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Multi-stage
optimisation

An example

An example

Optimising multi-stage functions

Consider the set of decision variables w, y, and z and the following objective function
S (w,z)+g(z,y)+h(y 2)
0 1 2

Each stage-cost function in the sum depends only on the adjacent variable pairs

Consider the case in which w is a known, and we want to solve the optimisation problem

min  f(z|w)+ g (z,y) + h(y,2)

z,y,z|w

One possibility would be to optimise for all the three decision variables (z, y, 2)

~~ This solution is valid, but it does not exploit the problem structure

We can alternatively solve a sequence of single-variable optimisation problems

min (f(z\w)+myin (9@ ) + min h(w)))

x|
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Multi-stage

optimisation
min (f (z|w) + min (g (z,y) + min A (y, z)))

An example z|w y z

o s Starting from the innermost optimisation problem, we solve with respect to variable z

An example

min  h(y,z)
z

We obtain the solution for z and the optimal value function in terms of variable y,
h* (y) =min h(y,z) (optimal value function)
z

z* (y) = argmin  h(y,2) (minimiser)
z
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Multi-stage
optimisation

min f (z|w) + min g(z,y)+min h(y,z2)
p y 2

An example z|w

h*(y)

Proceeding with the next optimisation problem, we solve it with respect to variable y

min g (z,y) + A" (y)

We obtain the solution for y and the optimal value function in terms of variable z,
g"(z) =min g (z,y)+h" (y) (optimal value function)
Yy

y*(z) = arg myin g(z,y)+h* (y) (minimiser)
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Multi-stage
optimisation

min | f(elw) +min | g(e.9)+min h(y,2)

z|w

h*(y)

An example »
An example g*(z)

At the third and final optimisation problem, we solve it with respect to variable z

min  f (z|w) + g% (z)

z|w
‘We obtain the solution for  and the optimal value function in terms of value w
f*(w) =min f (z|w)+ g* (z) (optimal function value)
x

z*(w) = arg rnzin f(z|lw) + g* (z) (solution)
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An example

Optimising multi-stage functions (cont.)

min f (z|w) + min g(z,y)+min h(y,2)
T|w Yy z

N —
h*(y) at z*(y)

9% (z) at y*(z)

£+ (w) at o (w)

Because w is fixed, we know its value, we have that z*(w) is completely determined

Thus, we also have that y*(z*(w)) and z*(y*(2*(w))) are completely determined

25 (w) = 2" (¥ (w))
=2"(y" (2" (w)))

Similarly, the optimal value of the obejctive function can be also computed

[ (w) + g% (@™ (w)) + A (y™ (27 (w)))
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Optimising multi-stage functions (cont.)

The method to solve (unconstrained) multi-state optimisation problems can be an al-
ternative approach for optimal control problems, backward dynamic programming

® The decision variables are solved in reverse order

The solutions expressed as functions of the variables to be optimised at the next stage

Its application is easiest for discrete-time systems with discrete state and action spaces

® With continuous spaces, applicability is achieved by discretisation

® In continuous-time the problem is formulated as a PDE, the HJB
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We consider the nonlinear dynamic equation of a discrete-time state-space model

Tpq1 = f (@, ug)

Discrete state
e
Si”m‘s ‘ Moreover, suppose that the state- and the action-space be discrete and finite

T, € X, with |X‘:NX
up, €U, with [U| = Ny

Based on the discrete dynamics, we formulate the optimal control problem

K—1
oo, P e P+ D L (s w)
U, ULy UK —1 k=0
subject to  f (2, ug) — zk4+1 = 0, k=0,1,..., K -1
Tog—20=0

The initial state zp is assumed to be know, fixed at value Zg



CHEM-E7225
2021-2022

Discrete state
and action
spaces

An example
An example
An example

Discrete state- and action-spaces (cont.)

min
TO,T1 5, TK —1,TK
UQ UL -y UK — 1

subject to

K—1
E (o) + 3 Lok, )
k=0
f(zg, ug) — 241 =0, k=0,1,..., K —1

Zo— 20 =0

The controls { uk}kK:_Ol are the true decision variables of the optimisation

The state variables can be eliminated by forward simulation

71 (20, uo) = f (20, o)
z2(20, w0, u1) = f(21,w1)
:f(f(iv{)7’ll,())7’l,l/1)

x3(x0, uo, u1, u2) = f(x2, u2)

zx (0, uo, U1, . -

:f(f(f(w()7u0)aul)7u2)

UK —2,uk—1) = f(TK 1, uK 1)
=f(f(---f(z0,u0), ug —2), Uk —1)
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Discrete state K—-1
and action . B I
spaces - S A COR D A RS
An example UQ UL -y UK — 1 k=0
subject to  f (@, ug) — zk4+1 =0, k=0,1,..., K -1

Tog—ax90 =0

This formulation of discrete-time optimal control problem misses path constraints

They can be implicitly included by allowing the stage cost to be equal to infinity

® For infeasible points (zy, ux), we have that L (zy, ux) = oo

To be able to include inequality constraints, we thus have

L:XxXU—>RUx
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An example

Discrete state- and action-spaces (cont.)

K—-1
oy, B Blo0)+ 2 Do)
U, UL - UK —1 k=0
subject to  f (2, ug) — zk41 = 0, k=0,1,..., K —1

Zo— a0 =0

As each uy can only take on one of Ny; values, there are Nzl‘lf possible control sequences

NuXNuX~~-><Nu

K times

Each possible sequence would correspond to a different trajectory {{zy, uk}kK;Ol Uzg }

~ FKach trajectory is characterised by its specific value of the objective function

~~ The optimal solution corresponds to the sequence of smallest function value
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Discrete state- and action-spaces (cont.)

K-1
20,1, — 140K B (wk) + Z L (s i)
UQ, UL 5 UK —1 k=0
subject to  f (@, ug) — zk41 =0, k=0,1,..., K —1

To—20=0

Naive enumeration of all trajectories has a complexity that grows exponentially in K

N(,{XNMX---XNM

K times

The idea behind dynamic programming is to approach the enumeration task differently

We start by noting that each sub-trajectory of an optimal trajectory must be optimal

® We denote this property as the principle of optimality
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An example

Discrete state- and action-spaces (cont.)

We define the value-function or cost-to-go as the optimal cost that would be at-
tained if, at time k and state Ty, we would solve the shorter optimal control problem

K—1
T (@) :@kvzk+1v1~1:l~igK—lsz E(wr) + Z L (@i, )
Uk s U415+ UK —1 =k
subject to f (@i, u) — 241 =0, i=kk+1,...,K—1

Tr —x =0

Each function J; : X — R U oo summarises the cost-to-go to the end of the horizon

® Starting from the initial state Ty, under the optimal actions {uq*}ZK:;l

There is a finite number Ny of possible initial states Ty, at each stage k we have

Ji; (xlgl))

Jk (z,gNX)>
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Multi-stage

optimisation

Discrete state
and action
spaces

An example The Bellman equation

Linear-quadratic

regulato The principle of optimality states that for any k € {0,1,..., K —1} the following holds

An example

o e @) = min L@k, ) + Ty (F @, 0) )

min (L (Ths w) + Ji41 (Tkﬂ))

u
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An example

Discrete state- and action-spaces (cont.)

The backward recursion is known as the dynamic programming recursion

uj (z4) = argmin L (zg, u) + Jet1 (f (ax, u))

Once all the value-functions Jj are computed, the optimal feedback control

xk-‘—l:f(xkvukf(xk))? k=0,1,...,K -1

The computationally demanding step is the generation of the K value functions Jj
® Each recursion step requires to test Ny controls, for each of the Ny states

® BEach recursion requires computing f (@, v) and L (zz, u)

The overal complexity is thus K X (Nx X Ny)
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Discrete state
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Discrete state- and action-spaces (cont.)

One of the main advantages of the dynamic programming approach to optimal control is
the possibility to be extended to continuous state- and action-spaces, by discretisation

® No assumptions on differentiability of the dynamics or convexity of the objective

However, it is important to notice that for a N, dimensional state-space discretised
along each dimension using M, intervals, the total number of grid points is Ny = quV’

® That is, complexity grows exponential with the dimension of the state-space
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An example

An example
Consider a total stage cost given by the sum of the state cost and control stage cost
L (i, u) = L (a1,) + L (w5 w)

The stage-cost for the states, the positions on a (4 X 3) board
® The target state is in position (2,2)

® The state-cost per step is zero

x | x X 5 | 5 5
x | X X - 5 | 0 5
x | x X 5 | 5 5
X X X 5 5 5
|
X L?; (zpEX)
The stage-cost for the controls, the 9 possible ‘moves’
® The control-cost per stage is one, or zero

N 111

- - o ~~ 1 0 1

VRN 111

————

—_———
u LE (2, up, €U)
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An example

An example

An example (cont.)

The policy specifies the action that we will perform at time step &

® It is a function of the state, at stage k

m(zg) = ug (21)

A random example of policy,

m(zy) = 1 I
-

NS
N4 T

At k, the objective is to find the policy that minimises the cost-to-go

K
D Li (i, we)
k

The value function of the policy at k is the goodness of each policy

Vi (2x) = Li (@, ug) + Vo (Te41)
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Stage K
At the final stage k = K, we have the following value function of the policy function

Vr (ax) = Lk (2, 31) + Ve ker 1)
LI (ux0) + LE torerir) + Vi kaem7)

An example

Tl Ly (ug yure)
5 | 5 5
5 | o0 5

= 5 | 5 5

5 5 5

As there is no time left to apply any control, we have the optimal policy

(. (:EK) = I
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An example

An example

An example

An example (cont.)

The value function for the optimal policy corresponds to the terminal cost E (zx)

Vi ($K) = Vi (IK)
= E (zk)

‘We have the optimal policy,
* ( e ) = |

The value of the policy,

Vi (IK) =

<t Ot Ot Ot
ot ot O Ut
<t Ot Ot Ot

The value of the optimal policy at stage K gives the total cost that would be incurred
if, starting at some state zx € X, the best sequence of actions would be performed

® The first optimal action of the sequence (!) was found to be ‘do nothing’
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An example

An example

An example (cont.)

According to the Bellman optimality principle, the optimal policy at stage K — 1
(¥ = argmuin (Lr-1(zx—1,ux—1) + V= (zK))

Remaining controls are optimal with respect to the state resulting from the first one

~+ We must compute the stage-cost Lx _1(zx_1,ux_1) at stage K — 1
~» We know the value of the policy Vi« (zx)

Vier (xK) =

Ut Ot Ot Ot
ot ot © ot
Ut Ot Ot Ot
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Stage K — 1
x | x X
X | X X
x | x X
An example X X X
~—
X

For each state zx 1 € X, compute the stage cost Lx _1(zx_1,ux—_1) for all ug_1 € U

We can then add it to the optimal value function at stage K and optimise

Vier (JZK_I) = min (LK71($K717UK71) + Vs (JJK))

UK —1

From a minimisation of the value function, we compute the optimal policy

(@Kt = arg min (LK—l(mk—h Up—1) + Vi (fﬂK))

Nt
— - =
v LN
—_———

u
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An example

An example

An example (cont.)

X X X o
X X X X
X X X X

Suppose that the system is at state X1,1 and consider control action 1

® As a result the system stays at state X71

We have the total stage cost, as sum of state-cost and action-cost

Lg_1(Xi1, 1) = LE () + LE (X1, 1)
=5+1
=6

The application of action | leads to state X7 1

Ve (X11) =5

Similarly, for actions |, N\, 7, v/, \y, <, -, and — applied to state X7 1
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An example

An example

An example

An example (cont.)

X X X o
X X X X
X X X X

For action | applied to state X711, we have the total stage-cost

Lk -1(X1,1,4) = I H (X)) + 75 (A, 0
=5+1
=6
The application of action | leads to state X2 1

Vax(X2,1) =5
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An example

An example

An example

An example (cont.)

X X X o
X X X X
X X X X

For action - applied to state X7 1, we have the total stage-cost

Lg-1(X11,0) = LS X0 + TN (X, )
=5+0
=5
The application of action | leads to state X7 1

Vax(X1,1) =5
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An example

An example

An example

An example (cont.)

Summarising, for state X711
® At stage K — 1

Lrg-1(X1,1,1) + Vex(X1,1) =645

=11

Lrg_1(X1,1,N) + Vex(X11) =645
=11

Lg-1(X1,1, /) + Var (X1,1) =6 +5
=11

Lkx_1(X1,1,) + Vpr (X1,1) =6 +5
=11

Lg_1(X1,1,\) + Vpx (X1,1) =645
=11

LK_1(X1’1, (—) + Vs (X1,1) =6+5
=11

LK,1(X1,1, —>) + V= (Xl,l) =6+5
=11

Lr—1(X1,1,4) + Vax (X2,1) =6+5
=11

Lg_1(X1,1,7) + Ver (X1,1) =5 +5
=10
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An example

An example

An example (cont.)

The optimal action that we can do when at state X1 1 at stage K — 1 is to not move, -

T (X1,1) = : |

The value of the optimal action, at stage K — 1

0 | - -
e

The value function V= (Xl’l) gives the cost that would be incurred if, starting at state
X1,1 and from that stage on, we performed the best possible sequence of actions

® The first action would be the one given by the optimal policy 7*(X1,1 € X)
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An example

An example

An example

An example (cont.)

Analogously for the other states zx_1 € X at stage K — 1, we have the optimal policy

: 1 4
. . —
7 (zx—1 € X) = St N
The value of the optimal policy, at stage K — 1
10 | 6 6
elasan= 90
10 10 10

The value function Vi« (zx_1) gives the cost that would be incurred if, starting at any
state zx _1 and from that stage on, we performed the best possible sequence of actions

® The first action would be the one given by the optimal policy 7*(zx_1 € X)
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An example (cont.)

Stage K — 2

The value of the optimal policy at stage K —1 gives the total cost that would be incurred
if, starting at state zx_1 € X, the best sequence of actions would be performed

10 | 6 6

10 0 6

Vas(ox—1) = I 6 6
10 10 10

The first optimal action of the sequence

7T*(CEK,1 GX)Z I

—
TN
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An example

An example

An example

An example (cont.)

X X X X
X X X X
X X X X

|

For each state zx o € X, compute the stage cost Lx _o(2x 2, ux—2) for all uxg_o € U

We can then add it to the optimal value function at stage K and optimise

Vs (2 —2) = HI}({HZ (Lx—2(zx_2,u—2) + Var (2K 1))

From a minimisation of the value function, we compute the optimal policy

(2K _2) = arg min (Lx—2(zx_2,ux—2) + Vax (2K 1))

N oA
—
VAN
—_———

u
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An example

An example

An example

An example (cont.)

At stage K — 2, we have the optimal policy

7T*($K_2 S X) =

The value of the optimal policy, at stage K — 2

Vs (T —2) =

15
15
15
12

Do o

Ju—
]

-/ TN

Do

—
[\
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An example

An example

An example

An example (cont.)

Stage K — 3

At stage K — 3, we have the optimal policy

(23 € X) = ¢
/
The value of the optimal policy, at stage K — 3

20
20
Vix (IK—3) = 18

12

l
\

6
0
6

1

-

2

-/ TN

(o2l e

—_
[\
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An example

An example

An example

An example (cont.)

Stage K — 4

At stage K — 4, we have the optimal policy

T (zx—4 € X) =

The value of the optimal policy, at stage K — 4

Ver(Tr—4) =

N -

25
24
18
12

6
0
6

1

-

2

-/ TN

(o2l e

—_
[\
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Stage K — 5

At stage K — 5, we have the optimal policy

An example . ‘ \L
(a5 € X) = v '
p— Lot
An example /( T
=7n"(zx_4 € X)
The value of the optimal policy, at stage K — 4
30 | 6
7
Varlzc-a) = G5 | 6

-/ TN

(=X i

=
N



>
Q
The linear-qu;yr?tic regulator

wi.\ ogramming
I

7




cuem.erazs L he linear-quadratic regulator
2021-2022

An example

An important class of optimal control problems is the linear-quadratic regulator, LQR
Linear-quadratic

regulators ® The controller has to take the state of the system to the origin

® The system dynamics are deterministic and linear

® The objective function is quadratic

The problem is unconstrained and the horizon for control can be finite or infinite

® Their solution can be obtained with dynamic programming
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An example

Linear-quadratic
regulators

The linear-quadratic regulator (cont.)

Consider first the case in which we are interested in stabilising the system in K steps
We define an objective function to quantify the distance of the pairs (zy, ug) from zero

K—1

V (20, w0, 21, w1, -, T 1, UK 1, B) = B (k) + Y L (@, k)
k=0

® Terminal-stage cost
1
E (z) = 5xKTQKx§
® Stage-cost

1
L (zp, up) = 3 (sz Qxy + ukTRuk>

The objective depends on the control sequence {uy }kK;O and the state sequence {z }£_
® We assume that the initial state zp is fixed and known quantity

® Remaining states are determined by the model and {“k}llcgo

Matrices @ and Qi are positive semi-definite, R is positive definite

® They are tuning parameters
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Consider a linear and time-invariant process with single state variable and single input
The system dynamics, in discrete-time

T = axy, + buy,  with 2, u, € R
An example

Linear-quadratic The control problem, in discrete-time

regulators
An example
K—-1

An example o 1 5 1 T T
minimise =X KTk += E (Lk qxi + uy, /'uk)

U, UL,y U —1 2 2 ) )
(e — k=0 “——

E(zg) L(zg,uy)

Consider a finite-horizon of length one (K = 1)

PP L — T T
minimise  —z; g7 + = E Ty, qTE + uy Tug
uo 2 2 pard

We have,

1
minimise 3 (le qr T + TOT qzo + uOT 7'u0)
ug
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An example

Linear-quadratic

regulators
An example
An example

The linear-quadratic regulator | Baby LQR (cont.)

1
minimise 3 (xlT qK T + :EUT qxzo + uOT r'u0>
ug
In this simple case, we only need to (optimise to) find a single control action, ug
® Under the constraint that =1 = axg + bug

® The initial state zg is fixed and known

‘We have,

1
minimise — ol g w1 A qzo +ud rug
up 2 ~— ~~

axg+bug axg+bug

All the terms in the cost function are known, with the exception of ug

® Tt is the decision variable, it is a scalar
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CHEM-E7225

2021-2022
o1 T T T
minimise — ] qK T +z5 qro + ug TUg
) 2 ~— ~~
azg~+bug azp+bug
N — Substituting and rearranging, we have a quadratic equation ug
Linear-quadratic 1
regulators L .
An example mln%mlse 5 ((1:1;5 + 7'71,3 + qK(a:I;O + buo)Z)
An example 10
f(uo)

® We are interested in value 1y that minimises this function

After some algebra, we see that the cost function is a parabola

1 2 2
flu) = = (q:}c(] + rug + qi (azo + buo))

[\

N | =

(((] + (1,2(1/():1;02 + 2(baqxxo)uo + (bz(],( + r‘)ug)

We know how to locate the minimum of parabola, its vertex
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wnd action

An example
Linear-quadratic
regulators
An example

An example

The linear-quadratic regulator | Baby LQR (cont.)

fluo) == ((¢+ a?qx)xd 4+ 2(bagr zo)uo + (D% qx + r‘)ug)

N =

f(uo) is a parabola and it is smallest at the value vy that makes its derivative zero

d 4
@f(m)) = bax azo + (b2 g + r)uo

=0

We have the solution to the optimisation/control problem
bqx a
-
B2k +r 0
N— —

k

uQ

= —kaxg
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An example

Linear-quadratic

regulators
An example
An example

The linear-quadratic regulator (cont.)

For systems with multiple state variables and multiple inputs, the structure is identical
The system dynamics, in discrete-time

1 = Az, + Buy, with o, € RN+ and u € RNu
The control problem, in discrete-time

K—-1
) 1 P .
minimise 77,1 Qrrr +— E <Tk[ Qi + ukl [1’uk)
UQH ULy UK —1 2 2 =
—_—— =
E(zk) L(y,uy)

Consider a finite-horizon of length one (K = 1)

1-1
1 1
o« . . T T T
minimise —z; gz + — (a: Qz + uy, Ru;)
in 5% QK T1 2];:0 p QT e ug
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An example

Linear-quadratic
regulators

The linear-quadratic regulator (cont.)

After substituting the dynamics, we get

PRI 1 T ) T ) Tp
minimise — 1 QK Tl + x5 Qo + ug Ruo
uQ ~—~ N~~~
Axg+ Bug Axg+ Bug

After some algebra and rearranging, we have
1
minimise — (;EOT <Q + ATPA) zo + 2u0TBTQKAa:o + uOT <BTQKB + R) ug)
uo 2

Taking the derivative and setting it to zero, we get

df (uo)

— BT Qg Axo + (BTQKB + R) o
dug

=0

Solving this linear system of equations for the unknown ug, we get

—1
[ (BTQ/ B+ R) BT Qi Ao

K

To be able to solve for longer control-horizons, we use backward dynamic programming
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An example
Linear-quadratic
regulators
An example

An example

The LQR | Sum of quadratic functions

Consider two quadratic functions

‘

5

Vi(z)

1
:i(a:—a)TA(a:—a)

(=

1

2

Va(z)

-1

-1

:%(z—b)TB(z—b)

1

2

(

al
2

-

1
1

D'l

)Rz (2]

=0

1.5 0.5

0.5

=0

1.5

|l

x1
z2

-

1
1

)

-1
0

)
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We compute function V(z) = Vi(z) + Va(z) and show that it is a quadratic function

5

V(z):%((x—v)TH(x—v)—l—d)

An example

2
o

repalaran e H=A+B
v=H""(Aa— Bb)
_s |  d=—(4a+B0)TH ' (Aa+ Bb) + aTAa+bTBb
-5 0 5
ry

Matrix H is a positive definite matrix, because both A and B are positive definite

V(z):%((x—v)TH(x—v)—i-d)

-1 b sm (] -[])+oe

=0

N | =
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An example
Linear-quadratic
regulators

An example

An example

The LQR | Sum of quadratic functions (cont.)

Consider two quadratic functions, one of which with a linear combination of variable z
Vi(z) = —(z —a)T A(z — a)

Va(z) = =(Cz — b)T B(Cz — b)

N = N -

We can compute function V(z) = Vi(z) + Va,
V(z) = 1((:17—11)TH(:E—’U)+(1)
2
H=A+C"BC

v=H"!(Aa — CBb)
d=—(Aa+ CBO)T H™' (A4a + CBb) + a” Aa + b7 Bb
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Multi-stage
optimisation

Discrete state
and action
spaces

An example

<" The linear quadratic regulator (cont.)

An example

Dynamic programming
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We have the optimal control problem, with quadratic cost terms and linear dynamics
K—1
i R e B0+ D L we)

UQ, UL e UK — 1 k=0
S subject to  Azy + Bug — 241 = 0, k=0,1,...,K —1
Linear-quadratic
regulatolrs To—20=0
An example
An example The optimisation problem can be re-written in the equivalent form

min L(ZTo, uo) + L(z1,u1) + - L(zx—1,ux—1) + E (2K)

Zo

L1y TK —1,TK

UQH UL 5o ey UK —1 V(u0,21,u1,...,uk —1]70)

After isolating the last two stages, we get

min L(ZTo,u0) + L(z1,w1) + -+ L(zx—2, uk—2) +
T0

TY e TR 2

UQ,UL - UK — 2

min L(zg—1,ur—1) + E (2x)
UK _1,8K
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An example

Linear-quadratic
regulators

The linear-quadratic regulator (cont.)

min L(ZTo,uo) + L(z1,w1) + -+ L(zx—_2,ux—2)+
o

Tl TK—2
UQ UL e UK —2

min L(zr—1,uk—1) + E (zK)
UK —1,TK

At the last stage, we have the optimisation problem
min  L(zg_1,ux—1) + E (2x)
UK —1>TK

subject to Azx_1+ Bug_1—zx =0

The state zx_1 appears as parameter

We define optimal cost (the minimum) and optimal decision variables (the minimiser)
® The optimal decision variables uj, _; (zx_1) and z}; (zx_1)

® The optimal cost V* (zx_1)
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2021-2022
min  L(zg_1,ux—1)+ E (2zx)
UK —1,TK
subject to Azgx_1+ Bug_1 —zx =0
To solve this optimisation problem, we first substitute the dynamics

An example 1
Linear-quadratic E (IK) + L(IK—ly UK—I) = 5(1433}{_1 - BuK_l)T QK (Ax}(_l -+ BuK_l)
regulators

An example E(EK)

An example

1
+ 5 (:v;?,l Qrg 1 + ug,lRuNA)

Lzg—1,uK5—1)

1
=3 (95}7(171 Qur 1+ (ug—1 — )T H (ug—1 —v) + d)
‘We used,
H=R+BTQxB

v=— (BTQKB + R>71 BT Qi Az,

—1
d=al_, (ATQKA —ATQkB (BTQKB + R> BTQKA) TK_1
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An example

Linear-quadratic
regulators

An ex

An example

The linear-quadratic regulator (cont.)

The optimal control action uj_; = v is a linear function of the state zx 1

-1
wg =Y~ (BTQxB+R) BTQrAwk

Kg—1

By using the dynamics, we compute the terminal state zj from the optimal action
zj = Azg_1 + Buj_,

—1
— Az 1 + B (BTQKB + R) BT Qx Azg 1

—1
A+B(BTQKB+R> BTQrA | 21

—Kg_1

The cost associated to the optimal control action is quadratic in zx_1

T
V*:l zr  Qrx_ 1+ |ub_,— v H|u}_y— v +d
K 2 K—1 -1 K—1 \* , K—1 \* ,
UK—1 UK —1

=0
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An example
Linear-quadratic
regulators

An example

An example

The linear-quadratic regulator (cont.)

Vi
T
1
=5 oF 1 Qui_1+ [uf_y — v Hlujp 41— v, |+d
'11,;‘{71 ul*<71
=0
1 —1
=5 | o1 Qoroa 2y (ATQKA—ATQKB(BTQKB+R) BTQKA)szl

d

1 -1
= i1 (Q +ATQxA—ATQxB (BT QKB+ R) BTQKA) ox -1

g1
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2021-2022
T Tlor
Ki-1=(BTQcB+R) BTQxA
Summarising, we have
An example
Linear-quadratic u;{—l (:L'Kfl) = KKflszl
regulators
*
An example T (mel) = (A + BKK*l) Tr_1
An example

1
Vi (zx—1) = §Z§,1HK—1IK—1

Function Vj defines the optimal cost-to-go from zx 1, under optimal control uj _,;

® As it depends only on zx _; it allows to move to stage K — 2

min L(Zo,uw) + L(z1,w1) + -+ L(zx—2,ug—2) + V* (zx 1)
x
111~-~a£K—2
UQ UL 5y UK — 2
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An example

Linear-quadratic
regulators

The linear-quadratic regulator (cont.)

min L(Zo,uo0) + L (21, u1) + -+ L(zx_2,ux—2) + V™ (zx 1)
11,-»-731(72
UQ UL ey UK — 2

V (u0,@1,u1 ;- uk —2|70)

After isolating the last two stages, we get

min L(Zo,u0) + L (z1,u1) + -+ L(zx_3,ux_3) +
0

T1,ee TR 3

U, UL 5e ey UK —3

min L(zg—2,ux—2)+ V* (zx_1)
UK —2,TK —1

At the last stage, we have the optimisation problem
min V¥ (zx_1) + L(zx -2, ux—2)
UK —1,TK

subject to Azg_o+ Bug_o —zx_1 =20

The state xx _o appears as parameter
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2021-2022

min V* (zx—1) + L(zx—2, ug—2)
UK —1:TK

subject to Azg_o+ Bug_o—zx_1 =0

We define optimal cost (the minimum) and optimal decision variables (the minimiser)

An example
Linear-quadratic ® The optimal decision variables u},_, (zx_2) and zj; _, (zx_2)
regulators

An example

ui_o (K —2) = Kx 22K 2
ti_ (zx—2) = (A+ BKg_2) a2

An example

® The optimal cost V* (zx_2) from stage K — 2 to K

1
T
Vlt—l (z—2) = —x_ollk 2Tk 2

2
We used,
—1
Kg_o=— (BTHK—lB + R) BTk 1A
—1
Mg 0o=Q+ATTx 1 A— AT, B (BTHK,lBJrR) BT 1 A
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An example
Linear-quadratic
regulators

An example

An example

The linear-quadratic regulator (cont.)

The recursion from IIx_1 to [Ix_o is known as the backward Riccati iteration

In the general form, the recursion from g = Qg

—1
My 1= Q+ AT A — ATII, B (BTHkB+ R) BT, A
k=K, K—1,---,1)

We can also define the general form of the optimal cost and optimal decision variables

~ The optimal decision variables u; (2z) and z;* (23)

up (z) = —Kpay,

~» The optimal cost to go V* () from stage k to K

1
Vi (a) = §szHk+1a:k
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Consider the linear and time-invariant dynamical system with measurement process

z(t) = Az(t) + Bu(t)
An exa\mf)]e y(t) = C.Z(t) + Du(t)

Consider the following system matrices and associate IO representation

A=-b y(s) = g(s)u(s)
B=—(a+b) s—a
C=k g(s):ks+b
D=k

For (a,b) = (0.2,1) > 0 and k = 1, system has inverse response (right-half-plane zero)



cnem.erzzs Lhe linear-quadratic regulator (cont.)
2021-2022

Step response, by solving the ODE with «(t) = 1 and initial condition z(0) =0
® We observe what happens from the measurements y(t)

® The response to a unit step of the control u(t)

An example

An example 0.6

An example 0.4

time

Suppose that we request a unit step of the output y(t), as a set-point change
® We ask what is the optimal control action

® The best action capable to deliver it
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An example

An example

An example

The linear-quadratic regulator (cont.)

()_ks—a
S =R
——

9(s)

(s)

In the Laplace domain, we have the requested output

B 1
y(s) = —
s
By solving for u(s), we get
R Y
u(s) = —
9(s)
. s+b
" ks(s —a)
Back to the time-domain,
L t
u(t)=—|-b+(a+b) e
ka
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An example

An example

An example

The linear-quadratic regulator (cont.)

Output response, with an exponentially growing input and y(¢) is perfectly on target

350
300
250
200
150
100 |
50 |

time

We are capable of achieving perfect tracking in y(¢) by using applying an optimal u(t)
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1 s+b

s—a ks

g9(s) = k%, with u(s) =

The zeros at s = a in g(s) and u(s) cancel out, tracking of output y(t) looks perfect

® The input-blocking property of the zero in the transfer function

An example

350
PO 300 |
A sk 250 -
200
150 +
100 +
50 -

time
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An example

An example

An example

The linear-quadratic regulator (cont.)

The inputs in reality cannot grow unboundedly, at some point they will hit constraints

20

15 | 1

'
(&4
o
o
—
o

15 20

time

The saturation of the input at the constraint destroys the perfect output response y(t)
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An example

An example

Linear-quadratic optimal control | LTV-QR

We can also consider the more general formulation of a linear-quadratic optimal control

K-—1 T T
; T Tp Qk Sk} |:$kj|
iy ok Qo+ ) Al

E(zk)

Ly, (g yuy;)
subject to 41 — Agpap — Byup, =0, k=0,1,..., K -1
0 —ZTo =0

At each recursion step, we must compute the (now varying) stage-cost Ly (z, uk),
T T
Ty Qr S Ty
L S 2
ey =[] |S ][]

Matrices Qr and Ry are time-varying and positive semi definite and positive definite

® Matrix Qf is positive definite

Moreover, we allow for further flexibility in tuning by including the mixing matrix Sj
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An example

An example

An example

Linear-quadratic optimal control | LTV-QR (cont.)

T Kz? o) [ ST [
mp akeen e (0] (8 3] [0
T,u ) pr Uk Sk Rk Ul

Ly (g, ug)
subject to @41 — Agay — Brug =0, k=0,1,..., K -1
90 — 20 =0

Furthermore, we allow the system dynamics to be time-varying,

o (@, u) = Apaze + Brug
Under these conditions, the optimal cost V;* (z}) from stage k to k41 is still quadratic

1
Vi (z) = EkaHk+1zk

The backward Riccati recursion is used to compute ITj 41
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An example

An example

An example

Linear-quadratic optimal control | LTV-QR (cont.)

Using the terminal condition I1x = Qg , we have

O = Qp + Al Tlpyq Ay,

_ (SkT + Ang+1Bk) (Rk + BkTHk—Q—lBk) -1 (Sk n BI;FH]H_lAk)

The optimal decision variables are obtained from the feedback law,

uf (@) = — (Rk + BkTHk-HBk)il (Sk + B;?Hk-HAk) Ty

The forward simulation from T determines the state variables

Tp41 = Apxy + Bku]:
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An example

An example

Linear-quadratic optimal control | AQR

Consider the even more general formulation of an affine-quadratic optimal control

T T K-1]1 * qkT skT 1
v Lo o &l 4
mi [ + Z T a Qr S T,
z,u TK gk Qx| |7k = s S Rel |w
E
(o) Ly (g ug)
subject to @41 — Agary — Byup — ¢, =0, k=0,1,...,K—1
90 —x0 =0

These optimisations often result from trajectory linearisation of nonlinear dynamics

The general dynamic programming solution is retained by augmenting the state

=[]

G [t 0]z [0
Tk4+1 = Cr Ak Tk, By, Uk

]T

The augmented dynamics,

The fixed initial value is 7o = [1 Zo
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2021-2022
We discussed the linear quadratic regulator over a finite horizon of some length K
Linear quadratic regulators can destabilise a stable system over finite horizons
® Setting @, R > 0 is not sufficient to guarantee closed-loop stability
N — System
ug | Tg+1 = Azg + Buy Yk = Tk
An example ) . . = Iz
P 1 = Axy, + B | =Ky Yk &
——
uy LQR
y(t) = (1)
up = —Kxg,

The stability of the closed-loop is determined by the eigenvalues of matrix Acy,
The closed-loop dynamics,
Th+1 = Az, — BKay,
=(A— BK)xy,
N——

Acrp,
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Consider a discrete-time linear time-invariant dynamical system with LQR (K = 5)
4/3 —2/3 1
{ 1 0 } T, + [0} Uk

[

The discrete-time transfer function has a zero (z = 3/2), non-minimum phase system

Tk+1

An example yk

4
: T T T
v, o T @535+ D 3y Qo+ u Ruy
UQ, UL 55Ul k=0
subject to Az, + Bup —x,4+1 =0, k£=0,1,...,4
zo—20 =0

We use Q = Qs = CTC +0.0011 and R = 0.001 that barely penalises controls
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An example

An example

An example

The linear-quadratic regulator | Infinite-horizon (cont.)

Based on the Riccati equation, we iterate four times from Ilx = Qg = Q

Kf’), K3(5), K2(5), K1(5)v Ko(s)

Assuming that we use the first feedback gain K(g5>, we have

up = Kés)zk

k
, @, <A+ BK(§5)) -
The eigenvalues of (A + BKés))

(5)) _
A (48)) = w307, 0.001)
>1
As one of the eigenvalues is outside the unit circle
® The closed-loop system is unstable
® The state grows exponentially

® g —o00as k— oo
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2021-2022
The closed-loop eigenvalues of (A + BKéK ) for control horizons of different lengths, o

® For reference, the open-loop eigenvalues of A, X, are both stable

1

0.8

An example 0.6
0.4

An example 0.2

An example

Im 0
-0.2
0.4
-0.6
-0.8

15

When we start with a finite horizon LQR, we move both the open-loop eigenvalues
® From K =1, until we enter the unit disc at K =7
® The stability margin grows with K
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Infinite-horizon (cont.)

2021-2022
14| 1 Stability margin as function of
130 i the control horizon
% 12 | 1 ® Finite-horizon may return
. ‘ & 11l i unstable controllers
fm 3
Y S ——————— ® More robustness is gained
T ool | as the horizon grows
An example E
An example 0.8 4 N A(oo) _ (O 664.0 001)
07 b | cL ) =\
S i <1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N

A feedback gain Kéoo) corresponds to an infinite horizon linear quadratic regulator

oS}
: T T
B D o Qo+ u Ry
UQ, UL 5-- - k=0

subject to Awx, + Bup —x,41 =0, k=0,1,...
To—20=0



Infinite-horizon (cont . )
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2021-2022
o0
. T T
eI
ug,ul;-. k=0
subject to Az + Bup — 241 =0, k=0,1,...
An oyl To — T0 = 0
NN If we are interested in controlling a continuous process, without a final time, then the
An example natural formulation of the optimal control problem is with an infinite horizon cost
® In this case, the Riccati recursion has a stationary solution ITj = II;,

—1
M=Q+ATIIA - ATIIB (BTHB + R) BTTIA

Given II, we have the classic optimal control feedback

ut = — <R + BTHB)_1 BTTIA z,

K

Closed-loop stability is not relevant for batch processes, finite-horizon LQRs are fine
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2021-2022
oo
: T T
w2 Qo Rk
uQ,uL;--- k=0
An example
subject to Az, + Bup —a,41 =0, k=0,1,...
An exampte To — a0 =0
An example
Infinite-horizon solutions exist as long as the cost function is bounded

® In this case, the cost function is an infinite sum

® The result must not be infinitely big

This is possible when the linear-time invariant systems is controllable
~» We can transfer its state from anywhere to anywhere
~~ And, there exists a control sequence to do that

~~ And, it can be done in finite time
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An example
An example

An example

The linear-quadratic regulator | Infinite-horizon (cont.)

If the pair (A, B) is controllable, the there exists a finite horizon of length K and a
sequence of inputs that can transfer the state of the system from any z to any z’

That is, by forward simulation

UK,
UK —1
o' =AKz+[B AB ... AK-1B]| .
uo
Similarly,
UKy
UK —1
[BLAB ... AK-1B]| . | =4’ — A¥azt
C :
uQ

Controllability matrix C must be full rank for the equation to have a solution {uk}kK;Ol

® If cannot reach z’ in K moves, then we cannot reach it in any number of moves
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