
Fe
b
05
b,
20
21

–
FC

–

CHEM-E7225
2021-2022

Multi-stage
optimisation

Discrete state
and action
spaces

An example

Linear-quadratic
regulators

An example

An example

Dynamic programming
CHEM-E7225 (was E7195), 2020-2021

Francesco Corona (¬ ¬)
Chemical and Metallurgical Engineering
School of Chemical Engineering



Fe
b
05
b,
20
21

–
FC

–

CHEM-E7225
2021-2022

Multi-stage
optimisation

Discrete state
and action
spaces

An example

Linear-quadratic
regulators

An example

An example

Multi-stage optimisation
Dynamic programming



Fe
b
05
b,
20
21

–
FC

–

CHEM-E7225
2021-2022

Multi-stage
optimisation

Discrete state
and action
spaces

An example

Linear-quadratic
regulators

An example

An example

Optimising multi-stage functions

Consider the set of decision variables w , y, and z and the following objective function

f (w , x)︸ ︷︷ ︸
0

+ g (x , y)︸ ︷︷ ︸
1

+ h (y, z )︸ ︷︷ ︸
2

Each stage-cost function in the sum depends only on the adjacent variable pairs

Consider the case in which w is a known, and we want to solve the optimisation problem

min
x ,y,z |w

f (x |w) + g (x , y) + h (y, z )

One possibility would be to optimise for all the three decision variables (x , y, z )

 This solution is valid, but it does not exploit the problem structure

We can alternatively solve a sequence of single-variable optimisation problems

min
x |w

(
f (x |w) + min

y

(
g (x , y) + min

z
h (y, z )

))
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Optimising multi-stage functions (cont.)

min
x |w

(
f (x |w) + min

y

(
g (x , y) + min

z
h (y, z )

))

Starting from the innermost optimisation problem, we solve with respect to variable z

min
z

h (y, z )

We obtain the solution for z and the optimal value function in terms of variable y,

h∗ (y) = min
z

h (y, z ) (optimal value function)

z∗ (y) = arg min
z

h (y, z ) (minimiser)
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Optimising multi-stage functions (cont.)

min
x |w

f (x |w) + min
y

g (x , y) + min
z

h (y, z )︸ ︷︷ ︸
h∗(y)




Proceeding with the next optimisation problem, we solve it with respect to variable y

min
y

g (x , y) + h∗ (y)

We obtain the solution for y and the optimal value function in terms of variable x ,

g∗(x) = min
y

g (x , y) + h∗ (y) (optimal value function)

y∗(x) = arg min
y

g (x , y) + h∗ (y) (minimiser)
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Optimising multi-stage functions (cont.)

min
x |w


f (x |w) + min

y

g (x , y) + min
z

h (y, z )︸ ︷︷ ︸
h∗(y)


︸ ︷︷ ︸

g∗(x)


At the third and final optimisation problem, we solve it with respect to variable x

min
x |w

f (x |w) + g∗ (x)

We obtain the solution for x and the optimal value function in terms of value w

f ∗(w) = min
x

f (x |w) + g∗ (x) (optimal function value)

x∗(w) = arg min
x

f (x |w) + g∗ (x) (solution)
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Optimising multi-stage functions (cont.)

min
x |w


f (x |w) + min

y

g (x , y) + min
z

h (y, z )︸ ︷︷ ︸
h∗(y) at z∗(y)


︸ ︷︷ ︸

g∗(x) at y∗(x)


︸ ︷︷ ︸

f ∗(w) at x∗(w)

Because w is fixed, we know its value, we have that x∗(w) is completely determined

Thus, we also have that y∗(x∗(w)) and z∗(y∗(x∗(w))) are completely determined

ỹ∗(w) = y∗(x∗(w))

z̃∗(w) = z∗(ỹ∗(w))

= z∗(y∗(x∗(w)))

Similarly, the optimal value of the obejctive function can be also computed

f ∗(w) + g∗(x∗(w)) + h∗(y∗(x∗(w)))
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Optimising multi-stage functions (cont.)

The method to solve (unconstrained) multi-state optimisation problems can be an al-
ternative approach for optimal control problems, backward dynamic programming

• The decision variables are solved in reverse order

The solutions expressed as functions of the variables to be optimised at the next stage

Its application is easiest for discrete-time systems with discrete state and action spaces

• With continuous spaces, applicability is achieved by discretisation

• In continuous-time the problem is formulated as a PDE, the HJB
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Discrete state- and action-spaces

We consider the nonlinear dynamic equation of a discrete-time state-space model

xk+1 = f (xk , uk )

Moreover, suppose that the state- and the action-space be discrete and finite

xk ∈ X , with |X | = NX

uk ∈ U , with |U| = NU

Based on the discrete dynamics, we formulate the optimal control problem

min
x0,x1,...,xK−1,xK
u0,u1,...,uK−1

E (xK ) +

K−1∑
k=0

L (xk , uk )

subject to f (xk , uk )− xk+1 = 0, k = 0, 1, . . . ,K − 1

x0 − x0 = 0

The initial state x0 is assumed to be know, fixed at value x0
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Discrete state- and action-spaces (cont.)

min
x0,x1,...,xK−1,xK
u0,u1,...,uK−1

E (xK ) +

K−1∑
k=0

L (xk , uk )

subject to f (xk , uk )− xk+1 = 0, k = 0, 1, . . . ,K − 1

x0 − x0 = 0

The controls {uk}K−1
k=0 are the true decision variables of the optimisation

The state variables can be eliminated by forward simulation

x1(x0, u0) = f (x0, u0)

x2(x0, u0, u1) = f (x1, u1)

= f (f (x0, u0), u1)

x3(x0, u0, u1, u2) = f (x2, u2)

= f (f (f (x0, u0), u1), u2)

· · · = · · ·
xK (x0, u0, u1, . . . , uK−2, uK−1) = f (xK−1, uK−1)

= f (f (· · · f (x0, u0), uK−2), uK−1)
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Discrete state- and action-spaces (cont.)

min
x0,x1,...,xK−1,xK
u0,u1,...,uK−1

E (xK ) +

K−1∑
k=0

L (xk , uk )

subject to f (xk , uk )− xk+1 = 0, k = 0, 1, . . . ,K − 1

x0 − x0 = 0

This formulation of discrete-time optimal control problem misses path constraints

They can be implicitly included by allowing the stage cost to be equal to infinity

• For infeasible points (xk , uk ), we have that L (xk , uk ) =∞

To be able to include inequality constraints, we thus have

L : X × U → R∪∞
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Discrete state- and action-spaces (cont.)

min
x0,x1,...,xK−1,xK
u0,u1,...,uK−1

E (xK ) +

K−1∑
k=0

L (xk , uk )

subject to f (xk , uk )− xk+1 = 0, k = 0, 1, . . . ,K − 1

x0 − x0 = 0

As each uk can only take on one of NU values, there are NK
U possible control sequences

NU ×NU × · · · ×NU︸ ︷︷ ︸
K times

Each possible sequence would correspond to a different trajectory {{xk , uk}K−1
k=0 ∪ xK }

 Each trajectory is characterised by its specific value of the objective function

 The optimal solution corresponds to the sequence of smallest function value
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Discrete state- and action-spaces (cont.)

min
x0,x1,...,xK−1,xK
u0,u1,...,uK−1

E (xK ) +

K−1∑
k=0

L (xk , uk )

subject to f (xk , uk )− xk+1 = 0, k = 0, 1, . . . ,K − 1

x0 − x0 = 0

Naive enumeration of all trajectories has a complexity that grows exponentially in K

NU ×NU × · · · ×NU︸ ︷︷ ︸
K times

The idea behind dynamic programming is to approach the enumeration task differently

We start by noting that each sub-trajectory of an optimal trajectory must be optimal

• We denote this property as the principle of optimality
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Discrete state- and action-spaces (cont.)

We define the value-function or cost-to-go as the optimal cost that would be at-
tained if, at time k and state xk , we would solve the shorter optimal control problem

Jk (xk ) = min
xk ,xk+1,...,xK−1,xK
uk ,uk+1,...,uK−1

E (xK ) +

K−1∑
i=k

L (xi , ui )

subject to f (xi , ui )− xi+1 = 0, i = k , k + 1, . . . ,K − 1

xk − xk = 0

Each function Jk : X → R∪∞ summarises the cost-to-go to the end of the horizon

• Starting from the initial state xk , under the optimal actions {u∗i }K−1
i=k

There is a finite number NX of possible initial states xk , at each stage k we have

Jk

(
x

(1)
k

)
...

Jk

(
x

(NX )
k

)
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Discrete state- and action-spaces (cont.)

The Bellman equation

The principle of optimality states that for any k ∈ {0, 1, . . . ,K −1} the following holds

Jk (xk ) = min
u

(
L (xk , u) + Jk+1 (f (xk , u))

)
= min

u

(
L (xk , u) + Jk+1 (xk+1)

)
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Discrete state- and action-spaces (cont.)

The backward recursion is known as the dynamic programming recursion

u∗k (xk ) = arg min
u

L (xk , u) + Jk+1 (f (xk , u))

Once all the value-functions Jk are computed, the optimal feedback control

xk+1 = f (xk , u
∗
k (xk )) , k = 0, 1, . . . ,K − 1

The computationally demanding step is the generation of the K value functions Jk
• Each recursion step requires to test NU controls, for each of the NX states

• Each recursion requires computing f (xk , u) and L (xk , u)

The overal complexity is thus K × (NX ×NU )
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Discrete state- and action-spaces (cont.)

One of the main advantages of the dynamic programming approach to optimal control is
the possibility to be extended to continuous state- and action-spaces, by discretisation

• No assumptions on differentiability of the dynamics or convexity of the objective

However, it is important to notice that for a Nx dimensional state-space discretised
along each dimension using Mx intervals, the total number of grid points is NX = MNx

x

• That is, complexity grows exponential with the dimension of the state-space
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Consider a total stage cost given by the sum of the state cost and control stage cost

Lk (xk , uk ) = Lk
x (xk ) + Lk

u (xk , uk )

The stage-cost for the states, the positions on a (4× 3) board

• The target state is in position (2, 2)

• The state-cost per step is zero

× | × ×
× | × ×
× | × ×
× × ×︸ ︷︷ ︸

X

 

5 | 5 5
5 | 0 5
5 | 5 5
5 5 5︸ ︷︷ ︸

Lk
x (xk∈X )

The stage-cost for the controls, the 9 possible ‘moves’

• The control-cost per stage is one, or zero

↖ ↑ ↗
← · →
↙ ↓ ↘︸ ︷︷ ︸

U

 
1 1 1
1 0 1
1 1 1︸ ︷︷ ︸

Lk
u (xk ,uk∈U)
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An example (cont.)

The policy specifies the action that we will perform at time step k

• It is a function of the state, at stage k

π (xk ) = uk (xk )

A random example of policy,

π (xk ) =

· | ↖ ←
↑ | ↓ →
↑ | · ↙
← ↗ ·

At k , the objective is to find the policy that minimises the cost-to-go

K∑
k

Lk (xk , uk )

The value function of the policy at k is the goodness of each policy

Vπ (xk ) = Lk (xk , uk ) + Vπ (xk+1)
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An example (cont.)

Stage K

At the final stage k = K , we have the following value function of the policy function

Vπ (xK ) = LK (xK ,��uK ) +�����
Vπ (xK+1)

= LK
x (xK ) +�����

LK
u (xK , uK )︸ ︷︷ ︸

Lk (uK ,uK )

+�����
Vπ (xK+1)

=

5 | 5 5
5 | 0 5
5 | 5 5
5 5 5

As there is no time left to apply any control, we have the optimal policy

π∗ (xK ) =

· | · ·
· | · ·
· | · ·
· · ·
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An example (cont.)

The value function for the optimal policy corresponds to the terminal cost E (xK )

Vπ∗ (xK ) = Vπ∗ (xK )

= E (xK )

We have the optimal policy,

π∗(xK ) =

· | · ·
· | · ·
· | · ·
· · ·

The value of the policy,

Vπ∗ (xK ) =

5 | 5 5
5 | 0 5
5 | 5 5
5 5 5

The value of the optimal policy at stage K gives the total cost that would be incurred
if, starting at some state xK ∈ X , the best sequence of actions would be performed

• The first optimal action of the sequence (!) was found to be ‘do nothing’
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An example (cont.)

According to the Bellman optimality principle, the optimal policy at stage K − 1

π∗(xK−1) = arg min
u

(LK−1(xK−1, uK−1) + Vπ∗ (xK ))

Remaining controls are optimal with respect to the state resulting from the first one

 We must compute the stage-cost LK−1(xK−1, uK−1) at stage K − 1

 We know the value of the policy Vπ∗ (xK )

Vπ∗ (xK ) =

5 | 5 5
5 | 0 5
5 | 5 5
5 5 5
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An example (cont.)

Stage K − 1

× | × ×
× | × ×
× | × ×
× × ×︸ ︷︷ ︸

X

For each state xK−1 ∈ X , compute the stage cost LK−1(xK−1, uK−1) for all uK−1 ∈ U

We can then add it to the optimal value function at stage K and optimise

Vπ∗ (xK−1) = min
uK−1

(
LK−1(xK−1, uK−1) + Vπ∗ (xK )

)
From a minimisation of the value function, we compute the optimal policy

π∗(xK−1) = arg min
u

(
LK−1(xk−1, uk−1) + Vπ∗ (xK )

)
↖ ↑ ↗
← · →
↙ ↓ ↘︸ ︷︷ ︸

U
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An example (cont.)

◦ | × ×
× | × ×
× | × ×
× × ×

Suppose that the system is at state X1,1 and consider control action ↑
• As a result the system stays at state X1,1

We have the total stage cost, as sum of state-cost and action-cost

LK−1(X1,1, ↑) = LK−1
x (X1,1) + LK−1

u (X1,1, ↑)
= 5 + 1

= 6

The application of action ↓ leads to state X1,1

Vπ∗ (X1,1) = 5

Similarly, for actions ↓, ↖, ↗, ↙, ↘, ←, ·, and → applied to state X1,1
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An example (cont.)

◦ | × ×
× | × ×
× | × ×
× × ×

For action ↓ applied to state X1,1, we have the total stage-cost

LK−1(X1,1, ↓) = JK−1
x (X1,1) + JK−1

u (X1,1, ↓)
= 5 + 1

= 6

The application of action ↓ leads to state X2,1

Vπ∗ (X2,1) = 5
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An example (cont.)

◦ | × ×
× | × ×
× | × ×
× × ×

For action · applied to state X1,1, we have the total stage-cost

LK−1(X1,1, ·) = JK−1
x (X1,1) + JK−1

u (X1,1, ·)
= 5 + 0

= 5

The application of action ↓ leads to state X1,1

Vπ∗ (X1,1) = 5
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An example (cont.)

Summarising, for state X1,1

• At stage K − 1

LK−1(X1,1, ↑) + Vπ∗ (X1,1) = 6 + 5

= 11

LK−1(X1,1,↖) + Vπ∗ (X1,1) = 6 + 5

= 11

LK−1(X1,1,↗) + Vπ∗ (X1,1) = 6 + 5

= 11

LK−1(X1,1,↙) + Vπ∗ (X1,1) = 6 + 5

= 11

LK−1(X1,1,↘) + Vπ∗ (X1,1) = 6 + 5

= 11

LK−1(X1,1,←) + Vπ∗ (X1,1) = 6 + 5

= 11

LK−1(X1,1,→) + Vπ∗ (X1,1) = 6 + 5

= 11

LK−1(X1,1, ↓) + Vπ∗ (X2,1) = 6 + 5

= 11

LK−1(X1,1, ·) + Vπ∗ (X1,1) = 5 + 5

= 10
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An example (cont.)

The optimal action that we can do when at state X1,1 at stage K − 1 is to not move, ·

π∗(X1,1) =

· | − −
− | − −
− | − −
− − −

The value of the optimal action, at stage K − 1

Vπ∗ (xK−1) =

10 | − −
− | − −
− | − −
− − −

The value function Vπ∗ (X1,1) gives the cost that would be incurred if, starting at state
X1,1 and from that stage on, we performed the best possible sequence of actions

• The first action would be the one given by the optimal policy π∗(X1,1 ∈ X )
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An example (cont.)

Analogously for the other states xK−1 ∈ X at stage K − 1, we have the optimal policy

π∗(xK−1 ∈ X ) =

· | ↓ ↙
· | · ←
· | ↑ ↖
· · ·

The value of the optimal policy, at stage K − 1

Vπ∗ (xK−1 = X1,1) =

10 | 6 6
10 | 0 6
10 | 6 6
10 10 10

The value function Vπ∗ (xK−1) gives the cost that would be incurred if, starting at any
state xK−1 and from that stage on, we performed the best possible sequence of actions

• The first action would be the one given by the optimal policy π∗(xK−1 ∈ X )
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An example (cont.)

Stage K − 2

The value of the optimal policy at stage K−1 gives the total cost that would be incurred
if, starting at state xK−1 ∈ X , the best sequence of actions would be performed

Vπ∗ (xK−1) =

10 | 6 6
10 | 0 6
10 | 6 6
10 10 10

The first optimal action of the sequence

π∗(xK−1 ∈ X ) =

· | ↓ ↙
· | · ←
· | ↑ ↖
· · ·
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An example (cont.)

× | × ×
× | × ×
× | × ×
× × ×︸ ︷︷ ︸

X

For each state xK−2 ∈ X , compute the stage cost LK−2(xK−2, uK−2) for all uK−2 ∈ U

We can then add it to the optimal value function at stage K and optimise

Vπ∗ (xK−2) = min
uK−2

(LK−2(xK−2, uK−2) + Vπ∗ (xK−1))

From a minimisation of the value function, we compute the optimal policy

π∗(xK−2) = arg min
u

(LK−2(xK−2, uK−2) + Vπ∗ (xK−1))

↖ ↑ ↗
← · →
↙ ↓ ↘︸ ︷︷ ︸

U
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An example (cont.)

At stage K − 2, we have the optimal policy

π∗(xK−2 ∈ X ) =

· | ↓ ↙
· | · ←
· | ↑ ↖
↗ ↑ ↑

The value of the optimal policy, at stage K − 2

Vπ∗ (xK−2) =

15 | 6 6
15 | 0 6
15 | 6 6
12 12 12
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An example (cont.)

Stage K − 3

At stage K − 3, we have the optimal policy

π∗(xK−3 ∈ X ) =

· | ↓ ↙
· | · ←
↓ | ↑ ↖
↗ ↑ ↑

The value of the optimal policy, at stage K − 3

Vπ∗ (xK−3) =

20 | 6 6
20 | 0 6
18 | 6 6
12 12 12
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An example (cont.)

Stage K − 4

At stage K − 4, we have the optimal policy

π∗(xK−4 ∈ X ) =

· | ↓ ↙
↓ | · ←
↓ | ↑ ↖
↗ ↑ ↑

The value of the optimal policy, at stage K − 4

Vπ∗ (xK−4) =

25 | 6 6
24 | 0 6
18 | 6 6
12 12 12
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An example (cont.)

Stage K − 5

At stage K − 5, we have the optimal policy

π∗(xK−5 ∈ X ) =

· | ↓ ↙
↓ | · ←
↓ | ↑ ↖
↗ ↑ ↑

= π∗(xK−4 ∈ X )

The value of the optimal policy, at stage K − 4

Vπ∗ (xK−4) =

30 | 6 6
24 | 0 6
18 | 6 6
12 12 12
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The linear-quadratic regulator
Dynamic programming
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The linear-quadratic regulator

An important class of optimal control problems is the linear-quadratic regulator, LQR

• The controller has to take the state of the system to the origin

• The system dynamics are deterministic and linear

• The objective function is quadratic

The problem is unconstrained and the horizon for control can be finite or infinite

• Their solution can be obtained with dynamic programming
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The linear-quadratic regulator (cont.)

Consider first the case in which we are interested in stabilising the system in K steps

We define an objective function to quantify the distance of the pairs (xk , uk ) from zero

V (x0, u0, x1, u1, . . . , xK−1, uK−1, xK ) = E (xK ) +

K−1∑
k=0

L (xk , uk )

• Terminal-stage cost

E (xk ) =
1

2
xKTQK xT

K

• Stage-cost

L (xk , uk ) =
1

2

(
xT
k Qxk + uT

k Ruk

)
The objective depends on the control sequence {uk}K1

k=0 and the state sequence {xk}Kk=0

• We assume that the initial state x0 is fixed and known quantity

• Remaining states are determined by the model and {uk}K1
k=0

Matrices Q and QK are positive semi-definite, R is positive definite

• They are tuning parameters
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The linear-quadratic regulator | Baby LQR

Consider a linear and time-invariant process with single state variable and single input

The system dynamics, in discrete-time

xk+1 = axk + buk , with xk , uk ∈ R

The control problem, in discrete-time

minimise
u0,u1,...,uK−1

1

2
xT
K qK xK︸ ︷︷ ︸
E(xK )

+
1

2

K−1∑
k=0

(
xT
k qxk + uT

k ruk

)
︸ ︷︷ ︸

L(xk ,uk )

Consider a finite-horizon of length one (K = 1)

minimise
u0

1

2
xT
1 qK x1 +

1

2

1−1∑
k=0

(
xT
k qxk + uT

k ruk

)
We have,

minimise
u0

1

2

(
xT
1 qK x1 + xT

0 qx0 + uT
0 ru0

)
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The linear-quadratic regulator | Baby LQR (cont.)

minimise
u0

1

2

(
xT
1 qK x1 + xT

0 qx0 + uT
0 ru0

)
In this simple case, we only need to (optimise to) find a single control action, u0

• Under the constraint that x1 = ax0 + bu0

• The initial state x0 is fixed and known

We have,

minimise
u0

1

2

 xT
1︸︷︷︸

ax0+bu0

qK x1︸︷︷︸
ax0+bu0

+xT
0 qx0 + uT

0 ru0


All the terms in the cost function are known, with the exception of u0

• It is the decision variable, it is a scalar
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The linear-quadratic regulator | Baby LQR (cont.)

minimise
u0

1

2

 xT
1︸︷︷︸

ax0+bu0

qK x1︸︷︷︸
ax0+bu0

+xT
0 qx0 + uT

0 ru0


Substituting and rearranging, we have a quadratic equation u0

minimise
u0

1

2

(
qx2

0 + ru2
0 + qK (ax0 + bu0)2

)
︸ ︷︷ ︸

f (u0)

• We are interested in value u0 that minimises this function

After some algebra, we see that the cost function is a parabola

f (u0) =
1

2

(
qx2

0 + ru2
0 + qK (ax0 + bu0)

)
=

1

2

(
(q + a2qK )x2

0 + 2(baqK x0)u0 + (b2qK + r)u2
0

)
We know how to locate the minimum of parabola, its vertex
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The linear-quadratic regulator | Baby LQR (cont.)

f (u0) =
1

2

(
(q + a2qK )x2

0 + 2(baqK x0)u0 + (b2qK + r)u2
0

)
f (u0) is a parabola and it is smallest at the value u0 that makes its derivative zero

d

du0
f (u0) = bqK ax0 + (b2qK + r)u0

= 0

We have the solution to the optimisation/control problem

u0 = − bqK a

b2qK + r︸ ︷︷ ︸
k

x0

= −kx0
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The linear-quadratic regulator (cont.)

For systems with multiple state variables and multiple inputs, the structure is identical

The system dynamics, in discrete-time

xk+1 = Axk + Buk , with xk ∈ RNx and uk ∈ RNu

The control problem, in discrete-time

minimise
u0,u1,...,uK−1

1

2
xT
K QK xK︸ ︷︷ ︸
E(xK )

+
1

2

K−1∑
k=0

(
xT
k Qxk + uT

k Ruk

)
︸ ︷︷ ︸

L(xk ,uk )

Consider a finite-horizon of length one (K = 1)

minimise
u0

1

2
xT
1 QK x1 +

1

2

1−1∑
k=0

(
xT
k Qxk + uT

k Ruk

)
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The linear-quadratic regulator (cont.)

After substituting the dynamics, we get

minimise
u0

1

2

 x1︸︷︷︸
Ax0+Bu0

TQK x1︸︷︷︸
Ax0+Bu0

+ xT
0 Qx0 + uT

0 Ru0


After some algebra and rearranging, we have

minimise
u0

1

2

(
xT
0

(
Q + ATPA

)
x0 + 2uT

0 BTQKAx0 + uT
0

(
BTQKB + R

)
u0

)
Taking the derivative and setting it to zero, we get

df (u0)

du0
= BTQKAx0 +

(
BTQKB + R

)
u0

= 0

Solving this linear system of equations for the unknown u0, we get

u0 = −
(
BTQf B + R

)−1
BTQKA︸ ︷︷ ︸

K

x0

To be able to solve for longer control-horizons, we use backward dynamic programming
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Intermezzo
Sum of quadratic functions
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The LQR | Sum of quadratic functions

Consider two quadratic functions

−5 0 5
−5

0

5

x1

x 2

−5 0 5
−5

0

5

x1

x 2

V1(x)

=
1

2
(x − a)T A (x − a)

=
1

2

([
x1

x2

]
−
[
−1
0

])T [
1.25 0.75
0.75 1.25

]
︸ ︷︷ ︸

�0

([
x1

x2

]
−
[
−1
0

])

V2(x)

=
1

2
(x − b)T B (x − b)

=
1

2

([
x1

x2

]
−
[
1
1

])T [
1.5 0.5
0.5 1.5

]
︸ ︷︷ ︸

�0

([
x1

x2

]
−
[
1
1

])
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The LQR | Sum of quadratic functions (cont.)

We compute function V (x) = V1(x) + V2(x) and show that it is a quadratic function

−5 0 5
−5

0

5

x1

x 2

V (x) =
1

2

(
(x − v)T H (x − v) + d

)

H = A + B

v = H−1 (Aa − Bb)

d = − (Aa + Bb)T H−1 (Aa + Bb) + aTAa + bTBb

Matrix H is a positive definite matrix, because both A and B are positive definite

V (x) =
1

2

(
(x − v)T H (x − v) + d

)

=
1

2


([

x1

x2

]
−
[
−0.1
0.1

])T [
2.75 0.25
0.25 2.75

]
︸ ︷︷ ︸

�0

([
x1

x2

]
−
[
−0.1
0.1

])
+ 3.2


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The LQR | Sum of quadratic functions (cont.)

Consider two quadratic functions, one of which with a linear combination of variable x

V1(x) =
1

2
(x − a)T A (x − a)

V2(x) =
1

2
(Cx − b)T B (Cx − b)

We can compute function V (x) = V1(x) + V2,

V (x) =
1

2

(
(x − v)T H (x − v) + d

)

H = A + CTBC

v = H−1 (Aa − CBb)

d = − (Aa + CBb)T H−1 (Aa + CBb) + aTAa + bTBb
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The linear quadratic regulator (cont.)
Dynamic programming
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The linear-quadratic regulator (cont.)

We have the optimal control problem, with quadratic cost terms and linear dynamics

min
x0,x1,...,xK−1,xK
u0,u1,...,uK−1

E (xK ) +

K−1∑
k=0

L (xk , uk )

subject to Axk + Buk − xk+1 = 0, k = 0, 1, . . . ,K − 1

x0 − x0 = 0

The optimisation problem can be re-written in the equivalent form

min
x0

x1,...,xK−1,xK
u0,u1,...,uK−1

L (x0, u0) + L (x1, u1) + · · ·L (xK−1, uK−1) + E (xK )︸ ︷︷ ︸
V (u0,x1,u1,...,uK−1|x0)

After isolating the last two stages, we get

min
x0

x1,...,xK−2
u0,u1,...,uK−2

L (x0, u0) + L (x1, u1) + · · ·+ L (xK−2, uK−2) +

min
uK−1,xK

L (xK−1, uK−1) + E (xK )
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The linear-quadratic regulator (cont.)

min
x0

x1,...,xK−2
u0,u1,...,uK−2

L (x0, u0) + L (x1, u1) + · · ·+ L (xK−2, uK−2) +

min
uK−1,xK

L (xK−1, uK−1) + E (xK )

At the last stage, we have the optimisation problem

min
uK−1,xK

L (xK−1, uK−1) + E (xK )

subject to AxK−1 + BuK−1 − xK = 0

The state xK−1 appears as parameter

We define optimal cost (the minimum) and optimal decision variables (the minimiser)

• The optimal decision variables u∗K−1 (xK−1) and x∗K (xK−1)

• The optimal cost V ∗ (xK−1)
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The linear-quadratic regulator (cont.)

min
uK−1,xK

L (xK−1, uK−1) + E (xK )

subject to AxK−1 + BuK−1 − xK = 0

To solve this optimisation problem, we first substitute the dynamics

E (xK ) + L (xK−1, uK−1) =
1

2
(AxK−1 + BuK−1)T QK (AxK−1 + BuK−1)︸ ︷︷ ︸

E(EK )

+
1

2

(
xT
K−1QxK−1 + uT

N−1RuN−1

)
︸ ︷︷ ︸

L(xK−1,uK−1)

=
1

2

(
xT
K−1QxK−1 + (uK−1 − v)T H (uK−1 − v) + d

)
We used,

H = R + BTQKB

v = −
(
BTQKB + R

)−1
BTQKA︸ ︷︷ ︸ xK−1

d = xT
K−1

(
ATQKA−ATQKB

(
BTQKB + R

)−1
BTQKA

)
xK−1
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The linear-quadratic regulator (cont.)

The optimal control action u∗K−1 = v is a linear function of the state xK−1

u∗K−1 = Y −
(
BTQKB + R

)−1
BTQKA︸ ︷︷ ︸

KK−1

xK−1

By using the dynamics, we compute the terminal state x∗K from the optimal action

x∗K = AxK−1 + Bu∗K−1

= AxK−1 + B
(
BTQKB + R

)−1
BTQKAxK−1

=

A + B
(
BTQKB + R

)−1
BTQKA︸ ︷︷ ︸

−KK−1

 xK−1

The cost associated to the optimal control action is quadratic in xK−1

V ∗K =
1

2

xT
K−1QxK−1 +

u∗K−1 − v︸︷︷︸
u∗
K−1


T

H

u∗K−1 − v︸︷︷︸
u∗
K−1


︸ ︷︷ ︸

=0

+d


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The linear-quadratic regulator (cont.)

V ∗K

=
1

2

xT
K−1QxK−1 +

u∗K−1 − v︸︷︷︸
u∗
K−1


T

H

u∗K−1 − v︸︷︷︸
u∗
K−1


︸ ︷︷ ︸

=0

+d



=
1

2

xT
K−1QxK−1 + xT

K−1

(
ATQKA−ATQKB

(
BTQKB + R

)−1
BTQKA

)
xK−1︸ ︷︷ ︸

d


=

1

2
xT
K−1

(
Q + ATQKA−ATQKB

(
BTQKB + R

)−1
BTQKA

)
︸ ︷︷ ︸

ΠK−1

xK−1
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The linear-quadratic regulator (cont.)

KK−1 =
(
BTQKB + R

)−1
BTQKA

Summarising, we have

u∗K−1 (xK−1) = KK−1xK−1

x∗K (xK−1) = (A + BKK−1) xK−1

V ∗K (xK−1) =
1

2
xT
K−1ΠK−1xK−1

Function V ∗K defines the optimal cost-to-go from xK−1, under optimal control u∗K−1

• As it depends only on xK−1 it allows to move to stage K − 2

min
x0

x1,...,xK−2
u0,u1,...,uK−2

L (x0, u0) + L (x1, u1) + · · ·+ L (xK−2, uK−2) + V ∗ (xK−1)
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The linear-quadratic regulator (cont.)

min
x0

x1,...,xK−2
u0,u1,...,uK−2

L (x0, u0) + L (x1, u1) + · · ·+ L (xK−2, uK−2) + V ∗ (xK−1)︸ ︷︷ ︸
V (u0,x1,u1,...,uK−2|x0)

After isolating the last two stages, we get

min
x0

x1,...,xK−3
u0,u1,...,uK−3

L (x0, u0) + L (x1, u1) + · · ·+ L (xK−3, uK−3) +

min
uK−2,xK−1

L (xK−2, uK−2) + V ∗ (xK−1)

At the last stage, we have the optimisation problem

min
uK−1,xK

V ∗ (xK−1) + L (xK−2, uK−2)

subject to AxK−2 + BuK−2 − xK−1 = 0

The state xK−2 appears as parameter
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The linear-quadratic regulator (cont.)

min
uK−1,xK

V ∗ (xK−1) + L (xK−2, uK−2)

subject to AxK−2 + BuK−2 − xK−1 = 0

We define optimal cost (the minimum) and optimal decision variables (the minimiser)

• The optimal decision variables u∗K−2 (xK−2) and x∗K−2 (xK−2)

u∗K−2 (xK−2) = KK−2xK−2

x∗K−1 (xK−2) = (A + BKK−2) xK−2

• The optimal cost V ∗ (xK−2) from stage K − 2 to K

V ∗K−1 (xK−2) =
1

2
xT
K−2ΠK−2xK−2

We used,

KK−2 = −
(
BTΠK−1B + R

)−1
BTΠK−1A

ΠK−2 = Q + ATΠK−1A−ATΠK−1B
(
BTΠK−1B + R

)−1
BTΠK−1A
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The linear-quadratic regulator (cont.)

The recursion from ΠK−1 to ΠK−2 is known as the backward Riccati iteration

In the general form, the recursion from ΠK = QK

Πk−1 = Q + ATΠkA−ATΠkB
(
BTΠkB + R

)−1
BTΠkA

(k = K ,K − 1, · · · , 1)

We can also define the general form of the optimal cost and optimal decision variables

 The optimal decision variables u∗k (xk ) and x∗k (xk )

u∗k (xk ) = −Kkxk

x∗k (xk ) = (A + BKk ) xk

 The optimal cost to go V ∗ (xk ) from stage k to K

V ∗k (xk ) =
1

2
xT
k Πk+1xk
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The linear-quadratic regulator (cont.)

Example

Consider the linear and time-invariant dynamical system with measurement process

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Consider the following system matrices and associate IO representation

A = −b
B = −(a + b)

C = k

D = k

y(s) = g(s)u(s)

g(s) = k
s − a

s + b

For (a, b) = (0.2, 1) > 0 and k = 1, system has inverse response (right-half-plane zero)
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The linear-quadratic regulator (cont.)

Step response, by solving the ODE with u(t) = 1 and initial condition x(0) = 0

• We observe what happens from the measurements y(t)

• The response to a unit step of the control u(t)

The optimal control policy

The optimal control policy at each stage is

u0
k(x) = K (k)x k = N � 1, N � 2, . . . , 0 (8)

The optimal gain at time k is computed from the Riccati matrix at
time k + 1

K (k) = �
�
B 0⇧(k + 1)B + R

��1
B 0⇧(k + 1)A

k = N � 1, N � 2, . . . , 0 (9)

The optimal cost to go from time k to time N is

V 0
k (x) = (1/2)x 0⇧(k)x k = N, N � 1, . . . , 0 (10)

Freiburg 2015 NMPC Introduction: LQR and LQE 21 / 100

Whew. OK, the controller is optimal, but is it useful?

We now have set up and solved the (unconstrained) optimal control
problem.

Next we are going to study some of the closed-loop properties of the
controlled system under this controller. One of these properties is
closed-loop stability.

Before diving into the controller stability discussion, let’s take a
breather and see what kinds of things that we should guard against
when using the optimal controller.

We start with a simple scalar system with inverse response or,
equivalently, a right-half-plane zero in the system transfer function.

y(s) = g(s)u(s) g(s) = k
s � a

s + b
, a, b > 0

Freiburg 2015 NMPC Introduction: LQR and LQE 22 / 100

Step response of system with right-half-plane zero

Convert the transfer function to state space (notice a nonzero D)

d

dt
x = Ax + Bu A = �b B = �(a + b)

y = Cx + Du C = k D = k

Solve the ODEs with u(t) = 1 and x(0) = 0

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

-5 0 5 10 15 20

y

time

Figure 1: Step response of a system with a right-half-plane zero.
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What input delivers a unit step change in the output?

Say I make a unit step change in the setpoint of y . What u(t) (if
any) can deliver a (perfect) unit step in y(t)?

In the Laplace domain, y(s) = 1/s. Solve for u(s). Since y = g(s)u
we have that

u(s) =
y(s)

g(s)
=

s + b

ks(s � a)

We can invert this signal back to the time domaina to obtain

u(t) =
1

ka


� b + (a + b)eat

�

Note that the second term is a growing exponential for a > 0.
Hmmm. . . How well will that work?

aUse partial fractions, for example.
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Suppose that we request a unit step of the output y(t), as a set-point change

• We ask what is the optimal control action

• The best action capable to deliver it
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The linear-quadratic regulator (cont.)

y(s) = k
s − a

s + b︸ ︷︷ ︸
g(s)

u(s)

In the Laplace domain, we have the requested output

y(s) =
1

s

By solving for u(s), we get

u(s) =
y

g(s)

=
s + b

ks(s − a)

Back to the time-domain,

u(t) =
1

ka

−b + (a + b) eat︸︷︷︸
a>0 (!)


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The linear-quadratic regulator (cont.)

Output response, with an exponentially growing input and y(t) is perfectly on target

Simulating the system with chosen input

0
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0.4
0.6
0.8

1
1.2

-5 0 5 10 15 20
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time

Figure 2: Output response with an exponential input for a system with RHP zero.

Sure enough, that input moves the output right to its setpoint!
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Will this work in practice?

So we can indeed achieve perfect tracking in y(t) with this growing
input u(t).

Because the system g(s) = k(s � a)/(s + b) has a zero at s = a, and
u(s) has a 1/(s � a) term, they cancel and we see nice behavior
rather than exponential growth in y(t).

This cancellation is the so-called input blocking property of the
transfer function zero.

But what happens if u(t) hits a constraint, u(t)  umax.

Let’s simulate the system again, but with an input constraint at
umax = 20. We achieve the following result.
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Output behavior when the exponential input saturates

The input saturation destroys the nice output behavior
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Figure 3: Output response with input saturation for a system with RHP zero.
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So how can we reliably use optimal control?

Control theory to the rescue

The optimal controller needs to know to avoid exploiting this
exponential input. But how do we tell it?

We cannot let it start down the exponential path and find out only
later that this was a bad idea.

We have to eliminate this option by the structure of the optimal
control problem.

More importantly, even if we fix this issue, how do we know that we
have eliminated every other path to instability for every other kind of
(large, multivariable) system?

Addressing this kind of issue is where control theory is a lot more
useful than brute force simulation.
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We are capable of achieving perfect tracking in y(t) by using applying an optimal u(t)
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The linear-quadratic regulator (cont.)

g(s) = k
s − a

s + b
, with u(s) =

1

s − a

s + b

ks

The zeros at s = a in g(s) and u(s) cancel out, tracking of output y(t) looks perfect

• The input-blocking property of the zero in the transfer function
Simulating the system with chosen input
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Figure 2: Output response with an exponential input for a system with RHP zero.

Sure enough, that input moves the output right to its setpoint!
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Will this work in practice?

So we can indeed achieve perfect tracking in y(t) with this growing
input u(t).

Because the system g(s) = k(s � a)/(s + b) has a zero at s = a, and
u(s) has a 1/(s � a) term, they cancel and we see nice behavior
rather than exponential growth in y(t).

This cancellation is the so-called input blocking property of the
transfer function zero.

But what happens if u(t) hits a constraint, u(t)  umax.

Let’s simulate the system again, but with an input constraint at
umax = 20. We achieve the following result.
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Output behavior when the exponential input saturates

The input saturation destroys the nice output behavior
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Figure 3: Output response with input saturation for a system with RHP zero.
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So how can we reliably use optimal control?

Control theory to the rescue

The optimal controller needs to know to avoid exploiting this
exponential input. But how do we tell it?

We cannot let it start down the exponential path and find out only
later that this was a bad idea.

We have to eliminate this option by the structure of the optimal
control problem.

More importantly, even if we fix this issue, how do we know that we
have eliminated every other path to instability for every other kind of
(large, multivariable) system?

Addressing this kind of issue is where control theory is a lot more
useful than brute force simulation.

Freiburg 2015 NMPC Introduction: LQR and LQE 28 / 100



Fe
b
05
b,
20
21

–
FC

–

CHEM-E7225
2021-2022

Multi-stage
optimisation

Discrete state
and action
spaces

An example

Linear-quadratic
regulators

An example

An example

The linear-quadratic regulator (cont.)

The inputs in reality cannot grow unboundedly, at some point they will hit constraints

Simulating the system with chosen input
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Figure 2: Output response with an exponential input for a system with RHP zero.

Sure enough, that input moves the output right to its setpoint!
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Will this work in practice?

So we can indeed achieve perfect tracking in y(t) with this growing
input u(t).

Because the system g(s) = k(s � a)/(s + b) has a zero at s = a, and
u(s) has a 1/(s � a) term, they cancel and we see nice behavior
rather than exponential growth in y(t).

This cancellation is the so-called input blocking property of the
transfer function zero.

But what happens if u(t) hits a constraint, u(t)  umax.

Let’s simulate the system again, but with an input constraint at
umax = 20. We achieve the following result.
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Output behavior when the exponential input saturates

The input saturation destroys the nice output behavior
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Figure 3: Output response with input saturation for a system with RHP zero.
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So how can we reliably use optimal control?

Control theory to the rescue

The optimal controller needs to know to avoid exploiting this
exponential input. But how do we tell it?

We cannot let it start down the exponential path and find out only
later that this was a bad idea.

We have to eliminate this option by the structure of the optimal
control problem.

More importantly, even if we fix this issue, how do we know that we
have eliminated every other path to instability for every other kind of
(large, multivariable) system?

Addressing this kind of issue is where control theory is a lot more
useful than brute force simulation.
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The saturation of the input at the constraint destroys the perfect output response y(t)
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Linear-quadratic optimal control | LTV-QR

We can also consider the more general formulation of a linear-quadratic optimal control

min
x ,u

xT
K QK xK︸ ︷︷ ︸
E(xK )

+

K−1∑
k=0

[
xk
uk

]T [
Qk ST

k
Sk Rk

] [
xk
uk

]
︸ ︷︷ ︸

Lk (xk ,uk )

subject to xk+1 −Akxk − Bkuk = 0, k = 0, 1, . . . ,K − 1

x0 − x0 = 0

At each recursion step, we must compute the (now varying) stage-cost Lk (xk , uk ),

Lk (xk , uk ) =

[
xk
uk

]T [
Qk ST

k
Sk Rk

] [
xk
uk

]

Matrices Qk and Rk are time-varying and positive semi definite and positive definite

• Matrix QK is positive definite

Moreover, we allow for further flexibility in tuning by including the mixing matrix Sk
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Linear-quadratic optimal control | LTV-QR (cont.)

min
x ,u

xT
K QK xK︸ ︷︷ ︸
E(xK )

+

K−1∑
k=0

[
xk
uk

]T [
Qk ST

k
Sk Rk

] [
xk
uk

]
︸ ︷︷ ︸

Lk (xk ,uk )

subject to xk+1 −Akxk − Bkuk = 0, k = 0, 1, . . . ,K − 1

x0 − x0 = 0

Furthermore, we allow the system dynamics to be time-varying,

fk (xk , uk ) = Akxk + Bkuk

Under these conditions, the optimal cost V ∗k (xk ) from stage k to k +1 is still quadratic

V ∗k (xk ) =
1

2
xT
k Πk+1xk

The backward Riccati recursion is used to compute Πk+1
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Linear-quadratic optimal control | LTV-QR (cont.)

Using the terminal condition ΠK = QK , we have

Πk = Qk + AT
k Πk+1Ak

−
(
ST
k + AT

k Πk+1Bk

)(
Rk + BT

k Πk+1Bk

)−1 (
Sk + BT

k Πk+1Ak

)
The optimal decision variables are obtained from the feedback law,

u∗k (xk ) = −
(
Rk + BT

k Πk+1Bk

)−1 (
Sk + BT

k Πk+1Ak

)
xk

The forward simulation from x0 determines the state variables

xk+1 = Akxk + Bku
∗
k
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Linear-quadratic optimal control | AQR

Consider the even more general formulation of an affine-quadratic optimal control

min
x ,u

[
1
xK

]T [ ∗ qTK
qK QK

] [
1
xK

]
︸ ︷︷ ︸

E(xK )

+

K−1∑
k=0

 1
xk
uk

T  ∗ qTk sTk
qk Qk ST

k
sk Sk Rk

 1
xk
uk


︸ ︷︷ ︸

Lk (xk ,uk )

subject to xk+1 −Akxk − Bkuk − ck = 0, k = 0, 1, . . . ,K − 1

x0 − x0 = 0

These optimisations often result from trajectory linearisation of nonlinear dynamics

The general dynamic programming solution is retained by augmenting the state

x̃k =

[
1
xk

]
The augmented dynamics,

x̃k+1 =

[
1 0
ck Ak

]
x̃k +

[
0
Bk

]
uk

The fixed initial value is x̃0 =
[
1 x0

]T



Fe
b
05
b,
20
21

–
FC

–

CHEM-E7225
2021-2022

Multi-stage
optimisation

Discrete state
and action
spaces

An example

Linear-quadratic
regulators

An example

An example

The linear-quadratic regulator | Infinite-horizon

We discussed the linear quadratic regulator over a finite horizon of some length K

Linear quadratic regulators can destabilise a stable system over finite horizons

• Setting Q ,R � 0 is not sufficient to guarantee closed-loop stability


xk+1 = Axk + B

−Kxk︸ ︷︷ ︸
uk


y(t) = x(t)

xk+1 = Axk + Buk

yk = Ixk

System

uk = −Kxk

LQR

uk yk = xk

The stability of the closed-loop is determined by the eigenvalues of matrix ACL

The closed-loop dynamics,

xk+1 = Axk − BKxk

= (A− BK )︸ ︷︷ ︸
ACL

xk
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The linear quadratic regulator
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The linear-quadratic regulator | Infinite-horizon (cont.)

Example

Consider a discrete-time linear time-invariant dynamical system with LQR (K = 5)

xk+1 =

[
4/3 −2/3
1 0

]
xk +

[
1
0

]
uk

yk =

[
−2/3

1

]
The discrete-time transfer function has a zero (z = 3/2), non-minimum phase system

min
x0,x1,...,x4,x5
u0,u1,...,u4

xT
5 Q5x5 +

4∑
k=0

xT
k Qxk + uT

k Ruk

subject to Axk + Buk − xk+1 = 0, k = 0, 1, . . . , 4

x0 − x0 = 0

We use Q = Q5 = CTC + 0.001I and R = 0.001 that barely penalises controls
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The linear-quadratic regulator | Infinite-horizon (cont.)

Based on the Riccati equation, we iterate four times from ΠK = QK = Q

K
(5)
4 ,K

(5)
3 ,K

(5)
2 ,K

(5)
1 ,K

(5)
0

Assuming that we use the first feedback gain K
(5)
0 , we have

uk = K
(5)
0 xk

xk =
(
A + BK

(5)
0

)k
x0

The eigenvalues of
(
A + BK

(5)
0

)
λ
(
A

(5)
CL

)
= (1.307︸ ︷︷ ︸

>1

, 0.001)

As one of the eigenvalues is outside the unit circle

• The closed-loop system is unstable

• The state grows exponentially

• xk →∞ as k →∞
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The linear-quadratic regulator | Infinite-horizon (cont.)

The closed-loop eigenvalues of
(
A + BKK

0

)
for control horizons of different lengths, ◦

• For reference, the open-loop eigenvalues of A, ×, are both stable

The infinite horizon LQ problem

Let us motivate the infinite horizon problem by showing a weakness of
the finite horizon problem. Kalman (1960b, p.113) pointed out in his
classic 1960 paper that optimality does not ensure stability.

In the engineering literature it is often assumed (tacitly and
incorrectly) that a system with an optimal control law is
necessarily stable.

Assume that we use as our control law the first feedback gain of the
N stage finite horizon problem, KN(0),

u(k) = KN(0)x(k)

Then the stability of the closed-loop system is determined by the
eigenvalues of A + BKN(0). We now construct an example that shows
choosing Q > 0, R > 0, and N � 1 does not ensure stability. In fact,
we can find reasonable values of these parameters such that the
controller destabilizes a stable system.
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An optimal controller that is closed-loop unstable

Let

A =


4/3 �2/3

1 0

�
B =


1
0

�
C = [�2/3 1]

This discrete-time system has a transfer function zero at z = 3/2,
i.e., an unstable zero (or a right-half-plane zero in continuous time).

We now construct an LQ controller that inverts this zero and hence
produces an unstable system.

We would like to choose Q = C 0C so that y itself is penalized, but
that Q is only semidefinite.

We add a small positive definite piece to C 0C so that Q is positive
definite, and choose a small positive R penalty (to encourage the
controller to misbehave), and N = 5,

Q = C 0C + 0.001I =


4/9 + .001 �2/3

�2/3 1.001

�
R = 0.001
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Compute the control law

We now iterate the Riccati equation four times starting from
⇧ = Pf = Q and compute KN(0) for N = 5.

Then we compute the eigenvalues of A + BKN(0) and achieve1

eig(A + BK5(0)) = {1.307, 0.001}

Using this controller the closed-loop system evolution is
x(k) = (A + BK5(0))kx0.

Since an eigenvalue of A + BK5(0) is greater than unity, x(k) ! 1
as k ! 1.

In other words the closed-loop system is unstable.

1Please check this answer with Octave or Matlab.
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Closed-loop eigenvalues for di↵erent N ; Riccati iteration
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Figure 4: Closed-loop eigenvalues of A + BKN(0) for di↵erent horizon length N (o);
open-loop eigenvalues of A (x); real versus imaginary parts.

Freiburg 2015 NMPC Introduction: LQR and LQE 32 / 100

When we start with a finite horizon LQR, we move both the open-loop eigenvalues

• From K = 1, until we enter the unit disc at K = 7

• The stability margin grows with K
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The linear-quadratic regulator | Infinite-horizon (cont.)Stability and horizon length—another view
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Figure 5: Stability dependence on horizon. The horizontal line at 1 is the stability
boundary, while the horizontal line at 0.664 is the maximum eigenvalue of the
infinite-horizon regulator.
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Why is the closed-loop unstable?

A finite horizon objective function may not give a stable controller!
How is this possible?

x1

x2

0

k

x1

x2

0

k

k + 1

x1

x2

0

k

k + 1

k + 2

x1

x2

0

k

k + 1

k + 2

closed-loop trajectory
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What happens if we make the horizon N larger?

If we continue to iterate the Riccati equation, which corresponds to
increasing the horizon in the controller, we obtain for N = 7

eig(A + BK7(0)) = {0.989, 0.001}

and the controller is stabilizing.

If we continue iterating the Riccati equation, we converge to the
following steady-state closed-loop eigenvalues

eig(A + BK1(0)) = {0.664, 0.001}

This controller corresponds to an infinite horizon control law.

Notice that it is stabilizing and has a reasonable stability margin.

Nominal stability is a guaranteed property of infinite horizon
controllers as we prove in the next section.

Freiburg 2015 NMPC Introduction: LQR and LQE 35 / 100

The forecast versus the closed-loop behavior for N = 5
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Figure 6: The forecast versus the closed-loop behavior for N = 5.
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Stability margin as function of
the control horizon

• Finite-horizon may return
unstable controllers

• More robustness is gained
as the horizon grows

λ
(
A

(∞)
CL

)
= (0.664︸ ︷︷ ︸

<1

, 0.001)

A feedback gain K
(∞)
0 corresponds to an infinite horizon linear quadratic regulator

min
x0,x1,...,
u0,u1,...

∞∑
k=0

xT
k Qxk + uT

k Ruk

subject to Axk + Buk − xk+1 = 0, k = 0, 1, . . .

x0 − x0 = 0
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The linear-quadratic regulator | Infinite-horizon (cont.)

min
x0,x1,...,
u0,u1,...

∞∑
k=0

xT
k Qxk + uT

k Ruk

subject to Axk + Buk − xk+1 = 0, k = 0, 1, . . .

x0 − x0 = 0

If we are interested in controlling a continuous process, without a final time, then the
natural formulation of the optimal control problem is with an infinite horizon cost

• In this case, the Riccati recursion has a stationary solution Πk = Πk+1,

Π = Q + ATΠA−ATΠB
(
BTΠB + R

)−1
BTΠA

Given Π, we have the classic optimal control feedback

u∗ = −
(
R + BTΠB

)−1
BTΠA︸ ︷︷ ︸

K

xk

Closed-loop stability is not relevant for batch processes, finite-horizon LQRs are fine
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The linear-quadratic regulator | Infinite-horizon (cont.)

min
x0,x1,...,
u0,u1,...

∞∑
k=0

xT
k Qxk + uT

k Ruk

subject to Axk + Buk − xk+1 = 0, k = 0, 1, . . .

x0 − x0 = 0

Infinite-horizon solutions exist as long as the cost function is bounded

• In this case, the cost function is an infinite sum

• The result must not be infinitely big

This is possible when the linear-time invariant systems is controllable

 We can transfer its state from anywhere to anywhere

 And, there exists a control sequence to do that

 And, it can be done in finite time
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The linear-quadratic regulator | Infinite-horizon (cont.)

If the pair (A,B) is controllable, the there exists a finite horizon of length K and a
sequence of inputs that can transfer the state of the system from any x to any x ′

That is, by forward simulation

x ′ = AK x +
[
B AB · · · AK−1B

]


uK1

uK−1

...
u0


Similarly,

[
B AB · · · AK−1B

]︸ ︷︷ ︸
C


uK1

uK−1

...
u0

 = x ′ −AK x+

Controllability matrix C must be full rank for the equation to have a solution {uk}K−1
k=0

• If cannot reach x ′ in K moves, then we cannot reach it in any number of moves
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