Dynamic programming CHEM-E7225 (was E7195), 2023

Francesco Corona $(\neg-\neg)$
Chemical and Metallurgical Engineering School of Chemical Engineering

Multi-stage optimisation

Dynamic programming

Optimising multi-stage functions

Consider the set of decision variables w, x, y, and z and the following objective function

$$
\underbrace{f(w, x)}_{0}+\underbrace{g(x, y)}_{1}+\underbrace{h(y, z)}_{2}
$$

Each stage-cost function in the sum depends only on the adjacent pairs of variables

Consider the case in which w is known, and we want to solve the optimisation problem

$$
\min _{x, y, z \mid w} f(x \mid w)+g(x, y)+h(y, z)
$$

One possibility would be to jointly optimise for all the three decision variables (x, y, z)
\rightsquigarrow This solution is certainly valid, but it does not exploit the problem structure
We could, alternatively, solve a sequence of single-variable optimisation problems

$$
\min _{x \mid w}(f(x \mid w)+\min _{y}(g(x, y)+\underbrace{\min _{z} \quad h(y, z)}_{\text {1st }}))
$$

Starting from the innermost optimisation problem, we solve with respect to variable z

$$
\min _{z} \quad h(y, z)
$$

We obtain the solution for z and get the optimal value-function in terms of variable y

$$
\begin{array}{rlr}
h^{*}(y) & =\min _{z} h(y, z) & \text { (optimal value-function) } \\
z^{*}(y)=\arg \min _{z} h(y, z) & \text { (minimiser) }
\end{array}
$$

Optimising multi-stage functions (cont.)

Multi-stage

 optimisationDiscrete state and action spaces
An example

Proceeding with the next optimisation problem, we solve it with respect to variable y

$$
\min _{y} \quad g(x, y)+h^{*}(y)
$$

We obtain the solution for y and get the optimal value-function in terms of variable x

$$
\begin{array}{lr}
g^{*}(x)=\min _{y} \quad g(x, y)+h^{*}(y) & \text { (optimal value-function) } \\
y^{*}(x)=\arg \min _{y} g(x, y)+h^{*}(y) & \text { (minimiser) }
\end{array}
$$

With the third and final optimisation problem, we solve it with respect to variable x

$$
\min _{x \mid w} f(x \mid w)+g^{*}(x)
$$

We obtain the solution for x and get the optimal value-function in terms of value w

$$
\begin{array}{lrr}
f^{*}(w)=\min _{x} \quad f(x \mid w)+g^{*}(x) & \text { (optimal function value) } \\
x^{*}(w)=\arg \min _{x} f(x \mid w)+g^{*}(x) & \text { (minimiser, solution) }
\end{array}
$$

Because w is fixed (we know its value), we have that $x^{*}(w)$ is completely determined

Because we know $x^{*}(w)$, we have that $y^{*}\left(x^{*}(w)\right)$ and $z^{*}\left(y^{*}\left(x^{*}(w)\right)\right)$ are also known

$$
\begin{aligned}
\widetilde{y}^{*}(w) & =y^{*}\left(x^{*}(w)\right) \\
\widetilde{z}^{*}(w) & =z^{*}\left(\widetilde{y}^{*}(w)\right) \\
& =z^{*}\left(y^{*}\left(x^{*}(w)\right)\right)
\end{aligned}
$$

Similarly, the optimal value of the objective function are computed by substitution

$$
\underbrace{f^{*}(w)}+\underbrace{g^{*}\left(x^{*}(w)\right)}+\underbrace{h^{*}\left(y^{*}\left(x^{*}(w)\right), z^{*}\left(y^{*}\left(x^{*}(w)\right)\right)\right)}
$$

Optimising multi-stage functions (cont.)

This method to solve (unconstrained) multi-state optimisation problems can be an alternative approach to solve optimal control problems (backward dynamic programming)
\rightsquigarrow The decision variables are determined, not jointly, but in reverse order The solutions expressed as functions, of the variables to be optimised at the next stage

Its application is easiest for discrete-time systems with discrete state- and action-spaces
\rightsquigarrow With continuous spaces, the applicability is achieved by discretisation
\rightsquigarrow In continuous-time the problem is formulated as a PDE, the HJBE
\rightsquigarrow (The Hamilton-Jacobi-Bellmann equation)

Discrete state- and action-spaces

Dynamic programming

Consider the nonlinear dynamic equation of a discrete-time state-space model

$$
x_{k+1}=f\left(x_{k}, u_{k}\right)
$$

Then, suppose that the state- and the action-space be discrete and finite

$$
\begin{array}{cl}
x_{k} \in \mathcal{X}, & \text { with }|\mathcal{X}|=N_{\mathcal{X}} \\
u_{k} \in \mathcal{U}, & \text { with }|\mathcal{U}|=N_{\mathcal{U}}
\end{array}
$$

Based on the discrete dynamics, we formulate the optimal control problem

$$
\begin{array}{rl}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K-1}, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K}-1}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) \\
\text { subject to } & f\left(x_{k}, u_{k}\right)-x_{k+1}=0, \quad k=0,1, \ldots, K-1 \\
& \bar{x}_{0}-x_{0}=0
\end{array}
$$

The initial state x_{0} is assumed to be known, some fixed value \bar{x}_{0}

$$
\begin{array}{rl}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K-1}, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K}-1}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) \\
\text { subject to } & f\left(x_{k}, u_{k}\right)-x_{k+1}=0 \\
& \bar{x}_{0}-x_{0}=0
\end{array}
$$

Controls $\left\{u_{k}\right\}_{k=0}^{K-1}$ are the only decision variables of the optimisation (if x_{0} is known) We know that the state variables can be eliminated by forward-simulation

$$
\begin{aligned}
\bar{x}_{0} & =x_{0} \\
\bar{x}_{1}\left(x_{0}, u_{0}\right) & =f\left(x_{0}, u_{0}\right) \\
\bar{x}_{2}\left(x_{0}, u_{0}, u_{1}\right) & =f\left(x_{1}, u_{1}\right) \\
& =f\left(f\left(x_{0}, u_{0}\right), u_{1}\right) \\
\bar{x}_{3}\left(x_{0}, u_{0}, u_{1}, u_{2}\right) & =f\left(x_{2}, u_{2}\right) \\
& =f\left(f\left(f\left(x_{0}, u_{0}\right), u_{1}\right), u_{2}\right) \\
\cdots & =\cdots \\
\bar{x}_{K}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-2}, u_{K-1}\right) & =f\left(x_{K-1}, u_{K-1}\right) \\
& =f\left(f\left(\cdots f\left(x_{0}, u_{0}\right), u_{K-2}\right), u_{K-1}\right)
\end{aligned}
$$

Multi-stage

$$
\begin{array}{rl}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K-1}, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K-1}}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) \\
\text { subject to } & f\left(x_{k}, u_{k}\right)-x_{k+1}=0, \quad k=0,1, \ldots, K-1 \\
& \bar{x}_{0}-x_{0}=0
\end{array}
$$

This formulation of discrete optimal control problem does not include path constraints
Path constraints can be implicitly included by letting stage-costs be equal to infinity
\rightsquigarrow For any infeasible pair $\left(\tilde{x}_{k}, \tilde{u}_{k}\right)$, we have that $L\left(\tilde{x}_{k}, \tilde{u}_{k}\right)=\infty$
To include these, as well as other, inequality constraints we have

$$
L: \mathcal{X} \times \mathcal{U} \rightarrow \mathcal{R} \cup \infty
$$

Multi-stage

optimisation

Discrete state and action spaces
An example

$$
\begin{array}{rl}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K},-x_{K} \\
u_{0}, u_{1}, \ldots, u_{K-1}}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) \\
\text { subject to } & f\left(x_{k}, u_{k}\right)-x_{k+1}=0, \quad k=0,1, \ldots, K-1 \\
& \bar{x}_{0}-x_{0}=0
\end{array}
$$

As each u_{k} can only take on one of $N_{\mathcal{U}}$ values, there are $N_{\mathcal{U}}^{K}$ possible control sequences

Each possible control sequence corresponds to a different trajectory $\left\{\left\{x_{k}, u_{k}\right\}_{k=0}^{K-1} \cup x_{K}\right\}$
\rightsquigarrow Each such trajectory associates with a specific value of the objective function
\rightsquigarrow The optimal solution, the sequence(s) of smallest function value

$$
\begin{array}{rl}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K-1}, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K-1}}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) \\
\text { subject to } & f\left(x_{k}, u_{k}\right)-x_{k+1}=0, \quad k=0,1, \ldots, K-1 \\
& \bar{x}_{0}-x_{0}=0
\end{array}
$$

Naive enumeration of all trajectories has a complexity that grows exponentially in K

$$
\underbrace{N_{\mathcal{U}} \times N_{\mathcal{U}} \times \cdots \times N_{\mathcal{U}}}_{K \text { times }}
$$

The idea behind dynamic programming is to approach the enumeration task differently

We start by noting that each sub-trajectory of an optimal trajectory must be optimal \rightsquigarrow If $\left\{\left\{x_{k}^{*}, u_{k}^{*}\right\}_{k=0}^{K-1} \cup x_{K}^{*}\right\}$ is optimal, then any $\left\{\left\{x_{k}^{*}, u_{k}^{*}\right\}_{k>0}^{K-1} \cup x_{K}^{*}\right\}$ is optimal
\rightsquigarrow This property is known as the Bellman's principle of optimality

We define the value-function or cost-to-go as the optimal cost that would be attained if, at time k, from state $\bar{x}_{k} \in \mathcal{X}$, we would solve the shorter optimal control problem

$$
\begin{array}{rl}
J_{k}\left(\bar{x}_{k}\right)=\min _{\substack{x_{k}, x_{k+1}, \ldots, x_{K-1}, x_{K} \\
u_{k}, u_{k+1}, \ldots, u_{K-1}}} & E\left(x_{K}\right)+\sum_{i=k}^{K-1} L\left(x_{i}, u_{i}\right) \\
\text { s.t. } & f\left(x_{i}, u_{i}\right)-x_{i+1}=0, \quad i=k, k+1, \ldots, K-1 \\
\bar{x}_{k}-x_{k}=0
\end{array}
$$

Function $J_{k}: \mathcal{X} \rightarrow \mathcal{R} \cup \infty$ summarises the cost-to-go from x_{k} to the end of the horizon

- Starting from some initial state \bar{x}_{k}, under the optimal actions $\left\{u_{i}^{*}\right\}_{i=k}^{K-1}$

As there is a finite number $N_{\mathcal{X}}$ of possible initial states \bar{x}_{k}, at each stage k, we have

$$
\begin{gathered}
J_{k}\left(x_{k}^{(1)}\right) \\
\vdots \\
J_{k}\left(x_{k}^{\left(N_{\mathcal{X}}\right)}\right)
\end{gathered}
$$

The Bellman equation

The principle of optimality states that, for any $k \in\{0, \ldots, K-1\}$, the following holds

$$
\begin{aligned}
J_{k}\left(\bar{x}_{k}\right) & =\min _{u}(L\left(\bar{x}_{k}, u\right)+J_{k+1}(\underbrace{f\left(\bar{x}_{k}, u\right)}_{\bar{x}_{k+1}})) \\
& =\min _{u}\left(L\left(\bar{x}_{k}, u\right)+J_{k+1}\left(\bar{x}_{k+1}\right)\right)
\end{aligned}
$$

Similarly, we have that, at $k+1$, the following holds

$$
\begin{aligned}
J_{k}\left(\bar{x}_{k+1}\right) & =\min _{u}(L\left(\bar{x}_{k+1}, u\right)+J_{k+2}(\underbrace{f\left(\bar{x}_{k+1}, u\right)}_{\bar{x}_{k+2}})) \\
& =\min _{u}\left(L\left(\bar{x}_{k+1}, u\right)+J_{k+2}\left(\bar{x}_{k+2}\right)\right)
\end{aligned}
$$

All the way to K, when there is no longer any time to apply any control action u_{K}

- The stage-cost at K then equals the terminal cost $E\left(x_{K}\right)$

$$
\begin{aligned}
J_{K}\left(\bar{x}_{K}\right) & =\min _{u=u_{K}}(\underbrace{L\left(\bar{x}_{K}, u\right)}_{E\left(\bar{x}_{K}\right)}+J_{K+1}(\underbrace{f\left(x_{K}, u\right)}_{\bar{x}_{K+1}})) \\
& =E\left(\bar{x}_{K}\right)
\end{aligned}
$$

At the preceding stages, we have

$$
\begin{aligned}
& \begin{array}{l}
J_{K-1}\left(\bar{x}_{K-1}\right)=\min _{u=u_{K-1}}(L\left(\bar{x}_{K-1}, u\right)+J_{K}(\underbrace{f\left(\bar{x}_{K-1}, u\right)}_{\bar{x}_{K}}))
\end{array} \\
& =\min _{u=u_{K-1}}(L\left(\bar{x}_{K-1}, u\right)+\underbrace{J_{K}\left(\bar{x}_{K}\right)}_{E\left(\bar{x}_{K}\right)}) \\
& J_{K-2}\left(\bar{x}_{K-2}\right)=\min _{u=u_{K-2}}(L\left(\bar{x}_{K-2}, u\right)+J_{K-1}(\underbrace{f\left(\bar{x}_{K-2}, u\right)}_{\bar{x}_{K-1}})) \\
& =\min _{u=u_{K-2}}\left(L\left(\bar{x}_{K-2}, u\right)+J_{K-1}\left(\bar{x}_{K-1}\right)\right)
\end{aligned}
$$

Remember the formulation of the optimal control problem, the objective is multi-stage

$$
\begin{array}{rl}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K-1}}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) \\
\text { subject to } & f\left(x_{k}, u_{k}\right)-x_{k+1}=0, \quad k=0,1, \ldots, K-1 \\
& x_{0}-x_{0}=0
\end{array}
$$

The initial state x_{0} is fixed at \bar{x}_{0}, the controls $\left\{u_{k}\right\}_{k=0}^{K-1}$ are the actual decision variables
That is, we have the multi-stage objective function

$$
\begin{aligned}
& \min _{x_{0},} E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) \\
& u_{0}, u_{1}, \ldots, u_{K-1} \\
& \text { subject to } f\left(x_{k}, u_{k}\right)-x_{k+1}=0, \quad k=0,1, \ldots, K-1 \\
& \bar{x}_{0}-x_{0}=0
\end{aligned}
$$

$$
\begin{aligned}
& \min _{x_{0}, u_{0}}^{u_{0}, u_{1}, \ldots, u_{K-1}} \underbrace{L\left(x_{0}, u_{0}\right)+L\left(x_{1}, u_{1}\right)+\cdots+L\left(x_{K-2}, u_{K-2}\right)+L\left(x_{K-1}, u_{K-1}\right)}_{\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right)}+E\left(x_{K}\right) \\
& \text { s.t. } f\left(x_{k}, u_{k}\right)-x_{k+1}=0, \quad k=0,1, \ldots, K-1 \\
& x_{0}-x_{0}=0
\end{aligned}
$$

With the explicit dependence only on the true decision variables, we have

$$
\begin{aligned}
& \min _{x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}} L\left(x_{0}, u_{0}\right)+L(\underbrace{x_{0}, u_{0}}_{x_{1}}, u_{1})+L(\underbrace{x_{0}, u_{0}, u_{1}}_{x_{2}}, u_{2})+\cdots \\
& \\
& \quad+L(\underbrace{x_{0}, u_{0} \rightsquigarrow u_{K-3}}_{x_{K-2}}, u_{K-2})+L(\underbrace{x_{0}, u_{0} \rightsquigarrow u_{K-2}}_{x_{K-1}}, u_{K-1}) \\
& \quad+E\left(x_{K}\right) \\
& \text { s.t. } \bar{x}_{0}-x_{0}=0
\end{aligned}
$$

Multi-stage

Furthermore, we can remove the (initial) equality constraint and write

$$
\begin{aligned}
\min _{u_{0} \rightsquigarrow u_{K-1} \mid x_{0}} L_{0}\left(u_{0} \mid x_{0}\right)+L_{1}\left(u_{0} \rightsquigarrow u_{1} \mid x_{0}\right)+L_{2}\left(u_{0} \rightsquigarrow u_{2} \mid x_{0}\right)+\cdots \\
\cdots+L_{K-2}\left(u_{0} \rightsquigarrow u_{K-2} \mid x_{0}\right)+L_{K-1}\left(u_{0} \rightsquigarrow u_{K-1} \mid x_{0}\right)+E\left(x_{K}\right)
\end{aligned}
$$

We can solve the equivalent problem as multi-stage optimisation

$$
\begin{aligned}
\min _{u_{0} \mid x_{0}} & \left(L_{0}\left(u_{0} \mid x_{0}\right)+\min _{u_{1}}\left(L_{1}\left(u_{0} \rightsquigarrow u_{1}\right)+\min _{u_{2}}\left(L_{2}\left(u_{0} \rightsquigarrow u_{2}\right)+\cdots\right.\right.\right. \\
& \left.\left.\left.\cdots+\min _{u_{K-2}}\left(L_{K-2}\left(u_{0} \rightsquigarrow u_{K-2}\right)+\min _{u_{K-1}} L_{K-1}\left(u_{0} \rightsquigarrow u_{K-1}\right)\right)\right)\right)+\min _{u_{K}} E\left(x_{K}\right)\right)
\end{aligned}
$$

We know that this backward recursion is denoted as the dynamic programming recursion

$$
u_{k}^{*}\left(x_{k}\right)=\arg \min _{u} L\left(x_{k}, u\right)+J_{k+1}\left(f\left(x_{k}, u\right)\right)
$$

Once all the value-functions J_{k} are computed, we also have the optimal feedback control

$$
x_{k+1}=f\left(x_{k}, u_{k}^{*}\left(x_{k}\right)\right), \quad k=0,1, \ldots, K-1
$$

The computationally demanding step is the generation of the K value functions J_{k}

- Each recursion step requires to test $N_{\mathcal{U}}$ controls, for each of the $N_{\mathcal{X}}$ states
- Each recursion requires computing $f\left(x_{k}, u\right)$ and $L\left(x_{k}, u\right)$

The overall complexity is thus $K \times\left(N_{\mathcal{X}} \times N_{\mathcal{U}}\right)$

One of the main advantages of the dynamic programming approach to optimal control is the possibility to be extended to continuous state- and action-spaces, by discretisation

- No assumptions on differentiability of the dynamics or convexity of the objective

However, it is important to notice that for a N_{x} dimensional state-space discretised along each dimension using M_{x} intervals, the total number of grid points is $N_{\mathcal{X}}=M_{x}^{N_{x}}$

- That is, complexity grows exponential with the dimension of the state-space

An example

Discrete state and action spaces

An example

Consider a total stage-cost given as sum of the state stage-cost and control stage-cost

$$
L_{k}\left(x_{k}, u_{k}\right)=L_{x}^{k}\left(x_{k}\right)+L_{u}^{k}\left(x_{k}, u_{k}\right)
$$

The stage-cost for the states (the positions on a (4×3) board)

- The target state is located in the position $(2,2)$
- The associated state-cost (per stage) is zero

The stage-cost for the controls (the 9 possible 'moves')

- The control-cost per stage is one, or zero

An example (cont.)

The policy (control law) π specifies the action that we will perform at time step k

- The control policy is a function of the state (state-feedback), at stage k

$$
\pi\left(x_{k}\right)=u_{k}\left(x_{k}\right)
$$

A random example of a possible control policy

$$
\pi\left(x_{k}\right)=\begin{array}{c:cc}
\cdot & \nwarrow & \leftarrow \\
\uparrow & \downarrow & \rightarrow \\
\leftarrow & \nearrow & \swarrow
\end{array}
$$

At k, the objective is to find the policy that minimises the cost-to-go

$$
\sum_{k}^{K} L_{k}(x_{k}, \underbrace{u_{k}}_{\pi\left(x_{k}\right)})
$$

The value-function of the control policy at k quantifies the goodness of the policy when at x_{K}

$$
V_{\pi}\left(x_{k}\right)=L_{k}(x_{k}, \underbrace{u_{k}}_{\pi\left(x_{k}\right)})+V_{\pi}\left(x_{k+1}\right)
$$

An example (cont.)

Stage K
At the final stage $k=K$, we have the following value-function of the policy function

$$
\begin{aligned}
V_{\pi}\left(x_{K}\right) & =L_{K}(x_{K}, \underbrace{y_{K}}_{\pi\left(x_{K}\right)})+V_{\pi \pi}^{V_{\pi}\left(x_{K+1}\right)} \\
& =\underbrace{L_{x}^{K}\left(x_{K}\right)+L_{u}^{K}(x_{K}, \underbrace{u_{K}}_{\pi\left(x_{K}\right)})}_{L_{K}\left(x_{K}, u_{K}\right)}+V_{\pi}\left(x_{K+1)}\right) \\
& =\begin{array}{l|ll}
5 & 5 \\
5 & 0 & 5 \\
5 & 5 & 5 \\
5 & 5 & 5
\end{array}
\end{aligned}
$$

As there is no time left to apply any control $u_{K}=\pi\left(x_{K}\right)$, we have the optimal policy

$$
\pi^{*}\left(x_{K}\right)=\begin{array}{c|cc}
\cdot & \cdot & \cdot \\
\cdot & \cdot \\
\cdot &
\end{array}
$$

An example (cont.)

We have the optimal policy,

$$
\pi^{*}\left(x_{K}\right)=
$$

The value-function for the optimal policy corresponds to the terminal cost $E\left(x_{K}\right)$

$$
\begin{aligned}
V_{\pi^{*}}\left(x_{K}\right) & =L_{K}(x_{K}, \underbrace{y_{K}}_{\pi\left(x_{K}\right)})+V_{\pi}\left(x_{K+1}\right) \\
& =E\left(x_{K}\right)
\end{aligned}
$$

The value of the policy,

$$
V_{\pi^{*}}\left(x_{K}\right)=\begin{array}{c|cc}
5 \\
5 & 0 & 5 \\
5 & 0 & 5 \\
5 & 5 & 5 \\
5
\end{array}
$$

The value of the optimal policy at stage K gives the total cost that would be incurred if, starting at some state $x_{K} \in \mathcal{X}$, the best sequence of actions would be performed

- The first optimal action of the sequence (!) was found to be 'do nothing'

Multi-stage

optimisation

According to the Bellman's principle of optimality, the optimal policy at stage $K-1$

$$
\pi^{*}\left(x^{K-1}\right)=\arg \min _{u}\left(L_{K-1}\left(x_{K-1}, u_{K-1}\right)+V_{\pi^{*}}\left(x_{K}\right)\right)
$$

\rightsquigarrow We must compute the stage-cost $L_{K-1}\left(x_{K-1}, u_{K-1}\right)$ at stage $K-1$
\rightsquigarrow We already know the value of the policy $V_{\pi^{*}}\left(x_{K}\right)$

$$
V_{\pi^{*}}\left(x_{K}\right)=\begin{array}{c|cc}
5 & \mid & 5 \\
5 & 0 & 5 \\
5 & 1 & 5 \\
5 & 5 & 5
\end{array}
$$

An example (cont.)
Stage $K-1$

For each state $x_{K-1} \in \mathcal{X}$, compute the stage cost $L_{K-1}\left(x_{K-1}, u_{K-1}\right)$, for all $u_{K-1} \in \mathcal{U}$ We add it to the optimal value-function at stage $K, V_{\pi^{*}}\left(x^{K}\right)$, and optimise

$$
V_{\pi^{*}}\left(x^{K-1}\right)=\min _{u_{K-1}}\left(L_{K-1}\left(x_{K-1}, u_{K-1}\right)+V_{\pi^{*}}\left(x^{K}\right)\right)
$$

From a minimisation of the value function, we compute the optimal policy to get u_{K-1}^{*}

$$
\pi^{*}\left(x^{K-1}\right)=\arg \min _{u}\left(L_{K-1}\left(x_{k-1}, u_{k-1}\right)+V_{\pi^{*}}\left(x^{K}\right)\right)
$$

An example (cont.)

\circ	\times	\times
\times	\times	\times
\times	\times	\times
\times	\times	\times

Suppose that the system is at state $\mathcal{X}_{1,1}$ and consider control action \uparrow

- As a result the system stays at state $\mathcal{X}_{1,1}$

We have the total stage cost, as sum of state-cost and action-cost

$$
\begin{aligned}
L_{K-1}\left(\mathcal{X}_{1,1}, \uparrow\right) & =L_{x}^{K-1}\left(\mathcal{X}_{1,1}\right)+L_{u}^{K-1}\left(\mathcal{X}_{1,1}, \uparrow\right) \\
& =5+1 \\
& =6
\end{aligned}
$$

The application of action \uparrow leads to state $\mathcal{X}_{1,1}$

$$
V_{\pi^{*}}\left(\mathcal{X}_{1,1}\right)=5
$$

We proceed similarly, for actions $\downarrow, \nwarrow, \nearrow, \swarrow, \searrow, \leftarrow, \cdot$, and \rightarrow applied to state $\mathcal{X}_{1,1}$

\circ	\times	\times
\times	\times	\times
\times	\times	\times
\times	\times	\times

For action \downarrow applied to state $\mathcal{X}_{1,1}$, we have the total stage-cost

$$
\begin{aligned}
L_{K-1}\left(\mathcal{X}_{1,1}, \downarrow\right) & =J_{x}^{K-1}\left(\mathcal{X}_{1,1}\right)+J_{u}^{K-1}\left(\mathcal{X}_{1,1}, \downarrow\right) \\
& =5+1 \\
& =6
\end{aligned}
$$

The application of action \downarrow leads to state $\mathcal{X}_{2,1}$

$$
V_{\pi^{*}}\left(\mathcal{X}_{2,1}\right)=5
$$

$$
\begin{array}{c|cc}
\circ & \times & \times \\
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times
\end{array}
$$

For action \cdot applied to state $\mathcal{X}_{1,1}$, we have the total stage-cost

$$
\begin{aligned}
L_{K-1}\left(\mathcal{X}_{1,1}, \cdot\right) & =J_{x}^{K-1}\left(\mathcal{X}_{1,1}\right)+J_{u}^{K-1}\left(\mathcal{X}_{1,1}, \cdot\right) \\
& =5+0 \\
& =5
\end{aligned}
$$

The application of action \downarrow leads to state $\mathcal{X}_{1,1}$

$$
V_{\pi^{*}}\left(\mathcal{X}_{1,1}\right)=5
$$

$$
\begin{aligned}
L_{K-1}\left(\mathcal{X}_{1,1}, \uparrow\right)+V_{\pi^{*}}\left(\mathcal{X}_{1,1}\right) & =6+5 \\
& =11 \\
L_{K-1}\left(\mathcal{X}_{1,1}, \nwarrow\right)+V_{\pi^{*}}\left(\mathcal{X}_{1,1}\right) & =6+5 \\
& =11 \\
L_{K-1}\left(\mathcal{X}_{1,1}, \nearrow\right)+V_{\pi^{*}}\left(\mathcal{X}_{1,1}\right) & =6+5 \\
& =11 \\
L_{K-1}\left(\mathcal{X}_{1,1}, \swarrow\right)+V_{\pi^{*}}\left(\mathcal{X}_{1,1}\right) & =6+5 \\
& =11 \\
L_{K-1}\left(\mathcal{X}_{1,1}, \searrow\right)+V_{\pi^{*}}\left(\mathcal{X}_{1,1}\right) & =6+5 \\
& =11 \\
L_{K-1}\left(\mathcal{X}_{1,1}, \leftarrow\right)+V_{\pi^{*}}\left(\mathcal{X}_{1,1}\right) & =6+5 \\
& =11 \\
L_{K-1}\left(\mathcal{X}_{1,1}, \rightarrow\right)+V_{\pi^{*}}\left(\mathcal{X}_{1,1}\right) & =6+5 \\
& =11 \\
L_{K-1}\left(\mathcal{X}_{1,1}, \downarrow\right)+V_{\pi^{*}}\left(\mathcal{X}_{2,1}\right) & =6+5 \\
& =11 \\
L_{K-1}\left(\mathcal{X}_{1,1}, \cdot\right)+V_{\pi^{*}}\left(\mathcal{X}_{1,1}\right) & =5+5 \\
& =10
\end{aligned}
$$

An example (cont.)

The optimal action that we can do when at state $\mathcal{X}_{1,1}$ at stage $K-1$ is to not move, \cdot

$$
\pi^{*}\left(\mathcal{X}_{1,1}\right)=\begin{array}{c|cc}
\cdot & - & - \\
- & - & - \\
- & - & - \\
- & - & -
\end{array}
$$

The value of the optimal action, at stage $K-1$

$$
V_{\pi^{*}}\left(x_{K-1}\right)=\begin{array}{cc|cc}
10 & & - & - \\
- & - & - \\
- & - & - \\
& - & - & -
\end{array}
$$

The value-function $V_{\pi^{*}}\left(\mathcal{X}_{1,1}\right)$ gives the cost that would be incurred if, starting at state $\mathcal{X}_{1,1}$ and from that stage on, we performed the best possible sequence of actions

- The first action would be the one given by the optimal policy $\pi^{*}\left(\mathcal{X}_{1,1} \in \mathcal{X}\right)$

Analogously for the other states $x_{K-1} \in \mathcal{X}$ at stage $K-1$, we have the optimal policy

$$
\pi^{*}\left(x_{K-1} \in \mathcal{X}\right)=\begin{array}{c|cc}
\cdot & \downarrow & \swarrow \\
\cdot & \cdot & \leftarrow \\
\cdot & \uparrow & \nwarrow
\end{array}
$$

The value of the optimal policy, at stage $K-1$

$$
V_{\pi^{*}}\left(x_{K-1}=\mathcal{X}_{1,1}\right)=\begin{array}{c:cc}
10 & 6 & 6 \\
10 & 0 & 6 \\
10 & 6 & 6 \\
10 & 10 & 10
\end{array}
$$

The value-function $V_{\pi^{*}}\left(x_{K-1}\right)$ gives the cost that would be incurred if, starting at any state x_{K-1} and from that stage on, we performed the best possible sequence of actions

- The first action would be the one given by the optimal policy $\pi^{*}\left(x_{K-1} \in \mathcal{X}\right)$

Stage $K-2$
The value of the optimal policy at stage $K-1$ gives the total cost that would be incurred if, starting at state $x_{K-1} \in \mathcal{X}$, the best sequence of actions would be performed

$$
V_{\pi^{*}}\left(x_{K-1}\right)=\begin{array}{c|cc}
10 & 6 & 6 \\
10 & 0 & 6 \\
10 & \mid & 6 \\
10 & 10 & 6 \\
& 10
\end{array}
$$

The first optimal action of the sequence

$$
\pi^{*}\left(x_{K-1} \in \mathcal{X}\right)=\begin{array}{c|cc}
\cdot & \downarrow & \swarrow \\
\cdot & \uparrow & \leftarrow \\
\cdot
\end{array}
$$

For each state $x_{K-2} \in \mathcal{X}$, compute the stage cost $L_{K-2}\left(x_{K-2}, u_{K-2}\right)$ for all $u_{K-2} \in \mathcal{U}$ We add it to the optimal value-function at stage K and optimise

$$
V_{\pi^{*}}\left(x_{K-2}\right)=\min _{u_{K-2}}\left(L_{K-2}\left(x_{K-2}, u_{K-2}\right)+V_{\pi^{*}}\left(x_{K-1}\right)\right)
$$

From a minimisation of the value-function, we compute the optimal policy

$$
\pi^{*}\left(x_{K-2}\right)=\arg \min _{u}\left(L_{K-2}\left(x_{K-2}, u_{K-2}\right)+V_{\pi^{*}}\left(x_{K-1}\right)\right)
$$

At stage $K-2$, we have the optimal policy

$$
\pi^{*}\left(x_{K-2} \in \mathcal{X}\right)=\begin{array}{c|cc}
\cdot & \downarrow & \swarrow \\
\cdot & \cdot & \leftarrow \\
\cdot & \uparrow & \nwarrow \\
\nearrow & \uparrow & \uparrow
\end{array}
$$

The value of the optimal policy, at stage $K-2$

$$
V_{\pi^{*}}\left(x_{K-2}\right)=\begin{array}{c|cc}
15 & 6 & 6 \\
15 \\
15 & \begin{array}{c}
0 \\
6
\end{array} & 6 \\
12 & 12 & 12
\end{array}
$$

Stage $K-3$
At stage $K-3$, we have the optimal policy

$$
\pi^{*}\left(x_{K-3} \in \mathcal{X}\right)=\begin{array}{c|cc}
\cdot & \downarrow & \swarrow \\
\cdot & \mid & \leftarrow \\
\downarrow & \uparrow & \nwarrow \\
\nearrow & \uparrow & \uparrow
\end{array}
$$

The value of the optimal policy, at stage $K-3$

$$
V_{\pi^{*}}\left(x_{K-3}\right)=\begin{array}{c|cc}
20 & 6 & 6 \\
20 & \left\lvert\, \begin{array}{c}
0 \\
18 \\
18
\end{array}\right. & 6 \\
12 & 12 & 12
\end{array}
$$

Stage $K-4$
At stage $K-4$, we have the optimal policy

$$
\pi^{*}\left(x_{K-4} \in \mathcal{X}\right)=\begin{array}{c|cc}
\dot{\sim} & \downarrow & \swarrow \\
\downarrow & \dot{y} & \leftarrow \\
\downarrow & \uparrow & \nwarrow \\
\nearrow & \uparrow & \uparrow
\end{array}
$$

The value of the optimal policy, at stage $K-4$

$$
V_{\pi^{*}}\left(x_{K-4}\right)=\begin{array}{c|cc}
25 & 6 & 6 \\
24 & \left\lvert\, \begin{array}{c}
0 \\
18 \\
18
\end{array}\right. & \begin{array}{c}
6 \\
12
\end{array} \\
\hline 12 & 12
\end{array}
$$

An example (cont.)

Stage $K-5$
At stage $K-5$, we have the optimal policy

$$
\begin{aligned}
\pi^{*}\left(x_{K-5} \in \mathcal{X}\right) & =\begin{array}{c|cc}
\dot{\downarrow} & \downarrow & \swarrow \\
\downarrow & \uparrow & \leftarrow \\
\downarrow & \uparrow & \nwarrow \\
\nearrow & \uparrow & \uparrow \\
& =\pi^{*}\left(x_{K-4} \in \mathcal{X}\right)
\end{array}
\end{aligned}
$$

The value of the optimal policy, at stage $K-4$

$$
V_{\pi^{*}}\left(x_{K-4}\right)=\begin{array}{c|cc}
30 & 6 & 6 \\
24 & 0 & 6 \\
18 \\
12 & & 12
\end{array} \begin{gathered}
6 \\
12
\end{gathered}
$$

The linear-quadratic regulator

Dynamic programming

An important class of optimal control problems is the linear-quadratic regulator, LQR

- The controller has to take the state of the system to the origin
- The system dynamics are deterministic and linear
- The objective function is quadratic

The problem is unconstrained and the horizon for control can be finite or infinite

- Their solution can be obtained with dynamic programming

The linear-quadratic regulator (cont.)

Consider first the case in which we are interested in stabilising the system in K steps We define an objective function to quantify the distance of the pairs $\left(x_{k}, u_{k}\right)$ from zero

$$
V\left(x_{0}, u_{0}, x_{1}, u_{1}, \ldots, x_{K-1}, u_{K-1}, x_{K}\right)=E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right)
$$

- Terminal-stage cost

$$
E\left(x_{K}\right)=\frac{1}{2} x_{K}^{T} Q_{K} x_{K}^{T}
$$

- Stage-cost

$$
L\left(x_{k}, u_{k}\right)=\frac{1}{2}\left(x_{k}^{T} Q x_{k}+u_{k}^{T} R u_{k}\right)
$$

The objective depends on the control sequence $\left\{u_{k}\right\}_{k=0}^{K-1}$ and the state sequence $\left\{x_{k}\right\}_{k=0}^{K}$

- We assume that the initial state x_{0} is fixed and a known quantity
- Remaining states are determined by $f\left(x_{k}, u_{k}\right)$ for $\left\{u_{k}\right\}_{k=0}^{K_{1}}$

Matrices Q and Q_{K} are positive semi-definite, R is positive definite

- They are tuning parameters

The linear-quadratic regulator | Baby LQR

Consider a linear and time-invariant process with single state variable and single input The system dynamics, in discrete-time

$$
x_{k+1}=a x_{k}+b u_{k}, \quad \text { with } x_{k}, u_{k} \in \mathcal{R}
$$

The control problem, in discrete-time

$$
\underset{u_{0}, u_{1}, \ldots, u_{K-1}}{\operatorname{minimise}} \underbrace{\frac{1}{2} x_{K}^{T} q_{K} x_{K}}_{E\left(x_{K}\right)}+\frac{1}{2} \sum_{k=0}^{K-1} \underbrace{\left(x_{k}^{T} q x_{k}+u_{k}^{T} r u_{k}\right)}_{(2) L\left(x_{k}, u_{k}\right)}
$$

Consider a finite-horizon of length one $(K=1)$

$$
\underset{u_{0}}{\operatorname{minimise}} \quad \frac{1}{2} x_{1}^{T} q_{K} x_{1}+\frac{1}{2} \sum_{k=0}^{1-1}\left(x_{k}^{T} q x_{k}+u_{k}^{T} r u_{k}\right)
$$

We have,

$$
\underset{u_{0}}{\operatorname{minimise}} \quad \frac{1}{2}\left(x_{1}^{T} q_{K} x_{1}+x_{0}^{T} q x_{0}+u_{0}^{T} r u_{0}\right)
$$

The linear-quadratic regulator | Baby LQR (cont.)

$$
\underset{u_{0}}{\operatorname{minimise}} \quad \frac{1}{2}\left(x_{1}^{T} q_{K} x_{1}+x_{0}^{T} q x_{0}+u_{0}^{T} r u_{0}\right)
$$

In this simple case, we only need to (optimise to) find a single control action, u_{0}

- Under the dynamic constraint that $x_{1}=a x_{0}+b u_{0}$
- The initial state x_{0} is fixed and known

After embedding the dynamics in the objective function, we get

$$
\underset{u_{0}}{\operatorname{minimise}} \frac{1}{2}(\underbrace{x_{1}^{T}}_{a x_{0}+b u_{0}} q_{K} \underbrace{x_{1}}_{a x_{0}+b u_{0}}+x_{0}^{T} q x_{0}+u_{0}^{T} r u_{0})
$$

All the terms $\left(a, b, q, q_{K}, r\right.$ and $\left.x_{0}\right)$ in the cost are known, except for u_{0}

- Control action u_{0} is the decision variable, it is a scalar

The linear-quadratic regulator | Baby LQR (cont.)

$$
\underset{u_{0}}{\operatorname{minimise}} \frac{1}{2}(\underbrace{x_{1}^{T}}_{a x_{0}+b u_{0}} q_{K} \underbrace{x_{1}}_{a x_{0}+b u_{0}}+x_{0}^{T} q x_{0}+u_{0}^{T} r u_{0})
$$

Substituting and rearranging, we have a quadratic equation u_{0}

$$
\underset{u_{0}}{\operatorname{minimise}} \underbrace{\frac{1}{2}\left(q x_{0}^{2}+r u_{0}^{2}+q_{K}\left(a x_{0}+b u_{0}\right)^{2}\right)}_{f\left(u_{0}\right)}
$$

- We are interested in value u_{0} that minimises this function

After some algebra, we see that the cost function is a parabola

$$
\begin{aligned}
f\left(u_{0}\right) & =\frac{1}{2}\left(q x_{0}^{2}+r u_{0}^{2}+q_{K}\left(a x_{0}+b u_{0}\right)^{2}\right) \\
& =\frac{1}{2}\left(\left(q+a^{2} q_{K}\right) x_{0}^{2}+2\left(b a q_{K} x_{0}\right) u_{0}+\left(b^{2} q_{K}+r\right) u_{0}^{2}\right)
\end{aligned}
$$

We know how to locate the minimum of parabola, its vertex

The linear-quadratic regulator | Baby LQR (cont.)

$$
f\left(u_{0}\right)=\frac{1}{2}\left(\left(q+a^{2} q_{K}\right) x_{0}^{2}+2\left(b a q_{K} x_{0}\right) u_{0}+\left(b^{2} q_{K}+r\right) u_{0}^{2}\right)
$$

$f\left(u_{0}\right)$ is a parabola and it is smallest at the value u_{0} that makes its derivative zero

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} u_{0}} f\left(u_{0}\right) & =b q_{K} a x_{0}+\left(b^{2} q_{K}+r\right) u_{0} \\
& =0
\end{aligned}
$$

We have the solution to the optimisation/control problem

$$
\begin{aligned}
u_{0}^{*} & =-\underbrace{\frac{b q_{K} a}{b^{2} q_{K}+r}}_{k} x_{0} \\
& =-k x_{0}
\end{aligned}
$$

The linear-quadratic regulator (cont.)

For systems with multiple state variables and multiple inputs, the structure is identical
The system dynamics, in discrete-time

$$
x_{k+1}=A x_{k}+B u_{k}, \quad \text { with } x_{k} \in \mathcal{R}^{N_{x}} \text { and } u_{k} \in \mathcal{R}^{N_{u}}
$$

The control problem, in discrete-time

$$
\underset{u_{0}, u_{1}, \ldots, u_{K-1}}{\operatorname{minimise}} \underbrace{\frac{1}{2} x_{K}^{T} Q_{K} x_{K}}_{E\left(x_{K}\right)}+\frac{1}{2} \sum_{k=0}^{K-1} \underbrace{\left(x_{k}^{T} Q x_{k}+u_{k}^{T} R u_{k}\right)}_{L\left(x_{k}, u_{k}\right)}
$$

Consider a finite-horizon of length one $(K=1)$

$$
\underset{u_{0}}{\operatorname{minimise}} \quad \frac{1}{2} x_{1}^{T} Q_{K} x_{1}+\frac{1}{2} \sum_{k=0}^{1-1}\left(x_{k}^{T} Q x_{k}+u_{k}^{T} R u_{k}\right)
$$

The linear-quadratic regulator (cont.)

After substituting the dynamics, we get

$$
\underset{u_{0}}{\operatorname{minimise}} \frac{1}{2}(\underbrace{x_{1}}_{A x_{0}+B u_{0}}{ }^{T} Q_{K} \underbrace{x_{1}}_{A x_{0}+B u_{0}}+x_{0}^{T} Q x_{0}+u_{0}^{T} R u_{0})
$$

After some algebra and rearranging, we have

$$
\underset{u_{0}}{\operatorname{minimise}} \quad \frac{1}{2}\left(x_{0}^{T}\left(Q+A^{T} P A\right) x_{0}+2 u_{0}^{T} B^{T} Q_{K} A x_{0}+u_{0}^{T}\left(B^{T} Q_{K} B+R\right) u_{0}\right)
$$

Taking the derivative and setting it to zero, we get

$$
\begin{aligned}
\frac{\mathrm{d} f\left(u_{0}\right)}{\mathrm{d} u_{0}} & =B^{T} Q_{K} A x_{0}+\left(B^{T} Q_{K} B+R\right) u_{0} \\
& =0
\end{aligned}
$$

Solving this linear system of equations for the unknown u_{0}, we get

$$
u_{0}=-\underbrace{\left(B^{T} Q_{f} B+R\right)^{-1} B^{T} Q_{K} A}_{K} x_{0}
$$

To be able to solve for longer control-horizons, we use backward dynamic programming

Discrete state and action spaces
An example
Intermezzo
Sum of quadratic functions

Multi-stage

 optimisationDiscrete state and action spaces
An example
Linear-quadratic regulators
An example
An example

The LQR | Sum of quadratic functions
Consider two quadratic functions

$$
\begin{aligned}
& V_{1}(x) \\
& =\frac{1}{2}(x-a)^{T} A(x-a) \\
& =\frac{1}{2}\left(\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]-\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\right)^{T} \underbrace{\left[\begin{array}{ll}
1.25 & 0.75 \\
0.75 & 1.25
\end{array}\right]}_{\succ 0}\left(\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]-\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& V_{2}(x) \\
& =\frac{1}{2}(x-b)^{T} B(x-b) \\
& =\frac{1}{2}\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]-\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)^{T} \underbrace{\left[\begin{array}{ll}
1.5 & 0.5 \\
0.5 & 1.5
\end{array}\right]}_{\succ 0}\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]-\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)
\end{aligned}
$$

The LQR | Sum of quadratic functions (cont.)

We compute function $V(x)=V_{1}(x)+V_{2}(x)$ and show that it is a quadratic function

$$
V(x)=\frac{1}{2}\left((x-v)^{T} H(x-v)+d\right)
$$

where

$$
\begin{aligned}
H & =A+B \\
v & =H^{-1}(A a-B b) \\
d & =-(A a+B b)^{T} H^{-1}(A a+B b)+a^{T} A a+b^{T} B b
\end{aligned}
$$

Matrix H is a positive definite matrix, because both A and B are positive definite

$$
\begin{aligned}
V(x) & =\frac{1}{2}\left((x-v)^{T} H(x-v)+d\right) \\
& =\frac{1}{2}(\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]-\left[\begin{array}{c}
-0.1 \\
0.1
\end{array}\right]\right)^{T} \underbrace{\left[\begin{array}{ll}
2.75 & 0.25 \\
0.25 & 2.75
\end{array}\right]}_{\succ 0}\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]-\left[\begin{array}{c}
-0.1 \\
0.1
\end{array}\right]\right)+3.2)
\end{aligned}
$$

The LQR | Sum of quadratic functions (cont.)

Consider two quadratic functions, one of which with a linear combination of variable x

$$
\begin{aligned}
& V_{1}(x)=\frac{1}{2}(x-a)^{T} A(x-a) \\
& V_{2}(x)=\frac{1}{2}(C x-b)^{T} B(C x-b)
\end{aligned}
$$

We can compute function $V(x)=V_{1}(x)+V_{2}(x)$,

$$
V(x)=\frac{1}{2}\left((x-v)^{T} H(x-v)+d\right)
$$

where

$$
\begin{aligned}
H & =A+C^{T} B C \\
v & =H^{-1}(A a-C B b) \\
d & =-(A a+C B b)^{T} H^{-1}(A a+C B b)+a^{T} A a+b^{T} B b
\end{aligned}
$$

The linear quadratic regulator (cont.)

Dynamic programming

We have the optimal control problem, with quadratic cost terms and linear dynamics

$$
\begin{array}{rl}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K-1}, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K-1}}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) \\
\text { subject to } & A x_{k}+B u_{k}-x_{k+1}=0, \quad k=0,1, \ldots, K-1 \\
& \bar{x}_{0}-x_{0}=0
\end{array}
$$

The optimisation problem can be re-written in the equivalent form

$$
\min _{\substack{\bar{x}_{0} \\ x_{1}, \ldots, x_{K}, x_{K} \\ u_{0}, u_{1}, \ldots, u_{K-1}}} \underbrace{L\left(\bar{x}_{0}, u_{0}\right)+L\left(x_{1}, u_{1}\right)+\cdots L\left(x_{K-1}, u_{K-1}\right)+E\left(x_{K}\right)}_{V\left(u_{0}, x_{1}, u_{1}, \ldots, u_{K-1} \mid x_{0}\right)}
$$

We will consider the usual quadratic stage- $L(\cdot, \cdot)$ and terminal- $E(\cdot)$ cost functions

$$
\begin{aligned}
L\left(x_{k}, u_{k}\right) & =x_{k}^{T} Q_{k} x_{k}+u_{k}^{T} R_{k} u_{k} \\
E\left(x_{k}\right) & =x_{K}^{T} Q_{K} x_{K}^{T}
\end{aligned}
$$

The linear-quadratic regulator (cont.)

After isolating the last two stages, we get

$$
\begin{array}{ll}
\min _{\substack{\bar{x}_{0} \\
x_{1}, \ldots, x_{K-2} \\
u_{0}, u_{1}, \ldots, u_{K-2}}} & \left(L\left(\bar{x}_{0}, u_{0}\right)+L\left(x_{1}, u_{1}\right)+\cdots+L\left(x_{K-2}, u_{K-2}\right)+\right. \\
\min _{u_{K-1}, x_{K}} & (\underbrace{L\left(x_{K-1}, u_{K-1}\right)+E\left(x_{K}\right)}))
\end{array}
$$

At the last stage, we have the problem

$$
\begin{array}{rl}
\min _{u_{K-1}, x_{K}} & L\left(x_{K-1}, u_{K-1}\right)+E\left(x_{K}\right) \\
\text { subject to } & A x_{K-1}+B u_{K-1}-x_{K}=0
\end{array}
$$

The state x_{K-1} appears as parameter

We define optimal cost (the minimum) and optimal decision variables (the minimiser)
\rightsquigarrow The optimal decision variables $u_{K-1}^{*}\left(x_{K-1}\right)$ and $x_{K}^{*}\left(x_{K-1}\right)$
\rightsquigarrow The optimal cost $V^{*}\left(x_{K-1}\right)$

The linear-quadratic regulator (cont.)

$$
\begin{array}{rl}
\min _{u_{K-1}, x_{K}} & L\left(x_{K-1}, u_{K-1}\right)+E\left(x_{K}\right) \\
\text { subject to } & A x_{K-1}+B u_{K-1}-x_{K}=0
\end{array}
$$

To solve this optimisation problem, we firstly substitute the dynamics then re-arrange

$$
\begin{aligned}
E\left(x_{K}\right)+L\left(x_{K-1}, u_{K-1}\right)= & \underbrace{\frac{1}{2}\left(A x_{K-1}+B u_{K-1}\right)^{T} Q_{K}\left(A x_{K-1}+B u_{K-1}\right)}_{E\left(x_{K}\right)} \\
& +\underbrace{\frac{1}{2}\left(x_{K-1}^{T} Q x_{K-1}+u_{N-1}^{T} R u_{N-1}\right)}_{L\left(x_{K-1}, u_{K-1}\right)} \\
= & \frac{1}{2}\left(x_{K-1}^{T} Q x_{K-1}+\left(u_{K-1}-v\right)^{T} H\left(u_{K-1}-v\right)+d\right)
\end{aligned}
$$

where

$$
\begin{aligned}
H & =R+B^{T} Q_{K} B \\
v & =-\underbrace{\left(B^{T} Q_{K} B+R\right)^{-1} B^{T} Q_{K} A} x_{K-1} \\
d & =x_{K-1}^{T}\left(A^{T} Q_{K} A-A^{T} Q_{K} B\left(B^{T} Q_{K} B+R\right)^{-1} B^{T} Q_{K} A\right) x_{K-1}
\end{aligned}
$$

The linear-quadratic regulator (cont.)

The optimal control action $u_{K-1}^{*}=v$ is a linear function of the state x_{K-1}

$$
u_{K-1}^{*}=\underbrace{-\left(B^{T} Q_{K} B+R\right)^{-1} B^{T} Q_{K} A}_{K_{K-1}} x_{K-1}
$$

We can compute the terminal state x_{K}^{*} from the optimal action

$$
\begin{aligned}
x_{K}^{*} & =A x_{K-1}+B u_{K-1}^{*} \\
& =A x_{K-1}+B\left(B^{T} Q_{K} B+R\right)^{-1} B^{T} Q_{K} A x_{K-1} \\
& =(A+B \underbrace{\left(B^{T} Q_{K} B+R\right)^{-1} B^{T} Q_{K} A}_{-K_{K-1}}) x_{K-1}
\end{aligned}
$$

The cost of the optimal control action is quadratic in x_{K-1}

$$
V_{K}^{*}=\frac{1}{2}(x_{K-1}^{T} Q x_{K-1}+\underbrace{(u_{K-1}^{*}-\underbrace{v}_{u_{K-1}^{*}})^{T} H(u_{K-1}^{*}-\underbrace{v}_{u_{K-1}^{*}})}_{=0}+d)
$$

$$
\begin{aligned}
& V_{K}^{*} \\
& =\frac{1}{2}(x_{K-1}^{T} Q x_{K-1}+\underbrace{(u_{K-1}^{*}-\underbrace{v}_{u_{K-1}^{*}})^{T} H(u_{K-1}^{*}-\underbrace{v}_{u_{K-1}^{*}})}_{=0}+d) \\
& =\frac{1}{2}(x_{K-1}^{T} Q x_{K-1}+\underbrace{x_{K-1}^{T}\left(A^{T} Q_{K} A-A^{T} Q_{K} B\left(B^{T} Q_{K} B+R\right)^{-1} B^{T} Q_{K} A\right) x_{K-1}}_{d}) \\
& =\frac{1}{2} x_{K-1}^{T} \underbrace{\left(Q+A^{T} Q_{K} A-A^{T} Q_{K} B\left(B^{T} Q_{K} B+R\right)^{-1} B^{T} Q_{K} A\right)}_{\Pi_{K-1}} x_{K-1}
\end{aligned}
$$

The linear-quadratic regulator (cont.)

$$
K_{K-1}=-\left(B^{T} Q_{K} B+R\right)^{-1} B^{T} Q_{K} A
$$

Summarising, we have

$$
\begin{aligned}
u_{K-1}^{*}\left(x_{K-1}\right) & =K_{K-1} x_{K-1} \\
x_{K}^{*}\left(x_{K-1}\right) & =\left(A+B K_{K-1}\right) x_{K-1} \\
V_{K}^{*}\left(x_{K-1}\right) & =\frac{1}{2} x_{K-1}^{T} \Pi_{K-1} x_{K-1}
\end{aligned}
$$

Function V_{K}^{*} defines the optimal cost-to-go from x_{K-1}, under optimal control u_{K-1}^{*} \rightsquigarrow It depends only on x_{K-1}, it allows us to move backwards to stage $K-2$

$$
\min _{\substack{\bar{x}_{0} \\ x_{1}, \ldots, x_{K-2} \\ u_{0}, u_{1}, \ldots, u_{K-2}}} L\left(\bar{x}_{0}, u_{0}\right)+L\left(x_{1}, u_{1}\right)+\cdots+L\left(x_{K-2}, u_{K-2}\right)+V^{*}\left(x_{K-1}\right)
$$

$$
\min _{\substack{\bar{x}_{0} \\ x_{1}, \ldots, x_{K-2} \\ u_{0}, u_{1}, \ldots, u_{K-2}}} \underbrace{L\left(\bar{x}_{0}, u_{0}\right)+L\left(x_{1}, u_{1}\right)+\cdots+L\left(x_{K-2}, u_{K-2}\right)+V^{*}\left(x_{K-1}\right)}_{V\left(u_{0}, x_{1}, u_{1}, \ldots, u_{K-2} \mid x_{0}\right)}
$$

After isolating the last two stages, we get

$$
\begin{array}{ll}
\min _{\substack{\bar{x}_{0} \\
x_{1}, \ldots, x_{K-3} \\
u_{0}, u_{1}, \ldots, u_{K-3}}} & \left(L\left(\bar{x}_{0}, u_{0}\right)+L\left(x_{1}, u_{1}\right)+\cdots+L\left(x_{K-3}, u_{K-3}\right)+\right. \\
\min _{u_{K-2}, x_{K-1}} & (\underbrace{L\left(x_{K-2}, u_{K-2}\right)+\underbrace{V^{*}\left(x_{K-1}\right)})})
\end{array}
$$

At the last stage, we have the problem

$$
\begin{array}{ll}
\min _{u_{K-2}, x_{K-1}} & V^{*}\left(x_{K-1}\right)+L\left(x_{K-2}, u_{K-2}\right) \\
\text { subject to } & A x_{K-2}+B u_{K-2}-x_{K-1}=0
\end{array}
$$

The state x_{K-2} appears as parameter

The linear-quadratic regulator (cont.)

$$
\begin{array}{ll}
\min _{u_{K-2}, x_{K-2}} & V^{*}\left(x_{K-1}\right)+L\left(x_{K-2}, u_{K-2}\right) \\
\text { subject to } & A x_{K-2}+B u_{K-2}-x_{K-1}=0
\end{array}
$$

We define optimal cost (the minimum) and optimal decision variables (the minimiser)
\rightsquigarrow The optimal decision variables $u_{K-2}^{*}\left(x_{K-2}\right)$ and $x_{K-2}^{*}\left(x_{K-2}\right)$

$$
\begin{aligned}
& u_{K-2}^{*}\left(x_{K-2}\right)=K_{K-2} x_{K-2} \\
& x_{K-1}^{*}\left(x_{K-2}\right)=\left(A+B K_{K-2}\right) x_{K-2}
\end{aligned}
$$

\rightsquigarrow The optimal cost $V^{*}\left(x_{K-2}\right)$ from stage $K-2$ to K

$$
V_{K-1}^{*}\left(x_{K-2}\right)=\frac{1}{2} x_{K-2}^{T} \Pi_{K-2} x_{K-2}
$$

We used,

$$
\begin{aligned}
& K_{K-2}=-\left(B^{T} \Pi_{K-1} B+R\right)^{-1} B^{T} \Pi_{K-1} A \\
& \Pi_{K-2}=Q+A^{T} \Pi_{K-1} A-A^{T} \Pi_{K-1} B\left(B^{T} \Pi_{K-1} B+R\right)^{-1} B^{T} \Pi_{K-1} A
\end{aligned}
$$

The linear-quadratic regulator (cont.)

The recursion that gives Π_{K-2} from Π_{K-1} is known as the backward Riccati iteration In the general form, the recursion starts from $\Pi_{K}=Q_{K}$

$$
\begin{aligned}
& \Pi_{k-1}=Q+A^{T} \Pi_{k} A-A^{T} \Pi_{k} B\left(B^{T} \Pi_{k} B+R\right)^{-1} B^{T} \Pi_{k} A \\
& \quad(k=K, K-1, \cdots, 1)
\end{aligned}
$$

We can also define the general form of the optimal cost and optimal decision variables
\rightsquigarrow For the optimal decision variables $u_{k}^{*}\left(x_{k}\right)$ and $x_{k}^{*}\left(x_{k}\right)$, we have

$$
\begin{aligned}
u_{k}^{*}\left(x_{k}\right) & =-K_{k} x_{k} \\
x_{k}^{*}\left(x_{k}\right) & =\left(A+B K_{k}\right) x_{k}
\end{aligned}
$$

\rightsquigarrow For the optimal cost-to-go $V^{*}\left(x_{k}\right)$ from stage k to K, we have

$$
V_{k}^{*}\left(x_{k}\right)=\frac{1}{2} x_{k}^{T} \Pi_{k+1} x_{k}
$$

An example

An example

The linear quadratic regulator

Example

Consider the linear and time-invariant dynamical system with measurement process

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

Consider the following system matrices and associate IO representation

$$
\begin{array}{ll}
A=-b & y(s)=g(s) u(s) \\
B=-(a+b) & g(s)=k \frac{s-a}{s+b} \\
C=k &
\end{array}
$$

$$
D=k
$$

For $(a, b)=(0.2,1)>0$ and $k=1$, system has inverse response (right-half-plane zero)

Step response, by solving the ODE with $u(t)=1$ and initial condition $x(0)=0$
\rightsquigarrow We observe what happens from the measurements $y(t)$
\rightsquigarrow The response to a unit step of the control $u(t)$

Suppose that we request a unit step of the output $y(t)$, say a set-point change

- We ask what is the optimal control action
- The best action capable to deliver it

The linear-quadratic regulator (cont.)

$$
y(s)=\underbrace{k \frac{s-a}{s+b}}_{g(s)} u(s)
$$

In the Laplace domain, we have the requested output

$$
\bar{y}(s)=\frac{1}{s}
$$

WE substitute it and solve for $\bar{u}(s)$, we get

$$
\begin{aligned}
\bar{u}(s) & =\frac{\bar{y}}{g(s)} \\
& =\frac{s+b}{k s(s-a)}
\end{aligned}
$$

Back to the time-domain, the control

$$
u(t)=\frac{1}{k a}(-b+(a+b) \underbrace{e^{a t}}_{a>0(!)})
$$

The linear-quadratic regulator (cont.)

Output response $y(t)$ is perfectly on target, with an exponentially growing input $u(t)$

We are capable of achieving perfect tracking in $y(t)$ by using applying an optimal $u(t)$

$$
g(s)=k \frac{s-a}{s+b}, \text { with } \bar{u}(s)=\frac{1}{s-a} \frac{s+b}{k s}
$$

The zeros at $s=a$ in $g(s)$ and $\bar{u}(s)$ cancel out, tracking of output $y(t)$ looks perfect

- The input-blocking property of the zero in the transfer function

The linear-quadratic regulator (cont.)

Clearly, inputs $u(t)$ cannot grow unboundedly, at some point they will hit constraints

The saturation of the input at the constraint destroys the perfect output response $y(t)$

We can also consider the more general formulation of a linear-quadratic optimal control

$$
\begin{aligned}
\min _{x, u} & \underbrace{x_{K}^{T} Q_{K} x_{K}}_{E\left(x_{K}\right)}+\sum_{k=0}^{K-1} \underbrace{\left[\begin{array}{c}
x_{k} \\
u_{k}
\end{array}\right]^{T}\left[\begin{array}{cc}
Q_{k} & S_{k}^{T} \\
S_{k} & R_{k}
\end{array}\right]\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]}_{L_{k}\left(x_{k}, u_{k}\right)} \\
\text { subject to } & x_{k+1}-A_{k} x_{k}-B_{k} u_{k}=0, \quad k=0,1, \ldots, K-1 \\
& x_{0}-\bar{x}_{0}=0
\end{aligned}
$$

At each step k of the recursion, we must compute the (varying) stage-cost $L_{k}\left(x_{k}, u_{k}\right)$

$$
L_{k}\left(x_{k}, u_{k}\right)=\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]^{T}\left[\begin{array}{cc}
Q_{k} & S_{k}^{T} \\
S_{k} & R_{k}
\end{array}\right]\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]
$$

Matrices Q_{k} and R_{k} are time-varying and positive semi-definite and positive definite

- Also matrix Q_{K} is positive definite

Moreover, we may add further flexibility in tuning by including the mixing matrix S_{k}

$$
\begin{array}{ll}
\min _{x, u} \underbrace{x_{K}^{T} Q_{K} x_{K}}_{E\left(x_{K}\right)}+\sum_{k=0}^{K-1} \underbrace{\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]^{T}\left[\begin{array}{cc}
Q_{k} & S_{k}^{T} \\
S_{k} & R_{k}
\end{array}\right]\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]}_{L_{k}\left(x_{k}, u_{k}\right)} \\
\text { subject to } & x_{k+1}-A_{k} x_{k}-B_{k} u_{k}=0,
\end{array} \quad k=0,1, \ldots, K-1
$$

Furthermore, we allow the system dynamics to be time-varying,

$$
f_{k}\left(x_{k}, u_{k}\right)=A_{k} x_{k}+B_{k} u_{k}
$$

The optimal cost $V_{k}^{*}\left(x_{k}\right)$ from stage k to $k+1$ is still quadratic

$$
V_{k}^{*}\left(x_{k}\right)=\frac{1}{2} x_{k}^{T} \Pi_{k+1} x_{k}
$$

The backward Riccati recursion is used to compute Π_{k+1}

Using the terminal condition $\Pi_{K}=Q_{K}$, we have

$$
\begin{aligned}
\Pi_{k}=Q_{k}+A_{k}^{T} & \Pi_{k+1} A_{k} \\
& -\left(S_{k}^{T}+A_{k}^{T} \Pi_{k+1} B_{k}\right)\left(R_{k}+B_{k}^{T} \Pi_{k+1} B_{k}\right)^{-1}\left(S_{k}+B_{k}^{T} \Pi_{k+1} A_{k}\right)
\end{aligned}
$$

The optimal decision variables are obtained from the feedback law,

$$
u_{k}^{*}\left(x_{k}\right)=\underbrace{-\left(R_{k}+B_{k}^{T} \Pi_{k+1} B_{k}\right)^{-1}\left(S_{k}+B_{k}^{T} \Pi_{k+1} A_{k}\right)}_{K_{k}} x_{k}
$$

The forward simulation from \bar{x}_{0} determines the state variables

$$
x_{k+1}=A_{k} x_{k}+B_{k} u_{k}^{*}
$$

Linear-quadratic optimal control | AQR

We consider even more general formulations, to get an affine-quadratic optimal control

$$
\begin{aligned}
\min _{x, u} & \underbrace{\left[\begin{array}{c}
1 \\
x_{K}
\end{array}\right]^{T}\left[\begin{array}{cc}
* & q_{K}^{T} \\
q_{K} & Q_{K}
\end{array}\right]\left[\begin{array}{c}
1 \\
x_{K}
\end{array}\right]}_{E\left(x_{K}\right)}+\sum_{k=0}^{K-1} \underbrace{\left[\begin{array}{c}
1 \\
x_{k} \\
u_{k}
\end{array}\right]^{T}\left[\begin{array}{ccc}
* & q_{k}^{T} & s_{k}^{T} \\
q_{k} & Q_{k} & S_{k}^{T} \\
s_{k} & S_{k} & R_{k}
\end{array}\right]\left[\begin{array}{c}
1 \\
x_{k} \\
u_{k}
\end{array}\right]}_{L_{k}\left(x_{k}, u_{k}\right)} \\
\text { subject to } & x_{k+1}-A_{k} x_{k}-B_{k} u_{k}-c_{k}=0, \quad k=0,1, \ldots, K-1 \\
& x_{0}-\bar{x}_{0}=0
\end{aligned}
$$

These optimisations often result from trajectory linearisations of nonlinear dynamics
The general dynamic programming solution is retained by augmenting the state

$$
\widetilde{x}_{k}=\left[\begin{array}{c}
1 \\
x_{k}
\end{array}\right]
$$

The augmented dynamics take the form

$$
\widetilde{x}_{k+1}=\left[\begin{array}{cc}
1 & 0 \\
c_{k} & A_{k}
\end{array}\right] \widetilde{x}_{k}+\left[\begin{array}{c}
0 \\
B_{k}
\end{array}\right] u_{k}
$$

The fixed initial-value is $\overline{\widetilde{x}}_{0}=\left[\begin{array}{ll}1 & \bar{x}_{0}\end{array}\right]^{T}$

The linear-quadratic regulator | Infinite-horizon

We discussed the linear-quadratic regulator over a finite horizon of some duration K
Linear-quadratic regulators can de-stabilise a stable system over finite horizons

- Setting $Q, R \succ 0$ is not sufficient to guarantee closed-loop stability

$$
\left\{\begin{array}{l}
x_{k+1}=A x_{k}+B(\underbrace{-K x_{k}}_{u_{k}}) \\
y(t)=x(t)
\end{array} \stackrel{u_{k}}{\substack{u_{k} \\
x_{k+1}=A x_{k}+B u_{k} \\
y_{k}=I x_{k} \\
\text { LQR } \\
u_{k}=-K x_{k}}}\right.
$$

The stability of the closed-loop is determined by the eigenvalues of matrix A_{CL}
The closed-loop dynamics,

$$
\begin{aligned}
x_{k+1} & =A x_{k}-B K x_{k} \\
& =\underbrace{(A-B K)}_{A_{C L}} x_{k}
\end{aligned}
$$

An example

The linear quadratic regulator

Example

Consider a discrete-time linear and time-invariant dynamical system with LQR ($K=5$)

$$
\begin{aligned}
x_{k+1} & =\underbrace{\left[\begin{array}{cc}
4 / 3 & -2 / 3 \\
1 & 0
\end{array}\right]}_{A} x_{k}+\underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right]}_{B} u_{k} \\
y_{k} & =\underbrace{\left[\begin{array}{c}
-2 / 3 \\
1
\end{array}\right]}_{C} x_{K}
\end{aligned}
$$

The discrete-time transfer function has a zero $(z=3 / 2)$, non-minimum phase system

$$
\begin{aligned}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{4}, x_{5} \\
u_{0}, u_{1}, \ldots, u_{4}}} & x_{5}^{T} Q_{5} x_{5}+\sum_{k=0}^{4} x_{k}^{T} Q x_{k}+u_{k}^{T} R u_{k} \\
\text { subject to } & A x_{k}+B u_{k}-x_{k+1}=0, \quad k=0,1, \ldots, 4 \\
& \bar{x}_{0}-x_{0}=0
\end{aligned}
$$

We use $Q=Q_{5}=C^{T} C+0.001 I$ and $R=0.001$ that barely penalises control actions

The linear-quadratic regulator | Infinite-horizon (cont.)

Based on the Riccati equation, we iterate four times from $\Pi_{K}=Q_{K}=Q$

$$
K_{4}^{(5)}, K_{3}^{(5)}, K_{2}^{(5)}, K_{1}^{(5)}, K_{0}^{(5)}
$$

Assuming that we use the first feedback gain $K_{0}^{(5)}$, we have

$$
\begin{aligned}
& u_{k}=K_{0}^{(5)} x_{k} \\
& x_{k}=\left(A+B K_{0}^{(5)}\right)^{k} x_{0}
\end{aligned}
$$

In closed-loop, the eigenvalues of $\left(A+B K_{0}^{(5)}\right)=A_{\mathrm{CL}}^{(5)}$

$$
\lambda\left(A_{\mathrm{CL}}^{(5)}\right)=(\underbrace{1.307}_{>1}, 0.001)
$$

One of the eigenvalues is outside the unit circle

- The closed-loop system is unstable
- The state grows exponentially
- $x_{k} \rightarrow \infty$ as $k \rightarrow \infty$

The linear-quadratic regulator | Infinite-horizon (cont.)

The closed-loop eigenvalues of $\left(A+B K_{0}^{(K)}\right)$ for horizons L of different duration (o)

- For reference, the open-loop eigenvalues of $A(\times)$ are both stable

When we start with a finite horizon LQR , we move both the open-loop eigenvalues
\rightsquigarrow From $K=1$, until we enter the unit disc at $K=7$
\rightsquigarrow The stability margin grows with K

Stability margin as function of the control horizon
\rightsquigarrow Finite-horizon may return unstable controllers
\rightsquigarrow More robustness is gained as the horizon grows

$$
\lambda\left(A_{\mathrm{CL}}^{(\infty)}\right)=(\underbrace{0.664}_{<1}, 0.001)
$$

A feedback gain $K_{0}^{(\infty)}$ corresponds to an infinite-horizon linear-quadratic regulator

$$
\begin{aligned}
\min _{\substack{x_{0}, x_{1}, \ldots, u_{0}, u_{1}, \ldots}} & \sum_{k=0}^{\infty} x_{k}^{T} Q x_{k}+u_{k}^{T} R u_{k} \\
\text { subject to } & A x_{k}+B u_{k}-x_{k+1}=0, \quad k=0,1, \ldots \\
& \bar{x}_{0}-x_{0}=0
\end{aligned}
$$

$$
\begin{aligned}
\min _{\substack{x_{0}, x_{1}, \ldots, u_{0}, u_{1}, \ldots}} & \sum_{k=0}^{\infty} x_{k}^{T} Q x_{k}+u_{k}^{T} R u_{k} \\
\text { subject to } & A x_{k}+B u_{k}-x_{k+1}=0, \quad k=0,1, \ldots \\
& \bar{x}_{0}-x_{0}=0
\end{aligned}
$$

If we are interested in controlling a continuous process, without a final-time, then the natural formulation of the optimal control problem is with an infinite-horizon cost

- In this case, the Riccati recursion has a stationary solution $\Pi_{k}=\Pi_{k+1}$,

$$
\Pi=Q+A^{T} \Pi A-A^{T} \Pi B\left(B^{T} \Pi B+R\right)^{-1} B^{T} \Pi A
$$

Given Π, we have the classic optimal control feedback

$$
u^{*}=-\underbrace{\left(R+B^{T} \Pi B\right)^{-1} B^{T} \Pi A}_{K} x_{k}
$$

Closed-loop stability is not relevant for batch processes, finite-horizon LQRs are fine

Multi-stage

$$
\begin{aligned}
\min _{\substack{x_{0}, x_{1}, \ldots, u_{0}, u_{1}, \ldots}} & \sum_{k=0}^{\infty} x_{k}^{T} Q x_{k}+u_{k}^{T} R u_{k} \\
\text { subject to } & A x_{k}+B u_{k}-x_{k+1}=0, \quad k=0,1, \ldots \\
& \bar{x}_{0}-x_{0}=0
\end{aligned}
$$

Infinite-horizon solutions exist as long as the cost function is bounded

- In this case, the cost function is an infinite sum
- But, ... the result must not be infinitely big

This is possible when the linear-time invariant system is controllable
\rightsquigarrow We can transfer its state from anywhere to anywhere
\rightsquigarrow And, there exists a control sequence to do that
\rightsquigarrow And, it can be done in finite time

The linear-quadratic regulator | Infinite-horizon (cont.)

If the pair (A, B) is controllable, the there exists a finite horizon of length K and a sequence of inputs that can transfer the state of the system from any x to any x^{\prime}

That is, by forward simulation

$$
x^{+}=A^{K} x+\left[\begin{array}{llll}
B & A B & \cdots & A^{K-1} B
\end{array}\right]\left[\begin{array}{c}
u_{K_{1}} \\
u_{K-1} \\
\vdots \\
u_{0}
\end{array}\right]
$$

Similarly, rearranging we get

$$
\underbrace{\left[\begin{array}{llll}
B & A B & \cdots & A^{K-1} B
\end{array}\right]}_{\mathcal{C}}\left[\begin{array}{c}
u_{K_{1}} \\
u_{K-1} \\
\vdots \\
u_{0}
\end{array}\right]=x^{+}-A^{K} x
$$

Controllability matrix \mathcal{C} must be full rank for the equation to have a solution $\left\{u_{k}\right\}_{k=0}^{K-1}$

- If cannot reach x^{\prime} in K moves, then we cannot reach it in any number of moves

