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Overview

We combined the notions on dynamic systems and simulation with the notions on non-
linear programming, to formulate a general discrete-time optimal control problem

• We understood and treated them as special forms of nonlinear programs

min
x0,x1,...,xK

u0,u1,...,uK−1

E (xK ) +

K−1∑

k=0

L (xk , uk )

subject to xk+1 − f (xk , uk |θx ) = 0, k = 0, 1, . . . ,K − 1

h (xk , uk ) ≤ 0, k = 0, 1, . . . ,K − 1

r (x0, xK ) ≤ 0

In general, the system dynamics are defined in continuous time

 The control inputs are continuous functions of time

We are interested in the continuous-time formulation

• We discuss more precisely the discretisation
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Formulation

The simplest form of continuous-time optimal control lets all functions be continuous

min
x(0 T)
u(0 T)

E (x(T )) +

∫ T

0
L (x(t), u(t)) dt

subject to ẋ(t)− f (x(t), u(t)) = 0, t ∈ [0,T ] (Dynamics)

h (x(t), u(t)) ≤ 0, t ∈ [0,T ] (Path constraints)

x0 − x(0) = 0 (t = 0) (Initial value)

r (x(T )) ≤ 0 (t = T ) Terminal constraint

That is, the optimisation is over state ad control trajectories, x(0 T ) and u(0 T )Simplified Optimal Control Problem in ODE

terminal
constraint r(x(T )) � 0

6
path constraints h(x, u) � 0

initial value
x0 r states x(t)

controls u(t)
-p

0 t
p
T

minimize
x(·),u(·)

Z T

0
L(x(t), u(t)) dt + E (x(T ))

subject to

x(0) � x0 = 0, (fixed initial value)

ẋ(t)�f (x(t), u(t)) = 0, t 2 [0, T ], (ODE model)

h(x(t), u(t)) � 0, t 2 [0, T ], (path constraints)

r (x(T )) � 0 (terminal constraints)
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Formulation (cont.)

Simplified Optimal Control Problem in ODE

terminal
constraint r(x(T )) � 0

6
path constraints h(x, u) � 0

initial value
x0 r states x(t)

controls u(t)
-p

0 t
p
T

minimize
x(·),u(·)

Z T

0
L(x(t), u(t)) dt + E (x(T ))

subject to

x(0) � x0 = 0, (fixed initial value)

ẋ(t)�f (x(t), u(t)) = 0, t 2 [0, T ], (ODE model)

h(x(t), u(t)) � 0, t 2 [0, T ], (path constraints)

r (x(T )) � 0 (terminal constraints)

The state are a continuous and differentiable function of time over the interval [0,T ]

Similarly, also the controls are function of time over [0,T ]

 Though, they can be rough or jumpy fuctions
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Formulation (cont.)

min
x(0 T)
u(0 T)

E (x(T ))︸ ︷︷ ︸
Mayer term

+

∫ T

0
L (x(t), u(t)) dt

︸ ︷︷ ︸
Lagrange term︸ ︷︷ ︸

Bolza objective function

subject to ẋ(t)− f (x(t), u(t)) = 0, t ∈ [0,T ] (Dynamics)

h (x(t), u(t)) ≤ 0, t ∈ [0,T ] (Path constraints)

x0 − x(0) = 0 (t = 0) (Initial value)

r (x(T )) ≤ 0 (t = T ) Terminal constraint

We constrain the initial value of the state to be x0, by explicitly setting x(0) = x0

Moreover, we constrain the state to satisfy the continuous-time dynamics in [0,T ]

ẋ(t)− f (x(t), u(t)) = 0, t ∈ [0,T ]

When the initial state x(0) is fixed and the trajectory of the controls u(t) are known in
[0,T ], the dynamic constraint will determine the trajectory of the state x(t) in [0,T ]
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Formulation (cont.)

ẋ(t)− f (x(t), u(t)) = 0, t ∈ [0,T ]

In discrete-time, we have expressed the dynamic constraint as a vector of constraints




x1 − f (x0, u0)
x2 − f (x1, u1)

...
xk+1 − f (xk , uk )

...
xK−1 − f (xK−2, uK−2)
xK − f (xK−1, uK−1)




︸ ︷︷ ︸
K×Nx

In continuous-time, the dynamic constraint is understood as an infinitely long vector
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Formulation (cont.)

min
x(0 T)
u(0 T)

E (x(T ))︸ ︷︷ ︸
Mayer term

+

∫ T

0
L (x(t), u(t)) dt

︸ ︷︷ ︸
Lagrange term︸ ︷︷ ︸

Bolza objective function

subject to ẋ(t)− f (x(t), u(t)) = 0, t ∈ [0,T ] (Dynamics)

h (x(t), u(t)) ≤ 0, t ∈ [0,T ] (Path constraints)

x0 − x(0) = 0 (t = 0) (Initial value)

r (x(T )) ≤ 0 (t = T ) Terminal constraint

We constrain trajectories along the path, by explicitly setting an inequality constraintSimplified Optimal Control Problem in ODE

terminal
constraint r(x(T )) � 0

6
path constraints h(x, u) � 0

initial value
x0 r states x(t)

controls u(t)
-p

0 t
p
T

minimize
x(·),u(·)

Z T

0
L(x(t), u(t)) dt + E (x(T ))

subject to

x(0) � x0 = 0, (fixed initial value)

ẋ(t)�f (x(t), u(t)) = 0, t 2 [0, T ], (ODE model)

h(x(t), u(t)) � 0, t 2 [0, T ], (path constraints)

r (x(T )) � 0 (terminal constraints)
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Formulation (cont.)

h (x(t), u(t)) ≤ 0, t ∈ [0,T ]

In discrete-time, we have expressed the path constraint as a vector of constraints




h (x0, u0)
h (x1, u1)

...
h (xk , uk )

...
h (xK ,��uK )




In continuous-time, the path constraint is understood as an infinitely long vector



CHEM-E7225
2021-2022

Formulation

Numerics

Formulation (cont.)

min
x(0 T)
u(0 T)

E (x(T ))︸ ︷︷ ︸
Mayer term

+

∫ T

0
L (x(t), u(t)) dt

︸ ︷︷ ︸
Lagrange term︸ ︷︷ ︸

Bolza objective function

subject to ẋ(t)− f (x(t), u(t)) = 0, t ∈ [0,T ] (Dynamics)

h (x(t), u(t)) ≤ 0, t ∈ [0,T ] (Path constraints)

x0 − x(0) = 0 (t = 0) (Initial value)

r (x(T )) ≤ 0 (t = T ) Terminal constraint

A terminal constraint is expressed as inequality constraint on the terminal state x(T )Simplified Optimal Control Problem in ODE

terminal
constraint r(x(T )) � 0

6
path constraints h(x, u) � 0

initial value
x0 r states x(t)

controls u(t)
-p

0 t
p
T

minimize
x(·),u(·)

Z T

0
L(x(t), u(t)) dt + E (x(T ))

subject to

x(0) � x0 = 0, (fixed initial value)

ẋ(t)�f (x(t), u(t)) = 0, t 2 [0, T ], (ODE model)

h(x(t), u(t)) � 0, t 2 [0, T ], (path constraints)

r (x(T )) � 0 (terminal constraints)
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Overview of numerical approaches

There exist three main classes of approaches to solve continuous-time optimal control

• State-space methods are based on the Bellman’s principle of optimality
• The Hamilton-Jocobi-Bellman equation, HJB
• (Continuous-time dynamic programming)

• Indirect methods are based on the Pontryangin’s minimum principle
• First-optimise, then discretise

• Direct methods are based on transcriptions as nonlinear programs
• First-discretise, then optimise
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Direct methods | Single-shooting

min
x(0 T)
u(0 T)

E (x(T )) +

∫ T

0
L (x(t), u(t)) dt

subject to ẋ(t)− f (x(t), u(t)) = 0, t ∈ [0,T ] (Dynamics)

h (x(t), u(t)) ≤ 0, t ∈ [0,T ] (Path constraints)

x0 − x(0) = 0 (t = 0) (Initial value)

r (x(T )) ≤ 0 (t = T ) Terminal constraint

The general idea of single shooting methods is common to all the shooting methods

• Use an embedded integrator of the differential model

• To eliminate the continuous-time dynamics
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Direct methods | Single-shooting

min
x(0 T)
u(0 T)

E (x(T )) +

∫ T

0
L (x(t), u(t)) dt

subject to ẋ(t)− f (x(t), u(t)) = 0, t ∈ [0,T ] (Dynamics)

h (x(t), u(t)) ≤ 0, t ∈ [0,T ] (Path constraints)

x0 − x(0) = 0 (t = 0) (Initial value)

r (x(T )) ≤ 0 (t = T ) Terminal constraint

Discretization - Single-Shooting

Problem:

min φ (x(.),u(.))

s.t. ẋ (t) = F (x (t) ,u (t))

x (t0) = x0

h (x(t),u(t)) ≤ 0

u

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

First discretize...

...then optimize:

S. Gros Optimal Control with DAEs, lecture 7 18th of February, 2016 5 / 26

First-discretise, then optimise

• Define a fixed time-grid for [0,T ]

0 = t0 < t1 < · · · < tK−1 < tK = T

The time-intervals do not need to be necessarily equally spaced, though this is common
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Direct methods | Single-shooting (cont.)

min
x(0 T)
u(0 T)

E (x(T )) +

∫ T

0
L (x(t), u(t)) dt

subject to ẋ(t)− f (x(t), u(t)) = 0, t ∈ [0,T ] (Dynamics)

h (x(t), u(t)) ≤ 0, t ∈ [0,T ] (Path constraints)

x0 − x(0) = 0 (t = 0) (Initial value)

r (x(T )) ≤ 0 (t = T ) Terminal constraint

Discretization - Single-Shooting

Problem:

min φ (x(.),u(.))

s.t. ẋ (t) = F (x (t) ,u (t))

x (t0) = x0

h (x(t),u(t)) ≤ 0

u

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

x0

x (t f )

x

First discretize...

Usually zero-order hold

u (t ∈ [tk , tk+1]) = uk

over a time grid t0, ..., tN−1

See x(.) as a function f of
w = {u0, ..., uN−1}, x0 and t:

f (w,x0, t) : w, x0, t #→ x(t)

given by:

∂

∂t
f (w,x0, t) = F (f (w,x0, t),uk) ,

f (w,x0, t0) = x0

...then optimize:

S. Gros Optimal Control with DAEs, lecture 7 18th of February, 2016 5 / 26

First-discretise, then optimise

• Define a fixed time-grid for [0,T ]

0 = t0 < t1 < · · · < tK−1 < tK = T

• Discretise the controls u(t)

u(t ∈ [tk , tk+1]) = uk

The control trajectory u(t) is commonly parameterised by piecewise constant functions

• Other parameterisations are possible (other piecewise polynomials)
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Direct methods | Single-shooting (cont.)

min
x(0 T)
u(0 T)

E (x(T )) +

∫ T

0
L (x(t), u(t)) dt

subject to ẋ(t)− f (x(t), u(t)) = 0, t ∈ [0,T ] (Dynamics)

h (x(t), u(t)) ≤ 0, t ∈ [0,T ] (Path constraints)

x0 − x(0) = 0 (t = 0) (Initial value)

r (x(T )) ≤ 0 (t = T ) Terminal constraint

Discretization - Single-Shooting

Problem:

min φ (x(.),u(.))

s.t. ẋ (t) = F (x (t) ,u (t))

x (t0) = x0

h (x(t),u(t)) ≤ 0

u

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

x0

x (t f )

x

First discretize...

Usually zero-order hold

u (t ∈ [tk , tk+1]) = uk

over a time grid t0, ..., tN−1

See x(.) as a function f of
w = {u0, ..., uN−1}, x0 and t:

f (w,x0, t) : w, x0, t #→ x(t)

given by:

∂

∂t
f (w,x0, t) = F (f (w,x0, t),uk) ,

f (w,x0, t0) = x0

...then optimize:
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Discretization - Single-Shooting

Problem:

min φ (x(.),u(.))

s.t. ẋ (t) = F (x (t) ,u (t))

x (t0) = x0

h (x(t),u(t)) ≤ 0

u

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

x0

x (t f )

x

First discretize...

Usually zero-order hold

u (t ∈ [tk , tk+1]) = uk

over a time grid t0, ..., tN−1

See x(.) as a function f of
w = {u0, ..., uN−1}, x0 and t:

f (w,x0, t) : w, x0, t #→ x(t)

given by:

∂

∂t
f (w,x0, t) = F (f (w,x0, t),uk) ,

f (w,x0, t0) = x0

...then optimize:

min
w

φ (f (w,x0, .),w)

s.t. h (f (w,x0, tk),wk) ≤ 0
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First-discretise, then optimise

• Define a fixed time-grid for [0,T ]

0 = t0 < t1 < · · · < tK−1 < tK = T

• Discretise the controls u(t)

u(t ∈ [tk , tk+1]) = uk

• Treat the states x(t) as function of
discretised controls {uk} and x0



CHEM-E7225
2021-2022

Formulation

Numerics

Direct methods | Single-shooting (cont.)

Discretization - Single-Shooting

Problem:

min φ (x(.),u(.))

s.t. ẋ (t) = F (x (t) ,u (t))

x (t0) = x0

h (x(t),u(t)) ≤ 0

u

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

x0

x (t f )

x

First discretize...

Usually zero-order hold

u (t ∈ [tk , tk+1]) = uk

over a time grid t0, ..., tN−1

See x(.) as a function f of
w = {u0, ..., uN−1}, x0 and t:

f (w,x0, t) : w, x0, t #→ x(t)

given by:

∂

∂t
f (w,x0, t) = F (f (w,x0, t),uk) ,

f (w,x0, t0) = x0

...then optimize:
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Discretization - Single-Shooting

Problem:

min φ (x(.),u(.))

s.t. ẋ (t) = F (x (t) ,u (t))
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w = {u0, ..., uN−1}, x0 and t:
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∂
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w

φ (f (w,x0, .),w)
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• Define a fixed time-grid for [0,T ]

0 = t0 < t1 < · · · < tK−1 < tK = T

• Discretise the controls u(t)

u(t ∈ [tk , tk+1]) = uk

• Treat the states x(t) as function of
discretised controls {uk} and x0

Consider the time t ∈ [tk , tk+1], the zero-order hold control active on the interval is uk

We denoted the state trajectory over the short interval [tk , tk+1] as the solution map

x̃k (t |xk , uk ), t ∈ [tk , tk+1]

The final value of the short trajectory is the output of the transition function

x̃k (tk+1|xk , uk ) = f∆t (xk , uk )
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Direct methods | Single-shooting (cont.)

min
x0,x1,...,xK

u0,u1,...,uK−1

E (xK ) +

K−1∑

k=0

Lk (xk , uk )

subject to xk+1 − f∆t (xk , uk |θx ) = 0, k = 0, 1, . . . ,K − 1

h (xk , uk ) ≤ 0, k = 0, 1, . . . ,K − 1

r (x0, xK ) ≤ 0

Discretising the controls transcribes the infinite dimensional problem into a finite one

Single-shooting regards the states xk as dependent variables obtained by integration

• From the initial state x0, under the sequence of controls {uk}

x0 = x0︸︷︷︸
x0(x0)

x1 = f∆t (x0, u0)︸ ︷︷ ︸
x1(x0,u0)

x2 = f∆t (x1, u1)

= f∆t (f∆t (x0, u0) , u1)︸ ︷︷ ︸
x2(x0,u0,u1)

· · · = · · ·
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Direct methods | Single-shooting (cont.)

min
x0

u0,u1,...,uK−1

E (xK (x0, u0, u1, . . . , uK−1)) +

K−1∑

k=0

L (xk (x0, u0, u1, . . . , uK−1) , uk )

subject to h (xk (x0, u0, u1, . . . , uK−1) , uk ) ≤ 0, k = 0, 1, . . . ,K − 1

r (x0, xN (x0, u0, u1, . . . , uK−1)) = 0

Simulation and optimisation are solved sequentially, the approach is the sequential one

The only decision variable in the nonlinear program is the collection of control vectors

• The decision variable influences all of the problem functions

u0, u1, . . . , uK−1︸ ︷︷ ︸
K×Nu
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Direct methods | Single-shooting (cont.)

The nonlinear program is dense, any generic solver can be used for the task

13.1 Direct Single Shooting 233
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Figure 13.1 Solution to OCP (13.1) using a discretization based on single shoot-
ing, with N = 20 and using a 4-steps Runge-Kutta integrator of order 4. The upper
graph reports the states and input trajectories. The lower graphs report the sparsity
pattern of the Jacobian of the inequality constraints in the resulting NLP and the
sparsity pattern of the Hessian of the Lagrange function.

be themselves extremely nonlinear functions of the input sequence q. Because
most NLP solvers proceed to find a candidate solution via taking successive
linearization of the KKT conditions of the problem at hand, the presence of
very nonlinear functions in the NLP problem typically invalidates these ap-
proximations outside of a very small neighborhood of the linearization point,
see Chapter 4 for more technical details on this issue.

These observations entails that in practice, when using single-shooting, a
very good initial guess for q is often required. For many problems, such an
initial guess is very difficult to construct. As in the context of indirect methods,
these observations motivate the use of alternative transcription techniques.

The Lagrangian function L (w , λ, µ)

L (w , λ, µ)

= f (w) + λT g (w) + µTh (w)

The Hessian of the Lagrangian

∇2
wL (w , λ, µ)

In general, there is no structure in ∇2
wL (w , λ, µ)

∂2L (w , λ, µ)

∂wi∂wk
6= 0
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Direct methods | Single-shooting (cont.)

Single shooting solution using simulation based on a order-4 Runge-Kutta integrator13.1 Direct Single Shooting 233
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Figure 13.1 Solution to OCP (13.1) using a discretization based on single shoot-
ing, with N = 20 and using a 4-steps Runge-Kutta integrator of order 4. The upper
graph reports the states and input trajectories. The lower graphs report the sparsity
pattern of the Jacobian of the inequality constraints in the resulting NLP and the
sparsity pattern of the Hessian of the Lagrange function.

be themselves extremely nonlinear functions of the input sequence q. Because
most NLP solvers proceed to find a candidate solution via taking successive
linearization of the KKT conditions of the problem at hand, the presence of
very nonlinear functions in the NLP problem typically invalidates these ap-
proximations outside of a very small neighborhood of the linearization point,
see Chapter 4 for more technical details on this issue.

These observations entails that in practice, when using single-shooting, a
very good initial guess for q is often required. For many problems, such an
initial guess is very difficult to construct. As in the context of indirect methods,
these observations motivate the use of alternative transcription techniques.

The state trajectory can be computed during the iterations of the optimisation scheme

• The model equations are satisfied by definition
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Direct methods | Single-shooting (cont.)

Single Shooting - Example: swing-up of a pendulum

NLP from single shooting

min
u0,...,uN−1

N−1∑

k=0

u2
k

s.t. − 20 ≤ uk ≤ 20

f (u0, ..., uN−1,x(0), tf) = 0

M

L

u
m

θ

x

0 0.5 1 1.5 2

-20

-10

0

10

20

Time [s]

u
[N

]

SQP Iter: 0

0 0.5 1 1.5 2-1

0

1

2

x

0 0.5 1 1.5 2
0

2

4

θ

0 0.5 1 1.5 2-5

0

5

Time [s]

ẋ

0 0.5 1 1.5 2-10

-5

0

5

Time [s]

θ̇
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Single Shooting - Example: swing-up of a pendulum

NLP from single shooting

min
u0,...,uN−1

N−1∑

k=0

u2
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M

L

u
m

θ

x

0 0.5 1 1.5 2

-20

-10

0

10

20

Time [s]

u
[N

]

SQP Iter: 1
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Single Shooting - Example: swing-up of a pendulum

NLP from single shooting

min
u0,...,uN−1

N−1∑

k=0

u2
k

s.t. − 20 ≤ uk ≤ 20

f (u0, ..., uN−1,x(0), tf) = 0

M

L

u
m

θ

x

0 0.5 1 1.5 2
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-10
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]
SQP Iter: 16
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The forward integrator map of the system dynamics is formally defined as a function

fint : RNx+(K×Nu ) ×R → RNx

: (x0, u0, u1, . . . , uK−1, t) 7→ x(t)

Function fint propagates continuous dynamics, it may get highly nonlinear for large T
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Example

ẋ(t) = 10 (y(t)− x(t))

ẏ(t) = x(t) (u(t)− z (t))− y(t)

ż (t) = x(t)y(t)− 3z (t)

From some fixed initial condition
(x0, y0, z0) and constant control u(t)

Single-Shooting - Propagating continuous dynamics

Nonlinearity propagation: integrator function f

f (u0, ..., uN−1,x0, t) : u0, ..., uN−1,x0, t !−→ x(t)

tends to become highly nonlinear for large t.

Example

ẋ = 10 (y − x)

ẏ = x (u − z) − y

ż = xy − 3z

State: x(.) =

⎡
⎣

x
y
z

⎤
⎦

Input: u(.)

Lorentz attractor (u = 28) stable but chaotic

xy

z
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System’s states x(t) as a function of the controls u(t) = const, at simulation time t

Single-Shooting - Propagating continuous dynamics

Nonlinearity propagation: integrator function f

f (u0, ..., uN−1,x0, t) : u0, ..., uN−1,x0, t !−→ x(t)

tends to become highly nonlinear for large t.

Example

ẋ = 10 (y − x)

ẏ = x (u − z) − y

ż = xy − 3z

State: x(.) =

⎡
⎣

x
y
z

⎤
⎦

Input: u(.)

States as a function of u (constant) at time t, for a fixed x0
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Single-Shooting - Propagating continuous dynamics

Nonlinearity propagation: integrator function f

f (u0, ..., uN−1,x0, t) : u0, ..., uN−1,x0, t !−→ x(t)

tends to become highly nonlinear for large t.

Example

ẋ = 10 (y − x)

ẏ = x (u − z) − y

ż = xy − 3z

State: x(.) =

⎡
⎣

x
y
z

⎤
⎦

Input: u(.)

States as a function of u (constant) at time t, for a fixed x0

20 25 30 35

-5

0

5

10

15

x
(t
)

u
20 25 30 35

-25

-20

-15

-10

-5

0

5

10

15

y
(t
)

u

Time t = 0.45 [s]
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S. Gros Optimal Control with DAEs, lecture 7 18th of February, 2016 7 / 26

Single-Shooting - Propagating continuous dynamics

Nonlinearity propagation: integrator function f

f (u0, ..., uN−1,x0, t) : u0, ..., uN−1,x0, t !−→ x(t)

tends to become highly nonlinear for large t.

Example

ẋ = 10 (y − x)

ẏ = x (u − z) − y

ż = xy − 3z

State: x(.) =

⎡
⎣

x
y
z

⎤
⎦

Input: u(.)

States as a function of u (constant) at time t, for a fixed x0
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Single-Shooting - Propagating continuous dynamics

Nonlinearity propagation: integrator function f

f (u0, ..., uN−1,x0, t) : u0, ..., uN−1,x0, t !−→ x(t)

tends to become highly nonlinear for large t.

Example

ẋ = 10 (y − x)

ẏ = x (u − z) − y

ż = xy − 3z

State: x(.) =

⎡
⎣

x
y
z

⎤
⎦

Input: u(.)

States as a function of u (constant) at time t, for a fixed x0

20 25 30 35
-8

-6

-4

-2

0

2

4

6

8

x
(t
)

u
20 25 30 35

-5

0

5

10

y
(t
)

u

Time t = 0.85 [s]

20 25 30 35

14

16

18

20

22

24

26

28

z
(t
)

u

S. Gros Optimal Control with DAEs, lecture 7 18th of February, 2016 7 / 26



CHEM-E7225
2021-2022

Formulation

Numerics

Single-Shooting - Propagating continuous dynamics

Nonlinearity propagation: integrator function f

f (u0, ..., uN−1,x0, t) : u0, ..., uN−1,x0, t !−→ x(t)

tends to become highly nonlinear for large t.

Example

ẋ = 10 (y − x)

ẏ = x (u − z) − y

ż = xy − 3z

State: x(.) =

⎡
⎣

x
y
z

⎤
⎦

Input: u(.)

States as a function of u (constant) at time t, for a fixed x0
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Single-Shooting - Propagating continuous dynamics

Nonlinearity propagation: integrator function f

f (u0, ..., uN−1,x0, t) : u0, ..., uN−1,x0, t !−→ x(t)

tends to become highly nonlinear for large t.

Example

ẋ = 10 (y − x)

ẏ = x (u − z) − y

ż = xy − 3z

State: x(.) =

⎡
⎣

x
y
z

⎤
⎦

Input: u(.)

States as a function of u (constant) at time t, for a fixed x0
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Single-Shooting - Propagating continuous dynamics

Nonlinearity propagation: integrator function f

f (u0, ..., uN−1,x0, t) : u0, ..., uN−1,x0, t !−→ x(t)

tends to become highly nonlinear for large t.

Example

ẋ = 10 (y − x)

ẏ = x (u − z) − y

ż = xy − 3z

State: x(.) =

⎡
⎣

x
y
z

⎤
⎦

Input: u(.)

States as a function of u (constant) at time t, for a fixed x0
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Single-Shooting - Propagating continuous dynamics

Nonlinearity propagation: integrator function f

f (u0, ..., uN−1,x0, t) : u0, ..., uN−1,x0, t !−→ x(t)

tends to become highly nonlinear for large t.

Example

ẋ = 10 (y − x)

ẏ = x (u − z) − y

ż = xy − 3z

State: x(.) =

⎡
⎣

x
y
z

⎤
⎦

Input: u(.)

States as a function of u (constant) at time t, for a fixed x0

20 25 30 35

6

8

10

12

14

x
(t
)

u
20 25 30 35

10

15

20

25

30

y
(t
)

u

Time t = 0.25 [s]

20 25 30 35

4

6

8

10

12

14

16

z
(t
)

u

S. Gros Optimal Control with DAEs, lecture 7 18th of February, 2016 7 / 26

Single-Shooting - Propagating continuous dynamics

Nonlinearity propagation: integrator function f

f (u0, ..., uN−1,x0, t) : u0, ..., uN−1,x0, t !−→ x(t)

tends to become highly nonlinear for large t.

Example

ẋ = 10 (y − x)

ẏ = x (u − z) − y

ż = xy − 3z

State: x(.) =

⎡
⎣

x
y
z

⎤
⎦

Input: u(.)

States as a function of u (constant) at time t, for a fixed x0
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For short integration times, the relationship between states and controls is close to
linear and as the becomes highly nonlinear with the duration of the simulation time
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min
x(0 T)
u(0 T)

E (x(T )) +

∫ T

0
L (x(t), u(t)) dt

subject to ẋ(t)− f (x(t), u(t)) = 0, t ∈ [0,T ] (Dynamics)

h (x(t), u(t)) ≤ 0, t ∈ [0,T ] (Path constraints)

x0 − x(0) = 0 (t = 0) (Initial value)

r (x(T )) ≤ 0 (t = T ) Terminal constraint

The general idea of multiple shooting methods is common to all the shooting methods

• Use an embedded integrator of the differential model

• To eliminate the continuous-time dynamics

Yet, the integration of the dynamics over a long period of time can be counterproductive

 Restrict the integration to relatively shorter inntervals
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min
x(0 T)
u(0 T)

E (x(T )) +

∫ T

0
L (x(t), u(t)) dt

subject to ẋ(t)− f (x(t), u(t)) = 0, t ∈ [0,T ] (Dynamics)

h (x(t), u(t)) ≤ 0, t ∈ [0,T ] (Path constraints)

x0 − x(0) = 0 (t = 0) (Initial value)

r (x(T )) ≤ 0 (t = T ) Terminal constraint

Discretization - Single-Shooting

Problem:

min φ (x(.),u(.))

s.t. ẋ (t) = F (x (t) ,u (t))

x (t0) = x0

h (x(t),u(t)) ≤ 0

u

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

First discretize...

...then optimize:
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First-discretise, then optimise

• Define a fixed time-grid for [0,T ]

0 = t0 < t1 < · · · < tK−1 < tK = T

The time-intervals do not need to be necessarily equally spaced, though this is common
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min
x(0 T)
u(0 T)

E (x(T )) +

∫ T

0
L (x(t), u(t)) dt

subject to ẋ(t)− f (x(t), u(t)) = 0, t ∈ [0,T ] (Dynamics)

h (x(t), u(t)) ≤ 0, t ∈ [0,T ] (Path constraints)

x0 − x(0) = 0 (t = 0) (Initial value)

r (x(T )) ≤ 0 (t = T ) Terminal constraint

Multiple-Shooting - key idea
Input ...

0 0.1 0.2 0.3 0.4 0.5
-15

-10

-5

0

5

10

u0

u1

u2

u3 u4

t0 t1 t2 t3 t4 t5

Time [s]

In
pu

t

... discretised on the time grid
{t0, t1, ..., tN}
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First-discretise, then optimise

• Define a fixed time-grid for [0,T ]

0 = t0 < t1 < · · · < tK−1 < tK = T

• Discretise the controls u(t)

u(t ∈ [tk , tk+1]) = uk

The control trajectory u(t) is commonly parameterised by piecewise constant functions

• Other parameterisations are possible (other piecewise polynomials)
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min
x(0 T)
u(0 T)

E (x(T )) +

∫ T

0
L (x(t), u(t)) dt

subject to ẋ(t)− f (x(t), u(t)) = 0, t ∈ [0,T ] (Dynamics)

h (x(t), u(t)) ≤ 0, t ∈ [0,T ] (Path constraints)

x0 − x(0) = 0 (t = 0) (Initial value)

r (x(T )) ≤ 0 (t = T ) Terminal constraint
Multiple-Shooting - key idea

Input ...

0 0.1 0.2 0.3 0.4 0.5
-15

-10

-5

0

5

10

u0

u1

u2

u3 u4

t0 t1 t2 t3 t4 t5

Time [s]
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pu

t

... discretised on the time grid
{t0, t1, ..., tN}

State...

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.05
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0.1
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0.2
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0.35

x1

f (x0, u0)

x2

f (x1, u1)

x3

f (x2, u2)

x4

f (x3, u3)

x0

f (x4, u4)

St
at

e
t0 t1 t2 t3 t4 t5

...integration on the time intervals [tk , tk+1]
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Treat the states x(t) as function of discretised controls uk , starting from a given xk
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Input ...
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... discretised on the time grid
{t0, t1, ..., tN}

State...
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t0 t1 t2 t3 t4 t5

...integration on the time intervals [tk , tk+1]
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The integration of the dynamics is performed over the much sorter interval [tk , tk+1]
• The forward integrator is only mildly nonlinear

xk+1 = f∆t (xk , uk |θx )

The states xk used in the integration become decision variables of the optimisation

min
x0,x1,...,xK

u0,u1,...,uK−1

E (xK ) +

K−1∑

k=0

L (xk , uk )

subject to xk+1 − f∆t (xk , uk |θx ) = 0, k = 0, 1, . . . ,K − 1

h (xk , uk ) ≤ 0, k = 0, 1, . . . ,K − 1

r (x0, xN ) = 0



CHEM-E7225
2021-2022

Formulation

Numerics

Direct methods | Multiple-shooting (cont.)Multiple-Shooting - key idea
Input ...
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... discretised on the time grid
{t0, t1, ..., tN}

State...

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x1

f (x0, u0)

x2

f (x1, u1)

x3

f (x2, u2)

x4

f (x3, u3)

x0

f (x4, u4)

St
at

e

t0 t1 t2 t3 t4 t5

...integration on the time intervals [tk , tk+1]
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The integration over the interval [tk , tk+1] is meaningful if the shooting gap is closed

xk+1 − f∆t (xk , uk |θx ) = 0

To ensure continuity, the shooting gaps become equality constraints of the optimisation

min
x0,x1,...,xK

u0,u1,...,uK−1

E (xK ) +

K−1∑

k=0

L (xk , uk )

subject to xk+1 − f∆t (xk , uk |θx ) = 0, k = 0, 1, . . . ,K − 1

h (xk , uk ) ≤ 0, k = 0, 1, . . . ,K − 1

r (x0, xN ) = 0
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Multiple shooting solution using simulation based on a order-4 Runge-Kutta integrator238 Direct Approaches to Continuous Optimal Control
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q

Jacobian of the equality constraints
Hessian of the Lagrange function

Figure 13.4 Solution to OCP (13.1) using a discretization based on multiple shoot-
ing, with N = 20 and using a 4-steps Runge-Kutta integrator of order 4. The upper
graph reports the states and input trajectories at the solution, where the continuity
condition holds. The lower graphs report the sparsity pattern of the Jacobian of
the equality constraints in the resulting NLP and the sparsity pattern of the Hes-
sian of the Lagrange function. The Hessian of the Lagrange function arising from
multiple-shooting is block-diagonal, due to the separability of the Lagrange func-
tion. The Jacobian of the inequality constraints is diagonal in this example, and
block-diagonal in general.

Finally, it is interesting to note that a direct multiple shooting algorithm can
be made a single shooting algorithm easily: we only have to overwrite, before
the derivative computation, the states s by the result of a forward simulation us-
ing the controls q obtained in the last Newton-type iteration. From this perspec-
tive, we can regard single shooting as a variant of multiple shooting where we
perturb the result of each iteration by a “feasibility improvement” that makes
all continuity conditions feasible by the forward simulation, implicitly giving
priority to the control guess over the state guess [76].

Because the continuity conditions hold, the short-interval simulations join at time nodes

• The model equations satisfied only once the nonlinear program has converged
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Multiple-shooting - Example

min
u,x

N−1∑

k=0

u2
k

s.t. f (xk ,uk) − xk+1= 0

− 20 ≤ uk ≤ 20

x0 =
[

0 π 0 0
]
, xN = 0

f (xk , uk) integrates the dynamics over the time interval [tk , tk+1]
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SQP Iter: 0
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Note: one can provide a guess for the state trajectories in the form of the x0,...,N !!
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Multiple-shooting - Example

min
u,x

N−1∑

k=0

u2
k

s.t. f (xk ,uk) − xk+1= 0

− 20 ≤ uk ≤ 20

x0 =
[

0 π 0 0
]
, xN = 0

f (xk , uk) integrates the dynamics over the time interval [tk , tk+1]
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Multiple-shooting - Example

min
u,x

N−1∑

k=0

u2
k

s.t. f (xk ,uk) − xk+1= 0

− 20 ≤ uk ≤ 20

x0 =
[

0 π 0 0
]
, xN = 0

f (xk , uk) integrates the dynamics over the time interval [tk , tk+1]
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The nonlinear program is sparse, structure-exploiting solvers should be used

238 Direct Approaches to Continuous Optimal Control
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Figure 13.4 Solution to OCP (13.1) using a discretization based on multiple shoot-
ing, with N = 20 and using a 4-steps Runge-Kutta integrator of order 4. The upper
graph reports the states and input trajectories at the solution, where the continuity
condition holds. The lower graphs report the sparsity pattern of the Jacobian of
the equality constraints in the resulting NLP and the sparsity pattern of the Hes-
sian of the Lagrange function. The Hessian of the Lagrange function arising from
multiple-shooting is block-diagonal, due to the separability of the Lagrange func-
tion. The Jacobian of the inequality constraints is diagonal in this example, and
block-diagonal in general.

Finally, it is interesting to note that a direct multiple shooting algorithm can
be made a single shooting algorithm easily: we only have to overwrite, before
the derivative computation, the states s by the result of a forward simulation us-
ing the controls q obtained in the last Newton-type iteration. From this perspec-
tive, we can regard single shooting as a variant of multiple shooting where we
perturb the result of each iteration by a “feasibility improvement” that makes
all continuity conditions feasible by the forward simulation, implicitly giving
priority to the control guess over the state guess [76].

The Lagrangian function L (w , λ, µ)

L (w , λ, µ)

= f (w) + λT g (w) + µTh (w)

The Hessian of the Lagrangian

∇2
wL (w , λ, µ)

The Hessian of the Lagrangian is block-diagonal, with small symmetric blocks

• All the other second derivatives are zero

The block-diagonality property of the Hessian is extremely favourable

 Hessian approximations

 QP subproblems
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