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Optimising multi-stage functions
Consider the set of decision variables w, z, y, and z and the following objective function
f(w,z)+g(z,y)+h(y,2)

Each stage-cost function in the sum depends only on the adjacent pairs of variables

Consider the case in which w is known, and we want to solve the optimisation problem

min f(z|lw)+ g (z,y)+ h(y,2)

z,y,z|w
One possibility would be to jointly optimise for all the three decision variables (z, y, 2)

~+ This solution is certainly valid, but it does not exploit the problem structure

We could, alternatively, solve a sequence of single-variable optimisation problems

min f (z|w) + min g(z,y) +min  h(y,2)
Y z

z|w
| S —
1st

2nd

3rd
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min f (z|w) + min g(z,y) +min h(y,z)
y z

z|w
N ——
1st

Starting from the innermost optimisation problem, we solve with respect to variable z

min  h(y,z)
z

We obtain the solution for z and get the optimal value-function in terms of variable y
h* (y) =min  h(y,z) (optimal value-function)
z

2" (y) = argmin A (y, 2) (minimiser)
z
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An example

Optimising multi-stage functions (cont.)

min f (z|w) + min g(z,y) +min h(y,z)
y z

z|w

h*(y)

2nd

Proceeding with the next optimisation problem, we solve it with respect to variable y

min g (z,y) + A" (y)

We obtain the solution for y and get the optimal value-function in terms of variable z
g*(z) =min g (z,y)+h" (y) (optimal value-function)
y

y*(z) = arg myin g(z,y)+h* (y) (minimiser)
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min f (z|w) 4+ min
An example z|w Y

g(z,y) +min  h(y,z)

h*(y)

An example

g*(z)
An example

3rd
With the third and final optimisation problem, we solve it with respect to variable z

min f (alu) + 9 (2)

We obtain the solution for z and get the optimal value-function in terms of value w

f*(w) =min f (z|w)+ g* (z) (optimal function value)
x

z*(w) =argmin  f (z|w) + ¢* (z) (minimiser, solution)
x

Because w is fixed (we know its value), we have that z*(w) is completely determined
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m‘in f(zlw) +min | g(z,y) +min  h(y,z2)
r|w Yy z
—_———
h*(y) at z*(y)
An example g*(z) at y*(z)

An example f*(w) at z*(w)

Because we know z*(w), we have that y*(z*(w)) and z*(y*(z*(w))) are also known
7" (w) = y* (2" (w))
=2"(¥"(w))
=2"(y" (=" (w)))
Similarly, the optimal value of the objective function are computed by substitution

o (w) + g% (2" (w)) + h* (y™ (2™ (w)), 2" (y* (=™ (w))))
—_—— ——
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Optimising multi-stage functions (cont.)

This method to solve (unconstrained) multi-state optimisation problems can be an al-
ternative approach to solve optimal control problems (backward dynamic programming)

~~ The decision variables are determined, not jointly, but in reverse order

The solutions expressed as functions, of the variables to be optimised at the next stage

Its application is easiest for discrete-time systems with discrete state- and action-spaces

~+ With continuous spaces, the applicability is achieved by discretisation
~~ In continuous-time the problem is formulated as a PDE, the HIBE

~+ (The Hamilton-Jacobi-Bellmann equation)
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Discrete state- and action-spaces

Consider the nonlinear dynamic equation of a discrete-time state-space model
o1 = [ (@, uk)
Then, suppose that the state- and the action-space be discrete and finite

T, € X, with |X‘:NX
up €U, with [U| = Ny

Based on the discrete dynamics, we formulate the optimal control problem

K—1
R LG SR IRIC D
U, UL - UK —1 k=0
subject to  f (2, ug) — 2k4+1 = 0, k=0,1,..., K -1

Tog—20=0

The initial state zp is assumed to be known, some fixed value Zg
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K—1
min FE (zg) + g Lz, u,
Xy T1 5y TK —13TK ( K) ( ks k)

U, UL - UK —1 k=0
Discrete state .
ol cxetiior subject to  f (@, ug) — zk4+1 = 0, k=0,1,..., K -1
spaces .
Am o To— 10 =0

Controls {uk}kK:_O1 are the only decision variables of the optimisation (if zp is known)

An example

An example
We know that the state variables can be eliminated by forward-simulation
To = %0
T1 (=0, uo) = f (20, uo)
T2 (20, uo, u1) = f(z1,u1)
= f(f (20, w0), u1)
T3(z0, uo, u1, u2) = f(x2, u2)
= f(f(f(z0,u0), u1), u2)
Ty (20, u0, U1, - -, UK —2, Uk —1) = f(TR—1, UK 1)

:f(f( . 'f(Io,’U{)),’UIK72),UK71)
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K—1
B LG SR IRIC D
U, UL - UK —1 k=0
subject to  f (@, ug) — zk4+1 =0, k=0,1,..., K —1

To—20=0

This formulation of discrete optimal control problem does not include path constraints

Path constraints can be implicitly included by letting stage-costs be equal to infinity
~ For any infeasible pair (Zy, i), we have that L (Z, ) = oo

To include these, as well as other, inequality constraints we have

L:XxXU—>RUx
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An example

An example

Discrete state- and action-spaces (cont.)

K—1
50,71 5 B 117K B (zx) + Z L (e, )
UQ UL yee ey UK — ] k=0
subject to  f (@, ug) — xk4+1 =0, k=0,1,...,K —1
ZTo—x20 =0

As each ug can only take on one of Ny, values, there are sz( possible control sequences

NZ/I X Nu X X N(,{ X NZ/I
~~ ~—~
Stage 0  Stage 1 stage K —2 stage K — 1

K times

Each possible control sequence corresponds to a different trajectory {{zx, uk}fgol Uzg }
~ Each such trajectory associates with a specific value of the objective function

~+ The optimal solution, the sequence(s) of smallest function value
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K—-1
20,31, 1 oK E(ox) + L (o, )
U, UL - UK —1 k=0
subject to  f (@, ug) — zk4+1 =0, k=0,1,...,K —1
ZTo—x20 =0

Naive enumeration of all trajectories has a complexity that grows exponentially in K

NuXNuX'”XNu

K times

The idea behind dynamic programming is to approach the enumeration task differently

We start by noting that each sub-trajectory of an optimal trajectory must be optimal
~ If {{=z, u;}ffgol Uz} is optimal, then any {{z;, u]:‘}ngol Uz} is optimal

~~ This property is known as the Bellman’s principle of optimality
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Discrete state- and action-spaces (cont.)

We define the value-function or cost-to-go as the optimal cost that would be attained if,
at time k, from state T € X', we would solve the shorter optimal control problem

K—-1
Ji, (Tk,) T S E(zx)+ Y L(zi,w)
Uk U1+ UK — 1 i=k
s.t. f(mi,ui)—zi+1:0, i=kk+1,..., K—1
Ty —x =0

Function J : X — R U oo summarises the cost-to-go from zj to the end of the horizon

® Starting from some initial state Ty, under the optimal actions {u;‘}f{:_kl

As there is a finite number Ny of possible initial states Ty, at each stage k, we have

Ji (Zlgl))

Jk (zéNX)>
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An example

Discrete state- and action-spaces (cont.)

The Bellman equation

The principle of optimality states that, for any k € {0,..., K — 1}, the following holds

Jy (Tg) = min (L (Zg, u) + Jpt1 | [ Tk, w) )
u e ¥

Thy1
= min (L Tk, u) + Jpt1 (Tk-u))

Similarly, we have that, at k + 1, the following holds

Ji (Tp41) = min (L (ZTkr1,u) + Jig2 | [ (Tpt1,u) )
u N—  —

Tp42

= muin (L (f;ﬁ.h u) + Ji42 (Ek_,_g))
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All the way to K, when there is no longer any time to apply any control action ug

® The stage-cost at K then equals the terminal cost E(zg)

Discrete state

:r,::c::non Ji (Tx) = min (L (Tr,u) +JIx+1 )
U=UK  \ N e
An example E(@g)
= E(TK)
An example
An example At the preceding stages, we have
Jk_1(Fk_1) = min (L@K_l, W)+ Ik | f @ro1,w) )
U=ug _1 ———
Tg
= min (L (Tr—1,u)+ Jk (EK)>
U=URK 1 N——"
E(Zk)
Tz @x-2) = min (L@x-2,u)+ o1 | { @r2,u) |)
U=UR 2 N——r
Tr—1

= min (L(?K_Q,U)+JK—1 (EK—I))

u=ug 2
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Remember the formulation of the optimal control problem, the objective is multi-stage

Discrete state K—1
and action .
spaces min E (zx) + E L (zx, ug)
O T, T1 ;- T
e UQ,UL - UK — 1 k=0

subject to f(a:k,uk)—xk+1:0, k=0,1,..., K —1

To—20=0

The initial state g is fixed at Zo, the controls {uk}kk:ol are the actual decision variables

That is, we have the multi-stage objective function

K-1
min E(zx)+ Y L(zk, )
UQ,UL5e 5 UK —1 k=0
subject to  f (2, ug) — zk4+1 = 0, k=0,1,..., K —1

Zo— 20 =0
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min L(20,u0) + L(z1,w1) + -+ L(zg_2,ux—2) + L(zx_1,ur—1) +E (zx)

EOR)

Discrete state

e A Lowme)

An example st f(zp,ug) —a2k41 =0, k=0,1,...,K—1
Zzo—20 =0

An example

An example

With the explicit dependence only on the true decision variables, we have

min L(z0,u0) + L | 20, w0, w1 | + L | zo,uo, u1,u2 | +---
0, —— —_————
UQHUL -y UK —1 o1 22

+ L | mo,uo ~ ug—3,ux—2 | + L | 20,u0 ~ ug—2,ux—1
e rrea—
+ B (zx)
s.t. Tog— 2o =0
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and action Furthermore, we can remove the (initial) equality constraint and write

spaces

An example
min Lo (uo|zo) + L1 (uo ~ u1|zo) + L2 (uo ~ uz|wp) + -
ug~ug —1 |70

An example oo+ Lg—2 (uo ~ ux—2|20) + Lx—1 (w0 ~ uk—1l|z0) + E (2K)

An example
We can solve the equivalent problem as multi-stage optimisation

min (Lo(uo|w0) + 1111L11n (Ll(uo ~up) + n;;n (LQ(U/() ~ug) o

ug |70

--- 4 min (LK—Z(UO ~ Uk —g) + uff({nl Lg—1(uo ~ uK—l)))) + T{}Ii{ﬂ E(ZK))

UK —2



CHEM-E7225
2023

Discrete state
and action
spaces

An example
An example
An example

Discrete state- and action-spaces (cont.)

‘We know that this backward recursion is denoted as the dynamic programming recursion

up (z1) = arg muinL(a:k7 u) + Jgt1 (f (zx, w))

Once all the value-functions Jj are computed, we also have the optimal feedback control

$k+1=f($k7u1:($k))a k=0,1,...,K -1

The computationally demanding step is the generation of the K value functions Jj
® Each recursion step requires to test Ny controls, for each of the Ny states

® BEach recursion requires computing f (@, v) and L (zz, u)

The overall complexity is thus K x (Nx X Ny)



CHEM-E7225

Discrete state
and action

spaces

2023

An example

Discrete state- and action-spaces (cont.)

One of the main advantages of the dynamic programming approach to optimal control is
the possibility to be extended to continuous state- and action-spaces, by discretisation

® No assumptions on differentiability of the dynamics or convexity of the objective

However, it is important to notice that for a N, dimensional state-space discretised
along each dimension using M, intervals, the total number of grid points is Ny = Mév l

® That is, complexity grows exponential with the dimension of the state-space
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An example
Consider a total stage-cost given as sum of the state stage-cost and control stage-cost
k k
Ly (g, u) = Ly (zr) + Ly (i, ug)

The stage-cost for the states (the positions on a (4 x 3) board)
® The target state is located in the position (2, 2)

® The associated state-cost (per stage) is zero

x | x X 5 | 5 5
x | X X - 5 | 0 5
x | x X 5 | 5 5
X X X 5 5 5
—_— ————
& LE (€ X)
The stage-cost for the controls (the 9 possible ‘moves’)
® The control-cost per stage is one, or zero
Nt 111
VRN 11 1
————

——
u LE (@, u, €U)
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The policy (control law) 7 specifies the action that we will perform at time step &

® The control policy is a function of the state (state-feedback), at stage k

7 (2) = wk ()
A random example of a possible control policy

A eI W(Ik) = 1 I
—

An example

An example

NS
N4 T

At k, the objective is to find the policy that minimises the cost-to-go

K
> Li | @k, w
k Y

(@)
The value-function of the control policy at k quantifies the goodness of the policy when

at T

Ve (z) = Lg | o1, w + Ve (z
(zx) = Li | o, wp (@41)

(@)



T An example (cont.)
2023 .
Stage K

At the final stage k = K, we have the following value-function of the policy function

Ve (zx) = Lk TK, Y + Velers1)

(2K )

An example

A\ R Lf (Z'K) + LuK

An example

+V 1

L (zk uk)
515 5
510 5
= 515 5
5 5 5

As there is no time left to apply any control ugx = 7(zk), we have the optimal policy

™ (zg) = |
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An example (cont.)

We have the optimal policy,
ﬂ_* ( T K) = |
The value-function for the optimal policy corresponds to the terminal cost E (zx)

Vax (zx) = Lk | 7K, &;}(I +W
(k)
= E (zx)

The value of the policy,

Vs (zx) =

ot Ot Ot Ot
ot ot O Ot
ot Ot Ot Ot

The value of the optimal policy at stage K gives the total cost that would be incurred
if, starting at some state zx € X, the best sequence of actions would be performed

® The first optimal action of the sequence (!) was found to be ‘do nothing’
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According to the Bellman’s principle of optimality, the optimal policy at stage K — 1

A crmmEie
(@) = argmin (L —1(zx -1, uk—1) + Var (2))

An example

~+ We must compute the stage-cost Lx_1(zx_1,ux_1) at stage K — 1

An example

~» We already know the value of the policy Vi (zk)

5 | 5
5

Vﬂ'*(xK): 5 }
5

or ot O
Ut Ot Ot Ot
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An example (cont.)

Stage K — 1
x | x X
x | X X
x | x X
X X X
| S ——
x

For each state zx 1 € X, compute the stage cost Lx_1(zx_1,ux_1), forallug_1 € U

We add it to the optimal value-function at stage K, Vy+(2), and optimise

Vs (z571) = min (LK—I(mK—lzuK—l) + Vw*(IK)>

UK —1

From a minimisation of the value function, we compute the optimal policy to get uyp

W*(mKﬁl) = argm&n (LK,l(zk,l, Up_1) + V= (zK))

N TS
— - =
4N
N——

u
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An example (cont.)

X X X o
X X X X
X X X X

Suppose that the system is at state X1,1 and consider control action 1

® As a result the system stays at state X71

We have the total stage cost, as sum of state-cost and action-cost

L —1(X1,1,1) = Ly ~H (X)) + Ly~ (A1, 1)
=5+1
=6
The application of action 1 leads to state X7 1

Ve (X11) =5

We proceed similarly, for actions |, X, 7, v/, \, ¢, -, and — applied to state X1



CHEM-E7225 An example (COIlt.)
2023

o | x X
x | x X
An example x I x x
X X X
An exa mple
£ ik For action | applied to state X711, we have the total stage-cost

Lg—1(X1,1,4) = TN (&) + 75 (A1, 0
=5+1
=6
The application of action | leads to state X2 1

Vax(X2,1) =5
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An example (cont.)

X X X o
X X X X
X X X X

For action - applied to state X7 1, we have the total stage-cost

Lg—1(X1,1,-) = JETHX0) + TN (X, )
=5+0
=5
The application of action | leads to state X7 1

Vax(X1,1) =5
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An example
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An example (cont.)

Summarising, for state X711
® At stage K — 1

Lg-1(X1,1,1) + Vex(X1,1) =645

=11

Lig_1(X1,1,\) + Vex(X1,1) =645
=11

Lg-1(X1,1, /) + Var (X1,1) =6 +5
=11

Lig-1(X1,1,) + Var (X1,1) =6 +5
=11

Lig_1(X1,1,\) + Ve=(X1,1) =6+5
=11

LK_1(X1’1, (—) + Vs (X1,1) =6+5
=11

Lrg_1(X11,—)+ Vex(X11) =645
=11

Lig—1(X1,1,4) + Vex (X2,1) =645
=11

LKfl(Xl,L ) + V= (Xl,l) =545
=10
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An example (cont.)

The optimal action that we can do when at state X1 1 at stage K — 1 is to not move, -

™ (X1,1) =

The value of the optimal action, at stage K — 1

0 | - -
L S

The value-function V= (X1,1) gives the cost that would be incurred if, starting at state
X1,1 and from that stage on, we performed the best possible sequence of actions

® The first action would be the one given by the optimal policy #*(X1,1 € X)
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An example (cont.)

Analogously for the other states zx_1 € X at stage K — 1, we have the optimal policy

NG v

" . . —

m(zk—1 €X) = : 1 N

The value of the optimal policy, at stage K — 1

10 | 6 6
10 0 6
Vas(zg_1 = X1,1) = 10 I 6 6
10 10 10

The value-function Vy«(zx_1) gives the cost that would be incurred if, starting at any
state zx _1 and from that stage on, we performed the best possible sequence of actions

® The first action would be the one given by the optimal policy 7*(zx_1 € X)
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Stage K — 2

The value of the optimal policy at stage K —1 gives the total cost that would be incurred
if, starting at state zx_1 € X, the best sequence of actions would be performed

10 | 6 6

10 0 6

Vs (1) = 4 I 6 6
10 10 10

The first optimal action of the sequence

7T*(CEK,1 GX)Z I

—
TN
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An example

An example (cont.)

X X X X
X X X X
X X X X

|

For each state zx o € X, compute the stage cost Lx _o(2x 2, ux—2) for all ux_o € U

We add it to the optimal value-function at stage K and optimise

Vs (2 —2) = J}({HZ (Lx—2(zx_2,u—2) + Var (2K _1))

From a minimisation of the value-function, we compute the optimal policy

7 (2 —2) = argmin (Lx —2(zK 2, ux—2) + Vi (2K 1))

N oA
—
VAN
—_———

u
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An example

An example (cont.)

At stage K — 2, we have the optimal policy

7T*($K_2 S X) =

The value of the optimal policy, at stage K — 2

Vs (T —2) =

15
15
15
12

Do o

Ju—
]

-/ TN

Do

—
[\
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An example

An example (cont.)

Stage K — 3

At stage K — 3, we have the optimal policy

(23 € X) = ¢
/
The value of the optimal policy, at stage K — 3

20
20
Vi (IK—3) = 18

12

6
0
6

1

-

2

-/ TN

(o2l e

—_
[\
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An example

An example

An example (cont.)

Stage K — 4

At stage K — 4, we have the optimal policy

T (zx—4 € X) =

The value of the optimal policy, at stage K — 4

Ve (Tr—4) =

N -

25
24
18
12

6
0
6

1

-

2

-/ TN

(o2l e

—_
[\
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Stage K — 5

At stage K — 5, we have the optimal policy

An example i ‘ \L
(a5 € X) = v '
p— Lot
An example /( T
=x" (:l)K,4 S X)
The value of the optimal policy, at stage K — 4
30 | 6
7
Varlzc-a) = G5 | 6

-/ TN

(=X i

=
N
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Linear-quadratic
regulators

The linear-quadratic regulator

An important class of optimal control problems is the linear-quadratic regulator, LQR
® The controller has to take the state of the system to the origin
® The system dynamics are deterministic and linear
® The objective function is quadratic

The problem is unconstrained and the horizon for control can be finite or infinite

® Their solution can be obtained with dynamic programming
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An example

Linear-quadratic
regulators

The linear-quadratic regulator (cont.)

Consider first the case in which we are interested in stabilising the system in K steps
We define an objective function to quantify the distance of the pairs (zy, ui) from zero

K—-1

V (20, w0, @1, 01, - -, Tk 1, uk 1, 7K) = B (zx) + | Lz, w)
k=0

® Terminal-stage cost
1
E (zg) = 51‘5@}(1]?
® Stage-cost

1
L(zx, up) = 3 (a:kT Q. + ukTRuk)

The objective depends on the control sequence {uy }sz_Ol and the state sequence {zj, }H<_
® We assume that the initial state zp is fixed and a known quantity

® Remaining states are determined by f(zy, uy) for {Uk}kKio

Matrices @ and Qg are positive semi-definite, R is positive definite

® They are tuning parameters
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Consider a linear and time-invariant process with single state variable and single input
The system dynamics, in discrete-time
L1 = axy, + buy,  with 2, u, € R
An example

The control problem, in discrete-time

Linear-quadratic

regulators

An example 1 - 1 K—-1 - -

An example minimise —Tp (K TK += E (Tk qr + uy r'uk)
UQSUL ey UK —1 2 2

S k=0 e —————
E(zg) (2) L=, ug )
Consider a finite-horizon of length one (K = 1)

P 1 T — T T
minimise =i Qg T1 + = E Ty qu + up Tug
U 2 2
k=0
‘We have,

1
minimise 5 (a:lT qr T + :E(]T qro + u[)T 7‘u0>
ug



CHEM-E7225
2023

An example

Linear-quadratic

regulators
An example
An example

The linear-quadratic regulator | Baby LQR (cont.)

1
minimise 5 (xlT qr T + :rUT qxo + uOT r'uo)
up

In this simple case, we only need to (optimise to) find a single control action, ug
® Under the dynamic constraint that =1 = axg + bug

® The initial state zg is fixed and known

After embedding the dynamics in the objective function, we get

minimise — :1;11 qK 1 +:1;01 qxo + uol U
uQ ~~ ~~
azg+bug azg+bug

All the terms (a, b, ¢, gk, 7 and zp) in the cost are known, except for ug

® Control action ug is the decision variable, it is a scalar



The linear-quadratic regulator | Baby LQR (cont.)

CHEM-E7225
2023

1
minimise — :ElT gk ® —HEOT qzo + uUT T UQ
uQ ~—~
azg+bug azg+bug

An example Substituting and rearranging, we have a quadratic equation ug
Linear-quadratic
regulators 1 ) ) )
An example minimise — (qa:[f + ru(f + gx (azo + bug) )
A i u0 2

f(uo)

® We are interested in value up that minimises this function

After some algebra, we see that the cost function is a parabola

1 . .
f(uog) = 3 (qz(f + 'r‘u(f + qx (azo + buo)2)

((e+ a?qi)xd + 2(bagrzo)uo + (D% qx + 'r‘)ug)

N | =

We know how to locate the minimum of parabola, its vertex
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wnd action

An example
Linear-quadratic
regulators
An example

An example

The linear-quadratic regulator | Baby LQR (cont.)

((¢+ a®qx)ag +2(bagrzo)uo + (b7 ar + r)ug)

N =

fuo) =
f(uo) is a parabola and it is smallest at the value vy that makes its derivative zero

d .
@f(m)) = bax azo + (b2 g + r)uo

=0

We have the solution to the optimisation/control problem

bgka
=————0
b2qi + 1
k
= —kxp



P The linear-quadratic regulator (cont.)

2023
For systems with multiple state variables and multiple inputs, the structure is identical
The system dynamics, in discrete-time
. — Ay 3 ith o Ny . Ny,
An example Tpr1 = Az, + Buyp, with 2, € R and u; € R
Linear-quadratic
regulators
An example The control problem, in discrete-time
An example

K—-1
1 .. 1 P .
minimise 77,1 Qrrg +— E <Tk[ Qi + ukl [1’uk)
UQH UL, UK —1 2 2 =
—_—— =
E(zg) L(y,uy)

Consider a finite-horizon of length one (K = 1)

1-1
1 1
o« . . T T T
minimise —z; gz + — (a: Qz + uy, Ru;)
in 5% QK T1 2];:0 p QT e ug
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An example

Linear-quadratic
regulators

The linear-quadratic regulator (cont.)

After substituting the dynamics, we get

P 1 | T, T 0 Tp
minimise — 1 QK 1 + x5 Qo + vy Ruo
ug ~— N~~~
Axg+ Bug Axg+ Bug

After some algebra and rearranging, we have
1
minimise — (a;OT <Q + ATPA) 0 + 2u0TBTQKAa:o + uOT <BTQKB + R) ug)
uo 2

Taking the derivative and setting it to zero, we get

df (o) _ BT Qx Azo + (BTQKB + R) o
dug

=0

Solving this linear system of equations for the unknown ug, we get

—1
[ (BTQ/ B+ R) BT Qi Ao

K

To be able to solve for longer control-horizons, we use backward dynamic programming



Intermezzo

Sum of quadratic functions
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An example
Linear-quadratic
regulators
An example

An example

The LQR | Sum of quadratic functions

Consider two quadratic functions

‘

2

5

Vi(z)

1
:i(a:—a)TA(a:—a)

(=

1

2

Va(z)

-

-1

:%(z—b)TB(z—b)

1

2

(

al
2

-

1
1

D'l

DRz (2]

=0

1.5 0.5

0.5

=0

1.5

|l

x1
z2

-

1
1

)

-1
0

)
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We compute function V(z) = Vi(z) + Va(z) and show that it is a quadratic function

5
V(z):%((z—v)TH(z—v)—i-d)

An example g 0 where
Linear-quadratic
regulators H=A+B
An example
An example v = H_l (ACL — Bb)
—5 0 d=—(Aa+ BW)T H ' (Aa+ Bb) + aTAa 4+ b"Bb
ry

Matrix H is a positive definite matrix, because both A and B are positive definite

V(z):%((x—v)TH(x—v)—i-d)

-1 b sm (] -[])+oe

=0

N | =
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An example
Linear-quadratic
regulators
An example

An example

The LQR | Sum of quadratic functions (cont.)

Consider two quadratic functions, one of which with a linear combination of variable z

Vi(z) = —(z —a)T A(z — a)

| = N =

Va(z) = 2 (Cz - 7T B(Cz —b)

We can compute function V(z) = Vi(z) + Va(z),
L T
V(z) = 5((%7]) H(mfv)er)

where
H=A+cCTBC
v=H~1(Aa — CBb)
d=—(Aa+ CBO)T H=' (Aa+ CBb) + o Aa + b" Bb
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Multi-stage
optimisation

Discrete state
and action
spaces

An example

«aies ™" The linear quadratic regulator (cont.)

An example

Dynamic programming
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We have the optimal control problem, with quadratic cost terms and linear dynamics

K—-1
min E(zx) + E L(z,u
TO,T1 5, LK —1,TK (@) (o, we)
An example UQ UL ey UK — 1 k=0
Linear-quadratic .
e o subject to Az + Buy — 2541 = 0, k=0,1,..., K -1
An example EO —x0 = 0

An example

The optimisation problem can be re-written in the equivalent form

min L(To,uo) + L(z1,u1) + - L(zx—1,ux—1) + E (2K)

)
Tl TK —1,TK
UQ UL yee e UK — ]

V (uo,@1,u - yug —1]70)
We will consider the usual quadratic stage- L(-,-) and terminal- E(-) cost functions

L, uk) = 27 Quan + u Ry,

E(w) = 2g Qg
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An example

Linear-quadratic
regulators

The linear-quadratic regulator (cont.)

After isolating the last two stages, we get

rr%in (L(fomo)+L(x1,u1)+-~+L(a:K_2,UK_2)+
@1yt o
U, UL -+, UK —2

min (L(a;thuK—l)‘f'E(iEK)))

UK —1>TK

At the last stage, we have the problem
min  L(zg_1,ux—1)+ E (2x)
UK —1,ZK

subject to Azgx_1+ Bug_1—zx =0

The state xx _1 appears as parameter

We define optimal cost (the minimum) and optimal decision variables (the minimiser)
~+ The optimal decision variables u}, _; (zx_1) and z}; (zx_1)

~+ The optimal cost V* (zx_1)
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min L(zg—1,ux—1)+ E (2K)
UK —1,ZK

subject to Azgx_1+ Bug_1 —zx =0

To solve this optimisation problem, we firstly substitute the dynamics then re-arrange

A ik 1
Linear-quadratic E(zx) + L(zk—1,u—1) = §(A$K71 + Bug-1)" Qx (Azg_1 + Bug_1)
regulators

An example E(zk)

An example

1
+ 5(5517(171 Q T _1+ ujg;,l R UN—I)

Lz —1,ux—1)

1
=3 (13;:?71 Qa1+ (ug—1— )T H(ug_1 —v) + d)
where

H=R+BTQxB

v=— (BTQKB 4 R)*1 BT QxAzx_,

-1
d=zT_, (ATQKA —ATQxB (BTQKB 4 R) BTQKA) TK_1
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An example

Linear-quadratic
regulators

An ex

An example

The linear-quadratic regulator (cont.)

The optimal control action uj _; = v is a linear function of the state zx_1

-1
w1 =—(BTQxB+R) B QxAwk

Kg—1
We can compute the terminal state zj from the optimal action

* *
2 = Asg_1 + Bup_,

-1
Avg 1+ B (BTQxB+R) BT QxAwk

-1
A+ B (BTQKB 4 R) BT QA | 21

—Kg—1

The cost of the optimal control action is quadratic in xx_1

T
V":1 TE_ Qi1+ |uhb_;— v Hluy_{— v +d
K 2 K—1 -1 K—1 \* , K—1 \* ,
Uk —1 Uk —1
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Linear-quadratic
regulators

An example

An example

The linear-quadratic regulator (cont.)

Vi
T
1
=5 oF 1 Qui_1+ [uf_y — v Hlujp_ 41— v, |+d
'11,;‘{71 ul*<71
=0
1 —1
=5 | o1 Qo 2k (ATQKA—ATQKB(BTQKB+R) BTQKA)szl

d

1 -1
= S (Q +ATQxA—ATQxB (BT QKB + R) BTQKA) ox -1

g1
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Kio1=—(B"QxB+R) BT QA

Summarising, we have

An example
Linear-quadratic u;({—l (szl) = Kg_1Tk_1
regulators

*
An example T (mel) = (A + BKKfl) TK—1
An example

1
* T
VK (JSK—I) = §$K71 Mg_1 21

Function V¢ defines the optimal cost-to-go from zx 1, under optimal control uj _,;

~ It depends only on zx_1, it allows us to move backwards to stage K — 2

min L(Zo,uo)+ L(z1,w1)+- -+ L(zx—2,ux—2)+ V" (zx_1)
x

@1, 0K -2
U, UL, UK —2
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min L(Zo,uo0) + L (21, u1) + -+ L(zx_2,ux—2) + V™ (2x 1)
11,4»-7£K72
UQ UL ey UK — 2

V (u0,m1,u1 55 ug —2]70)

An example

Li“e?ft-(l"ﬂdm““ After isolating the last two stages, we get
regulators
An example
min (L0, u0) + L (w1, 1) + -+ + L (a3, ux—3) +
Zo

1, TK -3
UQ,UL 5oy UK —3

min (L(mez, ug—2) + V* (ZKfl)) )

UK —2,TK —1

At the last stage, we have the problem
min V* (zx-1) + L (2K —2, ux —2)
UK —2,TK —1

subject to Azgx_o+ Bug_o—xzg_1 =0

The state xx _o appears as parameter
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regulators
An example

An example

The linear-quadratic regulator (cont.)

min V* (#x—1) + L (zx—2, ux—2)
UK —2,TK —2

subject to Azgx_o+ Bug_o9—zx_1 =0

We define optimal cost (the minimum) and optimal decision variables (the minimiser)

~» The optimal decision variables u}, _, (zx_2) and zj; _, (zx—2)
uj o (zx—2) = Kg_2TK_2
Tg_1 (zx—2) = (A+ BKg_2) T —2

~» The optimal cost V* (zx_2) from stage K — 2 to K

1

* T
Vg_1 (gr—2) = 5ok —2 k-2 2K —2

We used,
T -1 T
KK_Q:—<B HK_lB+R) BTTx 1A

—1
Mg o=Q+AT g 1 A— AT g, B <BTHK_1B+ R> BTTx 1A
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regulators
An example

An example

The linear-quadratic regulator (cont.)

The recursion that gives Il _o from I1x_ is known as the backward Riccati iteration

In the general form, the recursion starts from [Ix = Qg

-1
M1 =Q+ATILA— ATILB <BTHkB + R) BT, A
(k=K,K—-1,---,1)
We can also define the general form of the optimal cost and optimal decision variables

~ For the optimal decision variables u; (zx) and z;* (2), we have
i (
*

z; (

e

) = —Kra

T
~ For the optimal cost-to-go V* (z;) from stage k to K, we have

1
Vi (ar) = §ka Mpp1
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The linear quadratic regulator
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Consider the linear and time-invariant dynamical system with measurement process

z(t) = Az(t) + Bu(t)
An exa\mf)]e y(t) = C.Z(t) + Du(t)

Consider the following system matrices and associate IO representation

A=-b y(s) = g(s)u(s)
B=—(a+b) s—a
C=k g(s):ks+b
D=k

For (a,b) = (0.2,1) > 0 and k = 1, system has inverse response (right-half-plane zero)
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2023

Step response, by solving the ODE with u(¢) = 1 and initial condition z(0) = 0
~+ We observe what happens from the measurements y(t)

~+ The response to a unit step of the control u(t)

An example
1
0.8 ]
An example 0.6
S 0.4 | 1
Yy 02} A
o} A
02 |
-0.4 + d

-5 0 5 10 15 20

time

Suppose that we request a unit step of the output y(t), say a set-point change
® We ask what is the optimal control action

® The best action capable to deliver it
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An example

An example

An example

The linear-quadratic regulator (cont.)

()_ks—a
Y= s+ b
——

9(s)

u(s)

In the Laplace domain, we have the requested output

y(s) = -

WE substitute it and solve for %(s), we get
_ Y
u(s) = —
9(s)
s+b
ks(s — a)

Back to the time-domain, the control
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Output response y(¢) is perfectly on target, with an exponentially growing input u(t)

350
300
250
An example 200
150
100 |

An example 50

An example 0

time

We are capable of achieving perfect tracking in y(¢) by using applying an optimal u(t)
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1 s+b

s—a ks

g9(s) = k%, with u(s) =

The zeros at s = a in g(s) and u(s) cancel out, tracking of output y(t) looks perfect

® The input-blocking property of the zero in the transfer function

An example

350
A 300 |
A ezt 250
200 +
150 +
100 +
50 +

time
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An example

An example

An example

The linear-quadratic regulator (cont.)

Clearly, inputs u(t) cannot grow unboundedly, at some point they will hit constraints

20

15 +

o

time

15

20

The saturation of the input at the constraint destroys the perfect output response y(t)
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We can also consider the more general formulation of a linear-quadratic optimal control

K-—1 T T

. T Ty Qr S } |:$kj|

\ | o \xK_QK_/xK + ];) |:Uk:| |:Sk Ry | |uk
b Bler) Ly (g yug;)

subject to 41 — Agpap — Byup, =0, k=0,1,...,K—1

An example
70 —Top =0

An example
At each step k of the recursion, we must compute the (varying) stage-cost Ly (zy, ug)

ANl

Ly (zp, up) = [uk P

Matrices Qr and Ry are time-varying and positive semi-definite and positive definite

® Also matrix Q is positive definite

Moreover, we may add further flexibility in tuning by including the mixing matrix S
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An example

An example

An example

Linear-quadratic optimal control | LTV-QR (cont.)

T Kz? o) [ ST [
mp akeen 3 (0] (8 %) [0
T,u ) pr Uk Sk Rk Ul

Ly (g, ug)

subject to @41 — Agay — Brug =0, k=0,1,...

90 — 20 =0
Furthermore, we allow the system dynamics to be time-varying,

i (zis wg) = Az + Brug
The optimal cost V;* (zx) from stage k to k + 1 is still quadratic

1
Vi (z) = EkaHk+1zk

The backward Riccati recursion is used to compute ITj 41
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An example

An example

Linear-quadratic optimal control | LTV-QR (cont.)

Using the terminal condition IIx = Qg , we have

Oy = Qp + Al Ty 1 Ay

_ (skT T A,an+13k) (Rk T B,?Hk+13k) - (Sk + B,CTHHIA,C)

The optimal decision variables are obtained from the feedback law,

up (zg) = — (Rk + Bgnk+lBk>71 (Sk + BkTHIH»lAk) p

K,

The forward simulation from Ty determines the state variables

Tpy1 = Apzy + Bruy
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An example

Linear-quadratic optimal control | AQR

We consider even more general formulations, to get an affine-quadratic optimal control

E
5

* qkT skT 1

T
1177« -
|:IK:| {qx QK} |:xK] X:: a QST |

st Sk Rel |uk

E(zk)

subject to @41 — Agary — Byup — e, =0, k=0,1,...

90 — 2o =0

Ly (g, ug,)

JK—1

These optimisations often result from trajectory linearisations of nonlinear dynamics

The general dynamic programming solution is retained by augmenting the state

=)

The augmented dynamics take the form

PR b S I
Thrr = Ao oA BT g | W

The fixed initial-value is 7o = [1 EO] T
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We discussed the linear-quadratic regulator over a finite horizon of some duration K

Linear-quadratic regulators can de-stabilise a stable system over finite horizons

® Setting @, R > 0 is not sufficient to guarantee closed-loop stability

N — System
Ug Tp41 = A:L‘k —+ Buk Yk = Tk
An example ) . = Iz
. m‘mi“ 1 = Axy, + B | =Ky Yk k
——
up LQR
y(t) = (1)
up = —Kxg,

The stability of the closed-loop is determined by the eigenvalues of matrix Acy,
The closed-loop dynamics,

Th+1 = Az, — BKay,
=(A— BK)xy,
N——

Act



An example

The linear quadratic regulator
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Consider a discrete-time linear and time-invariant dynamical system with LQR (K = 5)

4/3 —-2/3 1
Tp+1 = [{ O/ :|-77k+ [0} Uk
—_— ~~

An example Y = |:_21/3:| TK
——
C

The discrete-time transfer function has a zero (z = 3/2), non-minimum phase system

4
. T 7 -
min T 5 + E z z. + uL Ru
TQ T 5+, T4, T5 5 Qs o5 e Q k k
U, UL -, Ud k=0

subject to Az, + Bup —x,4+1 =0, k£=0,1,...,4
To—20=0

Weuse Q = Qs = CTC +0.0011 and R = 0.001 that barely penalises control actions
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An example

An example

The linear-quadratic regulator | Infinite-horizon (cont.)

Based on the Riccati equation, we iterate four times from Ilx = Qg = Q

k® kO kO kO, k)

Assuming that we use the first feedback gain K(g5>, we have
up = Kés)zk
k
o = <A+ BK(§5)) -
i (5)) _ 405)
In closed-loop, the eigenvalues of (A + BK, ) = Agyp,

A (48)) = w07, 0.001)
>1

One of the eigenvalues is outside the unit circle
® The closed-loop system is unstable
® The state grows exponentially

® g —o00as k— oo



P The linear-quadratic regulator | Infinite-horizon (cont.)
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The closed-loop eigenvalues of (A + BK(EK)) for horizons L of different duration (o)

® For reference, the open-loop eigenvalues of A (x) are both stable

1

0.8

A el 0.6
0.4

0.2

Im 0
-0.2

-0.4

-0.6

-0.8

An example

An example

15

When we start with a finite horizon LQR, we move both the open-loop eigenvalues
~» From K =1, until we enter the unit disc at K =7

~~ The stability margin grows with K
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14| 1 Stability margin as function of
130 i the control horizon
% 12 | 1 ~» Finite-horizon may return
. ‘ & 11l i unstable controllers
fm 3
Y S ——————— ~~ More robustness is gained
T ool | as the horizon grows
An example E
An example 0.8 7 2 (AE;OO)) _ (0.66470.001)
o7y e 1 L N~
06 <1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N

A feedback gain Kéoo) corresponds to an infinite-horizon linear-quadratic regulator

oS}
: T T
B D o Qo+ u Ry
UQ, UL 5.+ k=0

subject to Awx, + Bup —x,41 =0, k=0,1,...
To—20=0
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2023

oo
min Z T Qzy, + ul Ruy,

TO, T,y

U, UL 5 k=0
subject to Az + Bup — 241 =0, k=0,1,...
ZTo—x0 =0

NN If we are interested in controlling a continuous process, without a final-time, then the
natural formulation of the optimal control problem is with an infinite-horizon cost

An example

® In this case, the Riccati recursion has a stationary solution ITj = II;,
-1
M=Q+ATIA - ATIIB (BTHB + R) BTTIA
Given II, we have the classic optimal control feedback

ut = — <R + BTHB)_1 BTTIA z,

K

Closed-loop stability is not relevant for batch processes, finite-horizon LQRs are fine
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oo
: T T
min E T T, + vy Ru,
L0, T 5y % @ ke VR
A i U0, UL k=0
subject to Az, + Bup —a,4+1 =0, k=0,1,...
An example To — To = 0

An example

Infinite-horizon solutions exist as long as the cost function is bounded
® In this case, the cost function is an infinite sum

® But, ... the result must not be infinitely big

This is possible when the linear-time invariant system is controllable
~» We can transfer its state from anywhere to anywhere
~~ And, there exists a control sequence to do that

~~ And, it can be done in finite time
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An example

An example

The linear-quadratic regulator | Infinite-horizon (cont.)

If the pair (A, B) is controllable, the there exists a finite horizon of length K and a
sequence of inputs that can transfer the state of the system from any z to any z’

That is, by forward simulation

uKl
UK -1
st =AKz+[B AB ... AK-1B]| .
Uy
Similarly, rearranging we get
UK,
UK —1
[BL AB ... AK-1B]| | | =at - Afg
C
uo

Controllability matrix C must be full rank for the equation to have a solution {uk}kK;Ol

® If cannot reach z’ in K moves, then we cannot reach it in any number of moves
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