the discretisation
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The simplest form of continuous-time optimal control lets all functions be continuous

Formulation - i \
min E(z(T)) + / L(z(t),u(t))dt
£(0~T) 0
u(0~~T)

subject to  #(t) — f (z(t), u(t)) =0, te [0, T (Dynamics)
h(z(t),u(t)) <0, te [0, T (Path constraints)
7o —z(0) =0 (t=0) (Initial value)
r(z(T)) <0 t=1T) Terminal constraint

That is, the optimisation is over state ad control trajectories, (0 ~» T') and u(0 ~» T)

path constraints h(x, u) > 0

states x(t) T terminal

constraint r(x(T)) > 0

initial value
X0

controls u(t)

0 t T
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Formulation

path constraints h(x, u) > 0

states x(t) "~ erminal
initial value erminal
X0 i constraint r(x(T)) > 0

controls u(t)

7'_

0 t
The state are a continuous and differentiable function of time over the interval [0, T

Similarly, also the controls are function of time over [0, T

~~ Though, they can be rough or jumpy fuctions
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Formulation min iL‘(T ) +/ ))

z(0~~T)
u(0~~T) Mayer term
Lagrange term

Bolza objective function

subject to (1) — [ (z( l)) 0, t €0, T] (Dynamics)
h(z(t), (t)) teo,T] (Path constraints)
20 —z(0) =0 (t=0) (Initial value)
r(z(T)) <0 (t=1T) Terminal constraint

We constrain the initial value of the state to be gy, by explicitly setting z(0) = zo

Moreover, we constrain the state to satisfy the continuous-time dynamics in [0, T

z(t) — f (z(t), u(t)) =0, tel0,T]

When the initial state (0) is fixed and the trajectory of the controls u(¢) are known in
[0, T], the dynamic constraint will determine the trajectory of the state z(t) in [0, T
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Formulation

z(t) — f (z(t), u(t)) =0, telo, T

In discrete-time, we have expressed the dynamic constraint as a vector of constraints

x1 — f (20, up)
x2 — f (21, u1)

Tpq1 — f (zp, ug)

i1 — [ (Tx_2, uK_2)
L ok —f (zx—1,uK—1) |

K XNy

In continuous-time, the dynamic constraint is understood as an infinitely long vector
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min E (z(T)) +/ u(t)) dt
Formulation z(0~~T)
u(0~T) Maycr term \—/_’

Lagrange term

Bolza objective function

subject to  #(t) — f (z(t), u(t)) =0, te[o,T]
h(z(t),u(t)) <0, t €0, T
20— z(0) =0 (t=0)
r(2(T)) <0 (t=T)

(Dynamics)
(Path constraints)
(Initial value)

Terminal constraint

We constrain trajectories along the path, by explicitly setting an inequality constraint

path constraints h(x, u) > 0

states x(t)
initial value
X0

controls u(t)

i terminal
i constraint r(x(T)) > 0

0 t

~y
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Formulation

h(z(t),u(t) <0, telo,T]

In discrete-time, we have expressed the path constraint as a vector of constraints

h (2o, uo)
h (@1, u1)

h (‘Tka uk)

h (e 120)

In continuous-time, the path constraint is understood as an infinitely long vector
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Formulation (cont.)
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min z(T) +/ u(t
W o
Lagrange term
Bolza objective function
subject to  #(t) — f (z(t), u(t)) =0, te [0, T] (Dynamics)

h(z(t),u(t)) <0, t€[0,T] (Path constraints)

20 —z(0) =0 (t=0) (Initial value)

r(z(T)) <0 (t=1T) Terminal constraint

A terminal constraint

initial value
X0

is expressed as inequality constraint on the terminal state z(T')

path constraints h(x, u) > 0

states x(t) terminal

constraint r(x(T)) > 0

controls u(t)

t T
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Formulation

Numerics

There exist three main classes of approaches to solve continuous-time optimal control

® State-space methods are based on the Bellman’s principle of optimality

® The Hamilton-Jocobi-Bellman equation, HIB
® (Continuous-time dynamic programming)

® Indirect methods are based on the Pontryangin’s minimum principle
® First-optimise, then discretise

® Direct methods are based on transcriptions as nonlinear programs

® First-discretise, then optimise
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Numerics

T
min E(z(T))+/() L(a(t), u(t)) dt

z(0~T)
w(0~T)
subject to  #(t) — f (z(t), u(t)) =0, te [0, T (Dynamics)
h(z(t),u(t)) <0, teo, T (Path constraints)
20 —z(0) =0 (t=0) (Initial value)
r(z(T)) <0 t=1T) Terminal constraint

The general idea of single shooting methods is common to all the shooting methods
® Use an embedded integrator of the differential model

® To eliminate the continuous-time dynamics
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T
Numerics min_ E(e(T)) + / L(2(0), u(t)) dt
z(0~T) 0
u(0~~T)
subject to  z(t) — f (z(t), u(t)) =0, te [0, T (Dynamics)

h(z(t),u(t)) <0, teo, T (Path constraints)
20 —z(0) =0 (t=0) (Initial value)
r(z(T)) <0 t=1T) Terminal constraint

First-discretise, then optimise

A ® Define a fixed time-grid for [0, T

O=th<t< - <tg_1<tg=T

to t1 to t3 ti ts te tr ts to

The time-intervals do not need to be necessarily equally spaced, though this is common
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T
min E(z(T))+/O L(2(t), u(t)) dt

z(0~T)
Numerics u(0~T)
subject to  z(t) — f (z(t), u(t)) =0, te [0, T (Dynamics)
h(z(t),u(t)) <0, t €0, T (Path constraints)
20 —z(0) =0 (t=0) (Initial value)
r(z(T)) <0 t=1T) Terminal constraint

First-discretise, then optimise

® Define a fixed time-grid for [0, T']
O=th<h< <tg_1<tg=T

® Discretise the controls u(t)

u(t S [tk, tk+1]) = uy

The control trajectory u(t) is commonly parameterised by piecewise constant functions

® Other parameterisations are possible (other piecewise polynomials)
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Direct methods | Single-shooting (cont.)

. T
mmT) E(z(T)) + /0 L(z(t),u(t))dt

(0~
w(0~ T
subject to  z(t) — f (z(t), u(t)) =0, te[0, T (Dynamics)
h(z(t),u(t)) <0, teo, T (Path constraints)
20 —z(0) =0 (t=0) (Initial value)
r(z(T)) <0 t=1T) Terminal constraint

First-discretise, then optimise

® Define a fixed time-grid for [0, T

O=th<ti < ---<tgk_1<tg =T

® Discretise the controls u(t)

u(t S [t;C7 tk+1]) = ug

® Treat the states z(t) as function of
discretised controls {u;} and zo
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Direct methods | Single-shooting (cont.)

® Define a fixed time-grid for [0, T

O=th<h< <tg_1<tg=T

® Discretise the controls u(t)

u(t S [tk, tk+1]) = ug

® Treat the states z(¢) as function of
discretised controls {uy} and g

Consider the time ¢ € [t, ty41], the zero-order hold control active on the interval is u
We denoted the state trajectory over the short interval ¢, tx+1] as the solution map
Tr(tlze, we), € [te, teta]

The final value of the short trajectory is the output of the transition function

Ty (be1 o, ui) = far (zx, wr)
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K-1
w00 B (zx) + > Ly (3, ur)
UQ, UL, UK —1 k=0
Humeries subject to  xp41 — far (Tp, ugl0z) =0, k=0,1,...,K—1
h (zr, ug) <0, k=0,1,..., K —1
r (@0, 2x) <0

Discretising the controls transcribes the infinite dimensional problem into a finite one

Single-shooting regards the states zj as dependent variables obtained by integration

® From the initial state zp, under the sequence of controls {uy}

o = o
To(20)
z1 = fas (20, uo)
71 (w0,u0)
22 = far (21, u1)

= fat (fae (20, u0) , u1)

To(z0,up,u1)
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Numerics

K-1
rr%in E (EK (xo, UQ, ULy - - -y uK_l)) + Z L(fk (x‘o, UQ, ULy - -y uK_l) s uk)
UQ,UL 50 UK —1 k=0

subject to  h (Ty (w0, uo, v1, ..., ux—1),uk) <0, k=0,1,..., K —1
7 (20, TN (20, uo, U1, - -, ug 1)) =0
Simulation and optimisation are solved sequentially, the approach is the sequential one
The only decision variable in the nonlinear program is the collection of control vectors
® The decision variable influences all of the problem functions

UQ, ULy - - oy UK —1

K X Ny
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The nonlinear program is dense, any generic solver can be used for the task

Numerics

10

15

20

The Lagrangian function £ (w, A, u)

L (w, A, pr)

=f(w)+ATg(w)+p"h(w)

The Hessian of the Lagrangian

In general, there is no structure in V2 £ (w, A, u)

2L (w, \, )

Ow; 0wy,

#0

VoL (w, X, )
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Numerics
Single shooting solution using simulation based on a order-4 Runge-Kutta integrator

1 :ng

0.5

-0.5

The state trajectory can be computed during the iterations of the optimisation scheme

® The model equations are satisfied by definition
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Numerics

u [N]

Direct methods | Single-shooting (cont.)

SQP lter: 0 4
1
20 T 0,
o
10 A 0
o o5 1 15 o o5 1 15
0 5 5
5
-10) . A
i 6°
20 5
0 e (5] s I TR 15 % o5 1 s
1me s Time [s] Time [s]
SQP lter: 1 4\/\
’ j
20| ! \/\ 02
0 k)
10 4 0
o 05 1 15 o 05 1 15
o |
5 5
-10 1. : o)
%\/\// 6 0\/\/,
20 5 ;
0 i (5] 8 2 % 05 1 5 % o5 1 15
me |s Time [s] Time [s]




cuem.erzzs Direct methods | Single-shooting (cont.)
2021-2022

Numerics

SQP lter: 16 2 4
1
20 T 0,
0 D
10| g 1 0 )
— To o5 A 15 2 0 05 1 15 2
Z.
[ |
= 5 5
-10 B 1 . s D
Iy Yy 0 0\/\/_\/\)
-20) 5 >
0 05 Ti ! 5] 5 2 %hos K 15 2 0 05 1 15 2
me |8 Time [s] Time [s]
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Numerics

The forward integrator map of the system dynamics is formally defined as a function

fing s RNeTEXNG Ry RV2

s (20, ug, UL, - - ., UK —1, 1) — x(t)

Function fiy propagates continuous dynamics, it may get highly nonlinear for large 7'
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Numerics

i(t) = 10 (y(t) — (1))
#(8) = o(t) (u(t) - 2(1)) - (1)
5(t) = a()y(t) — 32(1)

From some fixed initial condition
(70, Yo, 20) and constant control u(t)

System’s states z(¢) as a function of the controls u(t) = const, at simulation time ¢

Time ¢ = 0.25 [s]

16
14] 30|
1
|
2 25] 12f
— — —
=10 = + 10|
et 20 ~—
= = R
8|
1 o
8 4
10]
20 25 30 35 20 25 30 35
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2021-2022
1 a5
1
10]
5
10 w0
0f
— — —
= S S
R = .
Numerics 8 =10 N
) 15
-20] 30|
. 25
20 25 30 35 20 25 . 30 35
u u
Time t = 0.65 [s]
o 40
5
2
35|
— 4 — —
+~ 0 +~
= = =
= o > N
-5
N 25|
-10
101
20 25 80 35 20 25 . 30 35
u u
Time ¢t = 0.85 [s]
28]
10
9 26
4 24
) 5
— —_ —z
= S =
0] ~— ~— 20|
E EY =
18]
4 16}
-6| -5
1
a
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0012000 Time ¢t = 1.05 [s]
1 20
ol I
10]
— —
S S
o) R
Numerics 8 SN
0 0
" s
10
20 25 30 35 20 25 30 35
u u
Time t = 1.25
15 20|
10]
10
—~ 5 —
= S
RaJ =,
8 =
5|
-10]
-10]
15| 20|
20 25 30 35 20 25 30 35
u u
Time t = 1.45 [s]
20|
15 20
10|
10]
—~ 5 — —
+ +~
~— 0 ~— 0 ~—
EI ES
10}
-10)
15| -20]
-20|
20 25 30 35 20 25 30 35
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Time ¢ = 0.25 [s]

. 14 19
Numerics 30
14}
N 25| 12
— — —_
10 = = 1
= N o
= > w
8|
15 o
o 4
10]
% % % % %5 % @ 0 % %0 %
u u u

Time t =5 [s]

20 25 30 E3

u

For short integration times, the relationship between states and controls is close to
linear and as the becomes highly nonlinear with the duration of the simulation time

|
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Direct methods | Multiple-shooting

T
min  E(z(T)) + /0 L(z(t),u(t)) dt

2(0~T)
w(0~T)
subject to  z(t) — f (z(t), u(t)) =0, telo,T] (Dynamics)
h(z(t),u(t)) <0, t €0, T] (Path constraints)
20 —z(0) =0 (t=0) (Initial value)
r(z(T)) <0 (t=1T) Terminal constraint

The general idea of multiple shooting methods is common to all the shooting methods

® Use an embedded integrator of the differential model

® To eliminate the continuous-time dynamics
Yet, the integration of the dynamics over a long period of time can be counterproductive

~» Restrict the integration to relatively shorter inntervals
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2021-2022

T
Numerics min_ E(e(T)) + / L(2(0), u(t)) dt
z(0~T) 0
uw(0~~T)
subject to  z(t) — f (z(t), u(t)) =0, te [0, T (Dynamics)

h(z(t),u(t)) <0, teo, T (Path constraints)
20 —z(0) =0 (t=0) (Initial value)
r(z(T)) <0 t=1T) Terminal constraint

First-discretise, then optimise

A ® Define a fixed time-grid for [0, T

O=th<t< - <tg_1<tg=T

to t1 to t3 ti ts te tr ts to

The time-intervals do not need to be necessarily equally spaced, though this is common
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T
ZE?:EH% E (z(T)) + /0 L(z(t),u(t)) dt
Numerics subject to  #(t) — f (z(t), u(t)) =0, te 0, T] (Dynamics)
h(z(t),u(t)) <0, t [0, T (Path constraints)
20 —z(0)=0 (t=0) (Initial value)
r(z(T)) <0 (t=1T) Terminal constraint

First-discretise, then optimise

® Define a fixed time-grid for [0, T']

Input

O=th<ti < ---<tgk_1<tg =T

® Discretise the controls u(t)

01 02 03 04 05 ’Lt(t € [tk7 tk+1]) = Uk
Time [s]

The control trajectory u(t) is commonly parameterised by piecewise constant functions

® Other parameterisations are possible (other piecewise polynomials)
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2021-2022
T
min  E(z(T)) + / L (z(t),u(t)) dt
z(0~~T) 0
Numerics u(0~~T)
subject to  z(t) — f (z(t), u(t)) =0, telo,T] (Dynamics)
h(z(t),u(t)) <0, t e [0, T] (Path constraints)
20 —z(0)=0 (t=0) (Initial value)
r(z(T)) <0 (t=1T) Terminal constraint
to 31 2 t3 e 15
o vy f (@)
0.251- T- 4
Q@ oz ’ f($3,u;;),
S oast T2 ! (x%u?) 1
0 o4k 4
0.05 1 f (xh Ul) 4
L0 |
-0.05¢ L f (‘TO‘? u‘)) L L L |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Treat the states z(t) as function of discretised controls uy, starting from a given
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to £ t ts t t5

0.35F 4 f (;p47 u :
Numerics 0251 o3 : f (3, u;;):
I (2, u2) 1
wonl T I (z1,u1) ,

‘ I (o, u0) i

L L L L L
0 0.05 01 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

State
~

The integration of the dynamics is performed over the much sorter interval [, t+1]
® The forward integrator is only mildly nonlinear

Trt1 = fae (2r, ug|0z)

The states zj; used in the integration become decision variables of the optimisation

K—-1
o i B (zx) + > L(wk, u)
UQ UL 5o UK — 1 k=0

subject to  zp4+1 — fae (2, ukl0z) =0, k=0,1,..., K —1
h (zg, ux) <0, k=0,1,...,K -1

r (@0, zn) =0
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to t Ly ts ty ts

0351 T4 I (24, ud)]
Numerics 0.25 I 7

1 s I (23, u3)]
T9 f ($2, U2) b
005 1 f(z1,u1) B

T S @ou) |

L L
0 0.05 01 0.15 0.2 0.25 03 0.35 04 0.45 0.5

State

The integration over the interval [ty, tx4+1] is meaningful if the shooting gap is closed
Tp1 — far (T, wple) =0

To ensure continuity, the shooting gaps become equality constraints of the optimisation

min
T, T1 5> T
UQ,UL -y UK — 1

subject to  zp11 — fae (z, ukl0:) =0, k=0,1,..., K —1
h (@, ug,) <0, k=0,1,..., K —1

r(z0,zy) =0

K—-1
B (zk) + ) L(ag, )
k=0
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Numerics

Multiple shooting solution using simulation based on a order-4 Runge-Kutta integrator

1 X2

0.5

-0.5

Because the continuity conditions hold, the short-interval simulations join at time nodes

® The model equations satisfied only once the nonlinear program has converged
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Direct methods | Multiple-shooting (cont.)

Force [N]

Force [N]

SQP lter: 0

3

Time [s]

SQP lter: 1

RN

Time [s]

4
1
ey
x 92 b,
——
0| T e
o 0.5 1 15 0 0.5 1 15 2
4 4
2
2 6 Ve e A ]
T 2
-2 -4
4 -6
0 1 15 ) 0.5 1 15 2
Time [s] Time [s]
4
1
T 6,
0/\/ 2
-1 0
0 0.5 1 15 0 0.5 1 15 2
2 2
. 40t
.730/\_ M///\\ 0_2\__\/ /-——V
) — G e
4 -6,
0 ~o 2

Time [s]
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Numerics

SQP lter: 10 1 4
x 0,
E 10] 4 o
= (] 05 1 15 2 0 05 1 15 2
8 o
1<
S 4 4
w -10] 2 . 2|
i 0.5
o 1 15 2 2 -4
Time [s] -4 -6
05 __ 1 15 ‘0 05 1 15
Time [s] Time [s]
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The nonlinear program is sparse, structure-exploiting solvers should be used

Numerics e

/
coe L(u}7)\’u)

20
= =f(w) +2Tg (w) +p"h(w)

The Lagrangian function £ (w, A, u)

30

40
The Hessian of the Lagrangian

50

6 VL (w, X\, 1)

0 20 40 60

The Hessian of the Lagrangian is block-diagonal, with small symmetric blocks

® All the other second derivatives are zero

The block-diagonality property of the Hessian is extremely favourable
~~ Hessian approximations

~~ QP subproblems
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