Formulation

Numerics



# Continuous-time optimal control: Shooting CHEM-E7225 (was E7195), 2022

Francesco Corona  $(\neg_{-}\neg)$ 

Chemical and Metallurgical Engineering School of Chemical Engineering

#### CHEM-E722: 2022

Formulation

**Overview** 

We combined the notions on dynamic systems and simulation with the notions on nonlinear programming, to formulate a general discrete-time optimal control problem

• We understood and treated them as special forms of nonlinear programs

 $\begin{array}{ll}
\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1} \end{array}} & E\left(x_K\right) + \sum_{k=0}^{K-1} L\left(x_k, u_k\right) \\
\text{subject to} & x_{k+1} - f\left(x_k, u_k | \theta_x\right) = 0, \quad k = 0, 1, \dots, K-1 \\
& h\left(x_k, u_k\right) \le 0, \qquad \qquad k = 0, 1, \dots, K-1 \\
& r\left(x_0, x_K\right) \le 0
\end{array}$ 

In general, the system dynamics are defined in continuous time  $\rightsquigarrow$  The control inputs are continuous functions of time

We are interested in the continuous-time formulation

• We discuss more precisely the discretisation

Formulation

Numeric

# Formulation

Continuous-time optimal control

Formulation

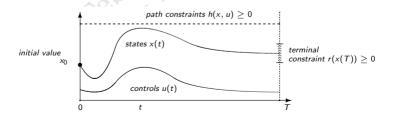
Numerics

### Formulation

The simplest form of continuous-time optimal control lets all functions be continuous

$$\begin{array}{ll}
\min_{\substack{x(0\to T)\\u(0\to T)}} & E\left(x(T)\right) + \int_{0}^{T} L\left(x(t), u(t)\right) dt \\
\text{subject to} & \dot{x}(t) - f\left(x(t), u(t)\right) = 0, \\ & h\left(x(t), u(t)\right) \leq 0, \\ & x_{0} - x(0) = 0 \\ & r\left(x(T)\right) \leq 0 \end{array} \qquad \begin{array}{ll}
t \in [0, T] & \text{(Dynamics)} \\
t \in [0, T] & \text{(Path constraints)} \\
t \in [0, T] & \text{(Initial value)} \\
(t = 0) & \text{(Initial value)} \\
(t = T) & \text{Terminal constraint}
\end{array}$$

That is, the optimisation is over state ad control trajectories,  $x(0 \rightsquigarrow T)$  and  $u(0 \rightsquigarrow T)$ 



#### Formulation

Numeric

# initial value $x_0$ t $terminal constraint r(x(T)) \ge 0$ t $terminal constraint r(x(T)) \ge 0$

The state are a continuous and differentiable function of time over the interval  $[0,\,T]$ 

Similarly, also the controls are function of time over [0, T]

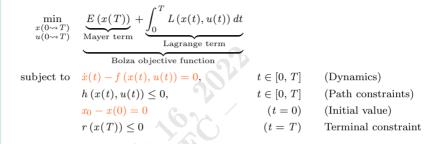
 $\rightsquigarrow\,$  Though, they can be rough or jumpy fuctions

Formulation (cont.)

# Formulation (cont.)

Formulation

Numerics



We constrain the initial value of the state to be  $x_0$ , by explicitly setting  $x(0) = x_0$ . Moreover, we constrain the state to satisfy the continuous-time dynamics in [0, T]

$$\dot{x}(t) - f(x(t), u(t)) = 0, \qquad t \in [0, T]$$

When the initial state x(0) is fixed and the trajectory of the controls u(t) are known in [0, T], the dynamic constraint will determine the trajectory of the state x(t) in [0, T]

# Formulation (cont.)

Formulation

Numerics

$$\dot{x}(t) - f(x(t), u(t)) = 0, \qquad t \in [0, T]$$

In discrete-time, we have expressed the dynamic constraint as a vector of constraints

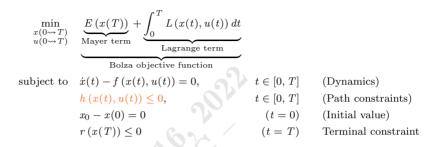
$$\underbrace{\begin{bmatrix} x_1 - f(x_0, u_0) \\ x_2 - f(x_1, u_1) \\ \vdots \\ x_{k+1} - f(x_k, u_k) \\ \vdots \\ x_{K-1} - f(x_{K-2}, u_{K-2}) \\ x_K - f(x_{K-1}, u_{K-1}) \end{bmatrix}}_{K \times N_x}$$

In continuous-time, the dynamic constraint is understood as an infinitely long vector

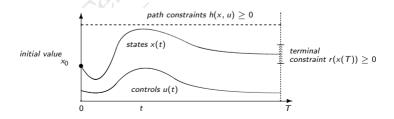
# Formulation (cont.)

Formulation

CHEM-E7225 2022



We constrain trajectories along the path, by explicitly setting an inequality constraint



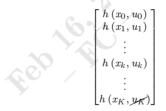
#### Formulation

Numerics

# Formulation (cont.)

$$h(x(t), u(t)) \le 0, \qquad t \in [0, T]$$

In discrete-time, we have expressed the path constraint as a vector of constraints



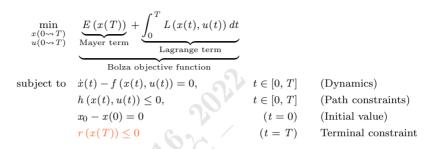
In continuous-time, the path constraint is understood as an infinitely long vector

# Formulation (cont.)

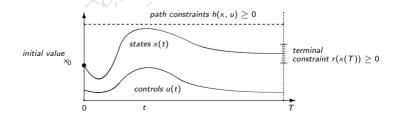
Formulation

CHEM-E7225 2022

Numerics



A terminal constraint is expressed as inequality constraint on the terminal state x(T)



Formulatio:

Numerics

# Numerics

## Continuous-time optimal control

#### Formulation

#### Numerics

**Overview of numerical approaches** 

There exist three main classes of approaches to solve continuous-time optimal control

- State-space methods are based on the Bellman's principle of optimality
  - The Hamilton-Jocobi-Bellman equation, HJB
  - (Continuous-time dynamic programming)
- Indirect methods are based on the Pontryangin's minimum principle
  - First-optimise, then discretise
- Direct methods are based on transcriptions as nonlinear programs
  - First-discretise, then optimise

# Direct methods | Single-shooting

Formulation

Numerics

$$\min_{\substack{x(0 \leftrightarrow T) \\ u(0 \rightarrow T)}} E(x(T)) + \int_0^T L(x(t), u(t)) dt$$
subject to  $\dot{x}(t) - f(x(t), u(t)) = 0$ ,  $t \in [0, T]$  (Dynamics)  
 $h(x(t), u(t)) \le 0$ ,  $t \in [0, T]$  (Path constraints)  
 $x_0 - x(0) = 0$  ( $t = 0$ ) (Initial value)  
 $r(x(T)) \le 0$  ( $t = T$ ) Terminal constraint

The general idea of single shooting methods is common to all the shooting methods

- Use an embedded integrator of the differential model
- To eliminate the continuous-time dynamics

# Direct methods | Single-shooting

Formulation

Numerics

$$\min_{\substack{x(0 \to T) \\ u(0 \to T)}} E(x(T)) + \int_0^T L(x(t), u(t)) dt$$
subject to  $\dot{x}(t) - f(x(t), u(t)) = 0,$   $t \in [0, T]$  (Dynamics)  
 $h(x(t), u(t)) \le 0,$   $t \in [0, T]$  (Path constraints)  
 $x_0 - x(0) = 0$   $(t = 0)$  (Initial value)  
 $r(x(T)) \le 0$   $(t = T)$  Terminal constraint



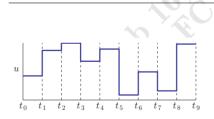
The time-intervals do not need to be necessarily equally spaced, though this is common

#### CHEM-E722: 2022

Formulation

Numerics

# $\min_{\substack{x(0 \to T) \\ u(0 \to T)}} E(x(T)) + \int_0^T L(x(t), u(t)) dt$ subject to $\dot{x}(t) - f(x(t), u(t)) = 0,$ $t \in [0, T]$ (Dynamics) $h(x(t), u(t)) \le 0,$ $t \in [0, T]$ (Path constraints) $x_0 - x(0) = 0$ (t = 0) (Initial value) $r(x(T)) \le 0$ (t = T) Terminal constraint



Direct methods | Single-shooting (cont.)

First-discretise, then optimise

• Define a fixed time-grid for [0, T]

 $0 = t_0 < t_1 < \dots < t_{K-1} < t_K = T$ 

• Discretise the controls u(t)

 $u(t \in [t_k, t_{k+1}]) = u_k$ 

The control trajectory u(t) is commonly parameterised by piecewise constant functions

• Other parameterisations are possible (other piecewise polynomials)

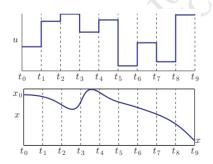
#### Formulation

Numerics

# Direct methods | Single-shooting (cont.)

$$\min_{\substack{x(0 \rightsquigarrow T) \\ u(0 \rightsquigarrow T)}} E(x(T)) + \int_0^T L(x(t), u(t)) dt$$

subject to  $\dot{x}(t) - f(x(t), u(t)) = 0$ ,  $h(x(t), u(t)) \le 0$ ,  $x_0 - x(0) = 0$  $r(x(T)) \le 0$   $t \in [0, T]$ (Dynamics)  $t \in [0, T]$ (Path constraints) (t = 0)(Initial value) (t = T)Terminal constraint



#### First-discretise, then optimise

• Define a fixed time-grid for [0, T]

 $0 = t_0 < t_1 < \dots < t_{K-1} < t_K = T$ 

• Discretise the controls u(t)

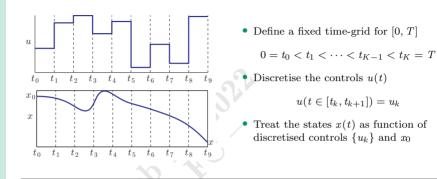
 $u(t \in [t_k, t_{k+1}]) = u_k$ 

• Treat the states x(t) as function of discretised controls  $\{u_k\}$  and  $x_0$ 

# Direct methods | Single-shooting (cont.)



Numerics



Consider the time  $t \in [t_k, t_{k+1}]$ , the zero-order hold control active on the interval is  $u_k$ .

We denoted the state trajectory over the short interval 
$$[t_k, t_{k+1}]$$
 as the solution map

$$\widetilde{x}_k(t|x_k, u_k), \quad t \in [t_k, t_{k+1}]$$

The final value of the short trajectory is the output of the transition function

$$\widetilde{x}_k(t_{k+1}|x_k, u_k) = f_{\Delta t}(x_k, u_k)$$

## **Direct** methods | Single-shooting (cont.)

CHEM-E7225 2022

Numerics

$$\begin{array}{ll}
\min_{\substack{x_0, x_1, \dots, x_K\\u_0, u_1, \dots, u_{K-1}}} & E(x_K) + \sum_{k=0}^{K-1} L_k(x_k, u_k) \\
\text{subject to} & x_{k+1} - f_{\Delta t}(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1 \\
& h(x_k, u_k) \le 0, \qquad \qquad k = 0, 1, \dots, K-1 \\
& r(x_0, x_K) \le 0
\end{array}$$

Discretising the controls transcribes the infinite dimensional problem into a finite one Single-shooting regards the states  $x_k$  as dependent variables obtained by integration • From the initial state  $x_0$ , under the sequence of controls  $\{u_k\}$ 

$$x_{0} = \underbrace{x_{0}}_{\overline{x}_{0}(x_{0})}$$

$$x_{1} = \underbrace{f_{\Delta t}(x_{0}, u_{0})}_{\overline{x}_{1}(x_{0}, u_{0})}$$

$$x_{2} = f_{\Delta t}(x_{1}, u_{1})$$

$$= \underbrace{f_{\Delta t}(f_{\Delta t}(x_{0}, u_{0}), u_{1})}_{\overline{x}_{2}(x_{0}, u_{0}, u_{1})}$$

)

. . . — . . .

# Direct methods | Single-shooting (cont.)

Formulatio

Numerics

$$\min_{\substack{x_0 \\ u_0, u_1, \dots, u_{K-1}}} E\left(\overline{x}_K\left(x_0, u_0, u_1, \dots, u_{K-1}\right)\right) + \sum_{k=0}^{K-1} L\left(\overline{x}_k\left(x_0, u_0, u_1, \dots, u_{K-1}\right), u_k\right)$$
  
subject to  $h\left(\overline{x}_k\left(x_0, u_0, u_1, \dots, u_{K-1}\right), u_k\right) \le 0, \quad k = 0, 1, \dots, K-1$   
 $r\left(x_0, \overline{x}_N\left(x_0, u_0, u_1, \dots, u_{K-1}\right)\right) = 0$ 

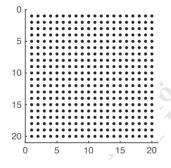
Simulation and optimisation are solved sequentially, the approach is the sequential one The only decision variable in the nonlinear program is the collection of control vectors

• The decision variable influences all of the problem functions

$$\underbrace{u_0, u_1, \dots, u_{K-1}}_{K \times N_u}$$

#### Formulation

Numerics



The Lagrangian function  $\mathcal{L}(w, \lambda, \mu)$ 

 $\sum_{k=1}^{L} (w, \lambda, \mu) = f(w) + \lambda^{T} g(w) + \mu^{T} h(w)$ 

The Hessian of the Lagrangian

 $\nabla_{w}^{2}\mathcal{L}\left(w,\lambda,\mu\right)$ 

In general, there is no structure in  $\nabla^2_w \mathcal{L}(w, \lambda, \mu)$ 

Direct methods | Single-shooting (cont.)

The nonlinear program is dense, any generic solver can be used for the task

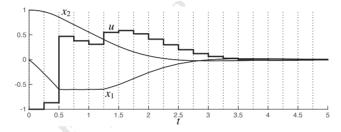
$$\frac{\partial^{2} \mathcal{L}\left(\boldsymbol{w},\boldsymbol{\lambda},\boldsymbol{\mu}\right)}{\partial w_{i} \partial w_{k}} \neq 0$$

#### Formulation

Numerics

# Direct methods | Single-shooting (cont.)

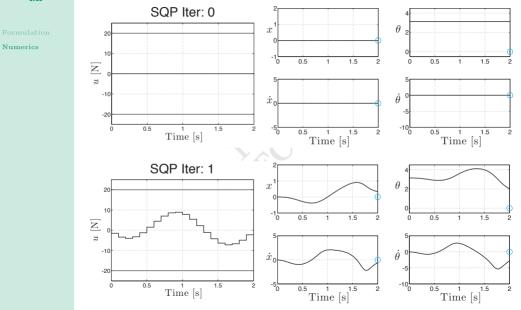
Single shooting solution using simulation based on a order-4 Runge-Kutta integrator



The state trajectory can be computed during the iterations of the optimisation scheme

• The model equations are satisfied by definition

# Direct methods | Single-shooting (cont.)



Formulatio

Numerics

#### SQP Iter: 16 θ x2 20 10 -1L 0 0.5 1.5 0.5 1.5 1 2 0 1 2 u [N] -10 $\dot{\theta}^{0}$ $\dot{x}_{0}$ -20 -5

0.5 1 1.5 2 Time [s] -10

0.5

1 1.5

Time [s]

2

-5

**Direct** methods | Single-shooting (cont.)

1.5

Time [s]

0.5

0

# Direct methods | Single-shooting (cont.)

Formulatio:

#### Numerics

The forward integrator map of the system dynamics is formally defined as a function

$$f_{\text{int}} : \mathcal{R}^{N_x + (K \times N_u)} \times \mathcal{R} \to \mathcal{R}^{N_x} \\ : (x_0, u_0, u_1, \dots, u_{K-1}, t) \mapsto x(t)$$

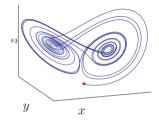
Function  $f_{\rm int}$  propagates continuous dynamics, it may get highly nonlinear for large T

# Direct methods | Single-shooting (cont.)

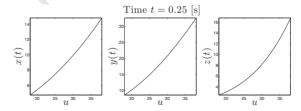
Numerics

$$\begin{split} \dot{x}(t) &= 10 \left( y(t) - x(t) \right) \\ \dot{y}(t) &= x(t) \left( u(t) - z(t) \right) - y(t) \\ \dot{z}(t) &= x(t) y(t) - 3z(t) \end{split}$$

From some fixed initial condition  $(x_0, y_0, z_0)$  and constant control u(t)

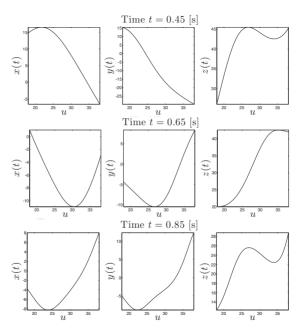


System's states x(t) as a function of the controls u(t) = const, at simulation time t



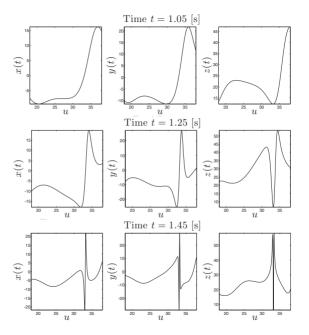
Formulatio

Numerics



Formulatio

Numerics

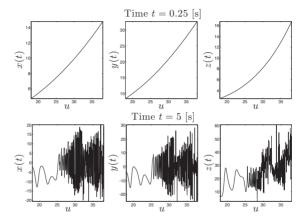


# Direct methods | Single-shooting (cont.)



CHEM-E7225 2022

Numerics



For short integration times, the relationship between states and controls is close to linear and as the becomes highly nonlinear with the duration of the simulation time

# **Direct methods | Multiple-shooting**

Formulation

Numerics

$$\min_{\substack{x(0 \to T) \\ u(0 \to T)}} E(x(T)) + \int_0^T L(x(t), u(t)) dt$$
subject to  $\dot{x}(t) - f(x(t), u(t)) = 0,$   $t \in [0, T]$  (Dynamics)  
 $h(x(t), u(t)) \le 0,$   $t \in [0, T]$  (Path constraints)  
 $x_0 - x(0) = 0$   $(t = 0)$  (Initial value)  
 $r(x(T)) \le 0$   $(t = T)$  Terminal constraint

The general idea of multiple shooting methods is common to all the shooting methods

- Use an embedded integrator of the differential model
- To eliminate the continuous-time dynamics

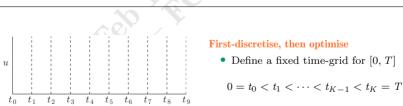
Yet, the integration of the dynamics over a long period of time can be counterproductive

 $\rightsquigarrow\,$  Restrict the integration to relatively shorter inntervals

#### Formulation

Numerics

# $\begin{array}{ll} \min_{\substack{x(0 \rightarrow T) \\ u(0 \rightarrow T)}} & E\left(x(T)\right) + \int_{0}^{T} L\left(x(t), u(t)\right) dt \\ \text{subject to} & \dot{x}(t) - f\left(x(t), u(t)\right) = 0, \\ & h\left(x(t), u(t)\right) \leq 0, \\ & x_{0} - x(0) = 0 \\ & r\left(x(T)\right) \leq 0 \end{array} \qquad \begin{array}{ll} t \in [0, T] & \text{(Dynamics)} \\ t \in [0, T] & \text{(Path constraints)} \\ t \in [0, T] & \text{(Path constraints)} \\ t \in [0, T] & \text{(Initial value)} \\ t \in [0,$



The time-intervals do not need to be necessarily equally spaced, though this is common

# Direct methods | Multiple-shooting (cont.)

#### CHEM-E722: 2022

Formulation

Numerics

# Direct methods | Multiple-shooting (cont.)

$$\min_{\substack{x(0 \rightsquigarrow T) \\ u(0 \rightsquigarrow T)}} E(x(T)) + \int_0^T L(x(t), u(t)) dt$$

subject to 
$$\dot{x}(t) - f(x(t), u(t)) = 0,$$
  $t \in [0, T]$   
 $h(x(t), u(t)) \le 0,$   $t \in [0, T]$   
 $x_0 - x(0) = 0$   $(t = 0)$   
 $r(x(T)) \le 0$   $(t = T)$ 

(Dynamics) (Path constraints) (Initial value) Terminal constraint



First-discretise, then optimise

• Define a fixed time-grid for [0, T]

 $0 = t_0 < t_1 < \dots < t_{K-1} < t_K = T$ 

• Discretise the controls u(t)

 $u(t \in [t_k, t_{k+1}]) = u_k$ 

The control trajectory u(t) is commonly parameterised by piecewise constant functions

• Other parameterisations are possible (other piecewise polynomials)

Numerics

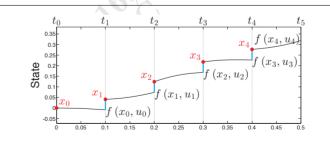
 $\mathbf{S}$ 

 $\min_{x(0 \rightsquigarrow T)}$ 

1

 $E\left(x(T)\right) + \int_{0}^{T} L\left(x(t), u(t)\right) dt$ 

ubject to 
$$\dot{x}(t) - f(x(t), u(t)) = 0,$$
  
 $h(x(t), u(t)) \le 0,$   
 $x_0 - x(0) = 0$   
 $r(x(T)) \le 0$ 

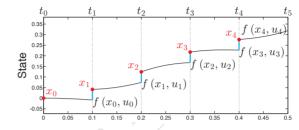


 $t \in [0,$ 

 $t \in [0,$ (t =(t =

Treat the states x(t) as function of discretised controls  $u_k$ , starting from a given  $x_k$ 

# Direct methods | Multiple-shooting (cont.)



The integration of the dynamics is performed over the much sorter interval  $[t_k, t_{k+1}]$ • The forward integrator is only mildly nonlinear

$$x_{k+1} = f_{\Delta t} \left( x_k, u_k | \theta_x \right)$$

The states  $x_k$  used in the integration become decision variables of the optimisation

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f_{\Delta t}(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \qquad k = 0, 1, \dots, K-1$$

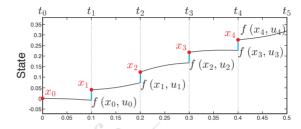
$$r(x_0, x_N) = 0$$

Formulatio

CHEM-E7225 2022

Numerics

## Direct methods | Multiple-shooting (cont.)



The integration over the interval  $[t_k, t_{k+1}]$  is meaningful if the shooting gap is closed

$$x_{k+1} - f_{\Delta t} \left( x_k, u_k | \theta_x \right) = 0$$

To ensure continuity, the shooting gaps become equality constraints of the optimisation

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f_{\Delta t}(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \qquad k = 0, 1, \dots, K-1$$

$$r(x_0, x_N) = 0$$

Formulatio

CHEM-E7225 2022

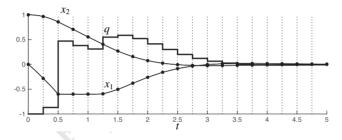
Numerics

#### Formulation

Numerics

# Direct methods | Mutliple-shooting (cont.)

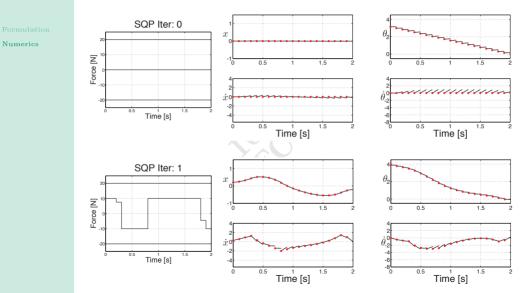
Multiple shooting solution using simulation based on a order-4 Runge-Kutta integrator



Because the continuity conditions hold, the short-interval simulations join at time nodes

• The model equations satisfied only once the nonlinear program has converged

# **Direct** methods | Multiple-shooting (cont.)



#### Formulation

#### Numerics

#### SQP Iter: 10 $\theta_{c}$ x0 Force [N] -1 L 0 0.5 1.5 0.5 2 0 -4 2 $\dot{\theta}$ ż٥ -20 0.5 1.5 0 Time [s] -8L 0 0 0.5 Time [s] 1.5 0.5 Time [s] 1.5

2

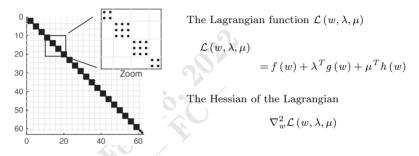
**Direct** methods | Multiple-shooting (cont.)

#### Formulation

Numerics

# Direct methods | Multiple-shooting (cont.)

The nonlinear program is sparse, structure-exploiting solvers should be used



The Hessian of the Lagrangian is block-diagonal, with small symmetric blocks

• All the other second derivatives are zero

The block-diagonality property of the Hessian is extremely favourable

- $\rightsquigarrow$  Hessian approximations
- $\rightsquigarrow$  QP subproblems