Discrete-time optimal control
 CHEM-E7225 (was E7195), 2023

Francesco Corona ($\neg-\neg$)
Chemical and Metallurgical Engineering School of Chemical Engineering

Formulations

To formulate a general discrete-time optimal control problem, we combine the notions on dynamic systems and simulation with the notions on nonlinear programming

- We understand/treat general (discrete-time) optimal control problems as a special form of nonlinear programming and discuss its numerical solution

Overview (cont.)

Consider a system f which maps an initial state vector x_{k} onto a final state vector x_{k+1}

- We also consider the presence of a control u_{k} that affects the transition

$$
x_{k+1}=f\left(x_{k}, u_{k} \mid \theta_{x}\right), \quad(k=0,1, \ldots, K-1)
$$

We consider transitions over an arbitrary time-horizon, from time $k=0$ to time $k=K$

$$
0 \cdots 1 \cdots \cdots(k-1) \cdots k \cdots(k+1) \cdots \cdots(K-1) \cdots K
$$

Over said time-horizon, we have the following sequences of state and control variables
\rightsquigarrow For the controls, we have $\left\{u_{k}\right\}_{k=0}^{K-1}$ with $u_{k} \in \mathcal{R}^{N_{u}}$
\rightsquigarrow For the states, we have $\left\{x_{k}\right\}_{k=0}^{K}$ with $x_{k} \in \mathcal{R}^{N_{x}}$

For notational simplicity, we used time-invariant dynamics f

- In general, we may have $x_{k+1}=f_{k}\left(x_{k}, u_{k} \mid \theta_{x}\right)$

Overview (cont.)

$$
x_{k+1}=f\left(x_{k}, u_{k} \mid \theta_{x}\right), \quad(k=0,1, \ldots, K-1)
$$

The dynamics f are often derived from the discretisation of a continuous-time system

- As result of a numerical integration schemes, under piecewise constant controls
\qquad

$7 \int^{\boxed{4}}$

$$
x_{k+1}=f\left(x_{k}, u_{k} \mid \theta_{x}\right), \quad(k=0,1, \ldots, K-1)
$$

Given an initial state x_{0} and some sequence of controls $\left\{u_{k}\right\}_{k=0}^{K-1}$, we know $\left\{x_{k}\right\}_{k=0}^{K}$ The forward-simulation function determines the sequence $\left\{x_{k}\right\}_{k=0}^{K}$ of visited states

$$
\begin{aligned}
f_{\text {sim }} & : \mathcal{R}^{N_{x}+\left(K \times N_{u}\right)} \rightarrow \mathcal{R}^{(K+1) N_{x}} \\
& :\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right) \mapsto\left(x_{0}, x_{1}, \ldots, x_{K}\right)
\end{aligned}
$$

For systems with no special structure, the forward-simulation map is built recursively

$$
\begin{aligned}
x_{0} & =x_{0} \\
x_{1} & =f\left(x_{0}, u_{0} \mid \theta_{x}\right) \\
x_{2} & =f\left(x_{1}, u_{1} \mid \theta_{x}\right) \\
& =f\left(f\left(x_{0}, u_{0} \mid \theta_{x}\right), u_{1} \mid \theta_{x}\right) \\
x_{3} & =f\left(x_{2}, u_{2} \mid \theta_{x}\right) \\
& =f\left(f\left(f\left(x_{0}, u_{0} \mid \theta_{x}\right), u_{1} \mid \theta_{x}\right), u_{2} \mid \theta_{x}\right)
\end{aligned}
$$

$$
\cdots=\cdots
$$

$$
x_{k+1}=f\left(x_{k}, u_{k} \mid \theta_{x}\right), \quad(k=0,1, \ldots, K-1)
$$

In optimal control, the dynamics can be used as equality constraints in optimisation In this case, the initial state vector x_{0} is not necessarily known, nor its is fixed

- Therefore, it can be one of the decision variables to be determined
- Moreover, certain additional constraints may be required to it

Similarly, also the final state x_{K} can be treated as decision variable in an optimisation

Overview (cont.)
Initial and terminal state constraints
We express the constraints on initial and terminal states in terms of function $r\left(x_{0}, x_{K}\right)$

$$
r: \mathcal{R}^{N_{x}+N_{x}} \rightarrow \mathcal{R}^{N_{r}}
$$

We express the desire to reach certain initial and terminal states as equality constraints

$$
r\left(x_{0}, x_{K}\right)=0
$$

For fixed initial state $x_{0}=\bar{x}_{0}$, we have

$$
r\left(x_{0}, x_{K}\right)=x_{0}-\bar{x}_{0}
$$

For fixed terminal state $x_{K}=\bar{x}_{K}$, we have

$$
r\left(x_{0}, x_{K}\right)=x_{K}-\bar{x}_{K}
$$

For fixed both initial and terminal states, $x_{0}=\bar{x}_{0}$ and $x_{K}=\bar{x}_{K}$, we have

$$
r\left(x_{0}, x_{K}\right)=\left[\begin{array}{c}
x_{0}-\bar{x}_{0} \\
x_{K}-\bar{x}_{K}
\end{array}\right]
$$

Overview (cont.)

When both the initial and terminal states are fixed $\left(x_{0}=\bar{x}_{0}\right.$ and $\left.x_{K}=\bar{x}_{K}\right)$, we have

Overview (cont.)

Path constraints

We express certain constraints on state and control values x_{k} and u_{k} along their path
\rightsquigarrow These constraints often represent technological restrictions and/or desiderata
\rightsquigarrow They are commonly expressed in terms of inequality constraints

- The main idea is to use them to prevent operational violations

$$
h\left(x_{k}, u_{k}\right) \leq 0, \quad k=0,1, \ldots, K-1
$$

For notational simplicity, we used time-invariant inequality constraint functions h

For common upper and lower bounds on the controls, $u_{\text {min }} \leq u_{k} \leq u_{\text {max }}$, we have

$$
h\left(x_{k}, u_{k}\right)=\left[\begin{array}{l}
u_{k}-u_{\max } \\
u_{\min }-u_{k}
\end{array}\right]
$$

For common upper and lower bounds on the states, $x_{\min } \leq x_{k} \leq x_{\max }$, we have

$$
h\left(x_{k}, u_{k}\right)=\left[\begin{array}{l}
x_{k}-x_{\max } \\
x_{\min }-x_{k}
\end{array}\right]
$$

Formulations

Simultaneous approach Sequential approach

For common upper and lower bounds on the controls, $u_{\min } \geq u_{k} \geq u_{\max }$, we have

Overview (cont.)

Formulations

Simultaneous approach

For common upper and lower bounds on the states, $x_{\min } \geq x_{k} \geq x_{\max }$, we have

$$
h\left(x_{k}, u_{k}\right)=\left[\begin{array}{c}
x_{k}^{(1)}-x_{\max }^{(1)} \\
x_{k}^{(2)}-x_{\max }^{(2)} \\
\vdots \\
x_{k}^{\left(N_{)}\right)}-x_{\max }^{\left(N_{x}\right)} \\
\begin{array}{c}
x_{\min }^{(1)}-x_{k}^{(1)} \\
x_{\min }^{(2)}-x_{k}^{(2)} \\
\vdots \\
x_{\min }^{\left(N_{x}\right)}-x_{k}^{\left(N_{x}\right)}
\end{array}
\end{array}\right]
$$

Problem formulations

Discrete-time optimal control

We are given system dynamics and specifications on the state and control constraints
We use them to formulate the discrete-time optimal control problem

- It is a general constrained nonlinear program

$$
\begin{array}{rlr}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K-1}}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) & \\
\text { subject to } & x_{k+1}-f\left(x_{k}, u_{k} \mid \theta_{x}\right)=0, & k=0,1, \ldots, K-1 \\
& h\left(x_{k}, u_{k}\right) \leq 0, & k=0,1, \ldots, K-1 \\
& r\left(x_{0}, x_{K}\right)=0 &
\end{array}
$$

The objective function, in general two terms

$$
\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right)+E\left(x_{K}\right)
$$

The decision variables, in general two sets

$$
\begin{aligned}
& x_{0}, x_{1}, \ldots, x_{K-1}, x_{K} \\
& u_{0}, u_{1}, \ldots, u_{K-1}
\end{aligned}
$$

The equality constraints, in general two sets

$$
\begin{aligned}
x_{k+1}-f\left(x_{k}, u_{k} \mid \theta_{x}\right) & =0 \quad(k=0, \ldots, K-1) \\
r\left(x_{0}, x_{K}\right) & =0
\end{aligned}
$$

The inequality constraints

$$
h\left(x_{k}, u_{k}\right) \leq 0 \quad(k=0,1, \ldots, K-1)
$$

$$
\begin{array}{rll}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K}-1}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) & \\
\text { subject to } & x_{k+1}-f\left(x_{k}, u_{k} \mid \theta_{x}\right)=0, & k=0,1, \ldots, K-1 \\
& h\left(x_{k}, u_{k}\right) \leq 0, & k=0,1, \ldots, K-1 \\
& r\left(x_{0}, x_{K}\right)=0 &
\end{array}
$$

The objective function is the sum of all stage costs $L\left(x_{k}, u_{k}\right)$ and a terminal cost $E\left(x_{K}\right)$

$$
\underbrace{\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right)+E\left(x_{K}\right)}_{f(w) \in \mathcal{R}}
$$

That is,

$$
L\left(x_{0}, u_{0}\right)+L\left(x_{1}, u_{1}\right)+\cdots+L\left(x_{K-1}, u_{K-1}\right)+E\left(x_{K}\right)
$$

Stage cost is a (potentially nonlinear and time-varying) function of state and controls The terminal cost is a (potentially nonlinear and time-varying) function of state

$$
\begin{array}{rlr}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K}-1}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) & \\
\text { subject to } & x_{k+1}-f\left(x_{k}, u_{k} \mid \theta_{x}\right)=0, & k=0,1, \ldots, K-1 \\
& h\left(x_{k}, u_{k}\right) \leq 0, & k=0,1, \ldots, K-1 \\
& r\left(x_{0}, x_{K}\right)=0 &
\end{array}
$$

The decision variables are both the $K \times N_{u}$ controls and the $(K+1) \times N_{x}$ state variables

$$
\underbrace{\underbrace{\left(x_{0}, x_{1}, \ldots, x_{K-1}, x_{K}\right)}_{\text {State variables }} \cup \underbrace{\left(u_{0}, u_{1}, \ldots, u_{K-1}\right)}_{\text {Control variables }}}_{w \in \mathcal{R}^{K \times N_{u}}+(K+1) \times N_{x}}
$$

$$
\begin{array}{rlr}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K-1} \\
\text { s. }}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) & \\
\text { subject to } & x_{k+1}-f\left(x_{k}, u_{k} \mid \theta_{x}\right)=0, & k=0,1, \ldots, K-1 \\
& h\left(x_{k}, u_{k}\right) \leq 0, & k=0,1, \ldots, K-1 \\
& r\left(x_{0}, x_{K}\right)=0 &
\end{array}
$$

The equality constraints consist of the K dynamics and the N_{r} boundary conditions

$$
\underbrace{x_{k+1}-f\left(x_{k}, u_{k} \mid \theta_{x}\right)=0 \quad(k=0, \ldots, K-1)}_{g(w) \in \mathcal{R}^{N_{g}}} \begin{aligned}
r\left(x_{0}, x_{K}\right) & =0
\end{aligned}
$$

The inequality constraints

$$
\underbrace{h\left(x_{k}, u_{k}\right) \leq 0 \quad(k=0,1, \ldots, K-1)}_{h(w) \in \mathcal{R}^{N_{h}}}
$$

$$
\begin{array}{rlr}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K}-1}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) & \\
\text { subject to } & x_{k+1}-f\left(x_{k}, u_{k} \mid \theta_{x}\right)=0, & k=0,1, \ldots, K-1 \\
& h\left(x_{k}, u_{k}\right) \leq 0, & k=0,1, \ldots, K-1 \\
& r\left(x_{0}, x_{K}\right)=0 &
\end{array}
$$

The discrete-time optimal control problem is a potentially very large nonlinear program

- In principle, its solution can be approached using any generic NLP solver

We introduce the two approaches used to solve discrete-time optimal control problems
\rightsquigarrow The simultaneous approach
\rightsquigarrow The sequential approach

The simultaneous approach

Problem formulations

Formulations

Simultaneous approach Sequential approach

$$
\begin{array}{rll}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K}-1}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) & \\
\text { subject to } & x_{k+1}-f\left(x_{k}, u_{k} \mid \theta_{x}\right)=0, & k=0,1, \ldots, K-1 \\
& h\left(x_{k}, u_{k}\right) \leq 0, & k=0,1, \ldots, K-1 \\
& r\left(x_{0}, x_{K}\right)=0 &
\end{array}
$$

The simultaneous approach solves the problem in the space of all the decision variables

$$
w=\left(x_{0}, u_{0}, x_{1}, u_{1}, \ldots, x_{K-1}, u_{K-1}, x_{K}\right)
$$

Thus, there are $\left(K \times N_{u}\right)+\left((K+1) \times N_{x}\right)$ decision variables

The Lagrangian function of the problem,

$$
\mathcal{L}(w, \lambda, \mu)=f(w)+\lambda^{T} g(w)+\mu^{T} h(w)
$$

The Karush-Kuhn-Tucker conditions,

$$
\begin{aligned}
\nabla f\left(w^{*}\right)+\nabla g\left(w^{*}\right) \lambda^{*}+\nabla h\left(w^{*}\right) \mu^{*} & =0 \\
g\left(w^{*}\right) & =0 \\
h\left(w^{*}\right) & \leq 0 \\
\mu^{*} & \geq 0 \\
\mu_{n_{h}}^{*} h_{n_{h}}\left(w^{*}\right) & =0, \quad n_{h}=1, \ldots, N_{h}
\end{aligned}
$$

If point $w^{*}=\left(x_{0}^{*}, u_{0}^{*}, \ldots, x_{K-1}^{*}, u_{K-1}^{*}, x_{K}^{*}\right)$ is a local minimiser of the nonlinear program and if LICQ holds at w^{*}, there there exist two vectors, the Lagrange multipliers $\lambda \in \mathcal{R}^{N_{g}}$ and $\mu \in \mathcal{R}^{N_{h}}$, such that the Karhush-Kuhn-Tucker conditions are verified

Formulations

Simultaneous approach Sequential approach

Problem formulations | Simultaneous approach (cont.)

SQP Iter: 0

To understand more closely the structure and sparsity properties, consider an example

$$
\begin{array}{rl}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K}-1}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) \\
\text { subject to } & x_{k+1}-f\left(x_{k}, u_{k} \mid \theta_{x}\right)=0, \quad k=0,1, \ldots, K-1 \\
& r\left(x_{0}, x_{K}\right)=0
\end{array}
$$

We consider a discrete-time optimal control problem with no inequality constraints

- (The inequality constraints are omitted for notational simplicity)

The objective function $f(w)=E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right)$ of the decision variables

$$
w=(\underbrace{x_{0}, u_{0}}, \underbrace{x_{1}, u_{1}}, \ldots, \underbrace{x_{K-1}, u_{K-1}}, \underbrace{x_{K}})
$$

Problem formulations | Simultaneous approach (cont.)

$$
\begin{array}{rl}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K-1}}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) \\
\text { subject to } & \underbrace{x_{k+1}-f\left(x_{k}, u_{k} \mid \theta_{x}\right)=0}, \quad k=0,1, \ldots, K-1
\end{array}
$$

We define the equality constraint function $g((w)$ by joining all the equality constraints

$$
\begin{aligned}
g(w) & =\left[\begin{array}{c}
g_{1}(w) \\
g_{2}(w) \\
\vdots \\
g_{N_{g}}(w)
\end{array}\right] \\
& =\underbrace{\left[\begin{array}{c}
x_{1}-f\left(x_{0}, u_{0}\right) \\
x_{2}-f\left(x_{1}, u_{1}\right) \\
\vdots \\
x_{K}-f\left(x_{K-1}, u_{K-1}\right) \\
r\left(x_{0}, x_{K}\right)
\end{array}\right]}_{\left(\left(K \times N_{x}\right)+N_{r}\right) \times 1}
\end{aligned}
$$

$$
\begin{array}{rl}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K}-1}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) \\
\text { subject to } & x_{k+1}-f\left(x_{k}, u_{k} \mid \theta_{x}\right)=0, \quad k=0,1, \ldots, K-1 \\
& r\left(x_{0}, x_{K}\right)=0
\end{array}
$$

We define the Lagrangian function (objective function and equality constraints, $\mathcal{L}(w, \lambda)$)

$$
\mathcal{L}(w, \lambda)=f(w)+\lambda^{T} g(w)
$$

The $N_{g}=\left(K \times N_{x}\right)+N_{r}$ equality multipliers can be any real numbers $\lambda_{n_{g}}$

$$
\lambda=(\underbrace{\lambda_{1}, \lambda_{2}, \ldots, \underbrace{\lambda_{k}}, \ldots, \lambda_{K}}_{\text {Dynamics }}, \underbrace{\lambda_{N_{r}}}_{\text {Boundaries }})
$$

First-order optimality is given by the KKT conditions

$$
\begin{aligned}
\nabla_{w} \mathcal{L}(w, \lambda) & =0 \\
g(w) & =0
\end{aligned}
$$

After expanding the terms in the inner product, we re-write the Lagrangian function

$$
\begin{aligned}
& \mathcal{L}(w, \lambda)= \\
& \quad \underbrace{E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right)}_{f(w)}+\underbrace{\left(\sum_{k=0}^{K-1} \lambda_{k+1}^{T}\left(f\left(x_{k}, u_{k}\right)-x_{k+1}\right)+\lambda_{N_{r}}^{T} r\left(x_{0}, x_{K}\right)\right)}_{\lambda^{T} g(w)}
\end{aligned}
$$

Consider one, at any time $k=1,2, \ldots, K-1$, of the dynamic (equality) constraints

$$
x_{k+1}-f\left(x_{k}, u_{k}\right)=0
$$

After expanding these equality constraints, more explicitly we have

$$
\underbrace{\left[\begin{array}{c}
x_{k+1}^{(1)}-f_{1}\left(x_{k}, u_{k}\right) \\
x_{k+1}^{(2)}-f_{2}\left(x_{k}, u_{k}\right) \\
\vdots \\
x_{k+1}^{\left(n_{x}\right)}-f_{n_{x}}\left(x_{k}, u_{k}\right) \\
\vdots \\
\left.\begin{array}{c}
x_{k+1}^{\left(N_{x}-1\right)}-f_{N_{x}-1}\left(x_{k}, u_{k}\right) \\
x_{k+1}^{\left(N_{x}\right)}-f_{N_{x}}\left(x_{k}, u_{k}\right)
\end{array}\right]
\end{array}\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]\right.}_{N_{x \times 1}}
$$

Problem formulations \mid Simultaneous approach (cont.)

Consider the associated inner product with the corresponding equality multiplier,

After expanding the inner product, more explicitly we have

Problem formulations | Simultaneous approach (cont.)

Similarly, consider the boundary constraint on the initial ad terminal state

$$
r\left(x_{0}, x_{K}\right)=0
$$

After expanding also these equality constraints, more explicitly we have

$$
r\left(x_{0}, x_{N}\right)=\underbrace{\left[\begin{array}{c}
x_{0}^{(1)}-\bar{x}_{0}^{(1)} \\
x_{0}^{(2)}-\bar{x}_{0}^{(2)} \\
\vdots \\
x_{0}^{\left(N_{x}\right)}-\bar{x}_{0}^{\left(N_{x}\right)} \\
\begin{array}{c}
x_{K}^{(1)}-\bar{x}_{K}^{(1)} \\
x_{K}^{(2)}-\bar{x}_{K}^{(2)} \\
\vdots \\
x_{K}^{\left(N_{x}\right)}-\bar{x}_{K}^{\left(N_{x}\right)}
\end{array}
\end{array}\right]}_{N_{r} \times 1}
$$

Problem formulations \mid Simultaneous approach (cont.)

Consider the inner product $\lambda_{N_{r}}^{T} r\left(x_{0}, x_{K}\right)$ with the corresponding equality multiplier,

$$
\underbrace{\underbrace{\lambda_{N_{r}}^{T}}_{1 \times N_{r}} \underbrace{r\left(x_{0}, x_{K}\right)}_{N_{r} \times 1}}_{1 \times 1}
$$

After expanding the inner product, we have

Problem formulations \mid Simultaneous approach (cont.)

Putting things together, the Lagrangian function for equality constrained problems

$$
\begin{aligned}
\nabla_{w} \mathcal{L}(w, \lambda) & =0 \\
g(w) & =0
\end{aligned}
$$

The first KKT condition regards the derivative of \mathcal{L} with respect to the primal variables

$$
w=\left(x_{0}, u_{0}, x_{1}, u_{1}, \ldots, x_{K-1}, u_{K-1}, x_{K}\right)
$$

The Lagrangian function $\mathcal{L}(w, \lambda)$ in structural (expanded) form,

$$
\underbrace{\underbrace{E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right)}_{\mathcal{L}(w, \lambda)}+\underbrace{\left(\sum_{k=0}^{K-1} \lambda_{k+1}^{T}\left(f\left(x_{k}, u_{k}\right)-x_{k+1}\right)+\lambda_{N_{r}}^{T} r\left(x_{0}, x_{K}\right)\right)}_{\lambda^{T} g(w)}}_{f(w)}
$$

The second KKT condition collects all the equality constraints

$$
\begin{aligned}
x_{k+1}-f\left(x_{k}, u_{k}\right) & =0 \quad(k=0, \ldots, K-1) \\
r\left(x_{0}, x_{K}\right) & =0
\end{aligned}
$$

Problem formulations \mid Simultaneous approach (cont.)

$$
g(w)=0
$$

For the second KKT condition, we have the equalities

$$
\begin{aligned}
x_{k+1}-f\left(x_{k}, u_{k}\right) & =0 \quad(k=0, \ldots, K-1) \\
r\left(x_{0}, x_{K}\right) & =0
\end{aligned}
$$

That is, in a slightly more expanded form

$$
\left[\begin{array}{c}
\underbrace{x_{1}-f\left(x_{0}, u_{0}\right)}_{N_{x} \times 1} \\
\underbrace{x_{2}-f\left(x_{1}, u_{1}\right)}_{N_{x} \times 1} \\
\vdots \\
\underbrace{x_{K}-f\left(x_{K-1}, u_{K-1}\right)}_{N_{x} \times 1}
\end{array}\right]=\left[\begin{array}{c}
\underbrace{0}_{N_{x} \times 1} \\
\underbrace{0}_{N_{x} \times 1} \\
\vdots \\
\underbrace{0}_{N_{x} \times 1} \\
\underbrace{0}_{N_{r} \times 1}
\end{array}\right]
$$

Problem formulations | Simultaneous approach (cont.)

$$
\nabla_{w} \mathcal{L}(w, \lambda)=0
$$

Consider the gradient of the Lagrangian function with respect to the primal variables

$$
w=\left(x_{0}, u_{0}, x_{1}, u_{1}, \ldots, x_{K-1}, u_{K-1}, x_{K}\right)
$$

It is a concatenation of gradients of $\mathcal{L}(w, \lambda)$, each with respect to a primal variable

$$
\nabla_{w} \mathcal{L}(w, \lambda)=\left[\begin{array}{c}
\nabla_{x_{0}} \mathcal{L}(w, \lambda) \\
\nabla_{x_{1}} \mathcal{L}(w, \lambda) \\
\vdots \\
\nabla_{x_{K}} \mathcal{L}(w, \lambda) \\
\\
\nabla_{u_{0}} \mathcal{L}(w, \lambda) \\
\nabla_{u_{1}} \mathcal{L}(w, \lambda) \\
\vdots \\
\nabla_{u_{K-1}} \mathcal{L}(w, \lambda)
\end{array}\right]
$$

For the first KKT conditions, it is necessary to determine/evaluate derivatives

$$
\underbrace{E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right)+\left(\sum_{k=0}^{K-1} \lambda_{k+1}^{T}\left(f\left(x_{k}, u_{k}\right)-x_{k+1}\right)+\lambda_{N_{r}}^{T} r\left(x_{0}, x_{K}\right)\right)}_{\mathcal{L}(w, \lambda)}
$$

Consider the derivatives of the Lagrangian function with respect to state variables x_{k}

- For $k=0$, we have

$$
\nabla_{x_{0}} \mathcal{L}(w, \lambda)=\nabla_{x_{0}} L\left(x_{0}, u_{0}\right)+\frac{\partial f\left(x_{0}, u_{0}\right)^{T}}{\partial x_{0}} \lambda_{1}+\frac{\partial r\left(x_{0}, x_{K}\right)^{T}}{\partial x_{0}} \lambda_{N_{r}}
$$

- For any $k=1, \ldots, K-1$, we have

$$
\nabla_{x_{k}} \mathcal{L}(w, \lambda)=\nabla_{x_{k}} L\left(x_{k}, u_{k}\right)+\frac{\partial f\left(x_{k}, u_{k}\right)^{T}}{\partial x_{k}} \lambda_{k+1}-\lambda_{k}
$$

- For $k=K$, we have

$$
\nabla_{x_{K}} \mathcal{L}(w, \lambda)=\nabla_{x_{K}} E\left(x_{K}\right)-\lambda_{K}+\frac{\partial r\left(x_{0}, x_{K}\right)^{T}}{\partial x_{K}} \lambda_{N_{r}}
$$

Consider the generic term $\nabla_{x_{k}} \mathcal{L}(w, \lambda)=\underbrace{\nabla_{x_{k}} L\left(x_{k}, u_{k}\right)}+\frac{\partial f\left(x_{k}, u_{k}\right)^{T}}{\partial x_{k}} \lambda_{k+1}-\lambda_{k}$, at k
After expanding the first expression, we have

$$
\nabla_{x_{k}} \mathcal{L}(w, \lambda)=\underbrace{\left[\begin{array}{c}
\frac{\partial \mathcal{L}(w, \lambda)}{\partial x_{k}^{(1)}} \\
\frac{\partial \mathcal{L}(w, \lambda)}{\partial x_{k}^{(2)}} \\
\vdots \\
\frac{\partial \mathcal{L}(w, \lambda)}{\partial x_{k}^{\left(N_{x}\right)}}
\end{array}\right]}_{N_{x} \times 1}
$$

$$
\nabla_{x_{k}} \mathcal{L}(w, \lambda)=\nabla_{x_{k}} L\left(x_{k}, u_{k}\right)+\underbrace{\frac{\partial f\left(x_{k}, u_{k}\right)^{T}}{\partial x_{k}}} \lambda_{k+1}-\lambda_{k}
$$

Consider the derivative of the dynamics $f\left(x_{k}, u_{k}\right)$ with respect to state variables x_{k},

$$
\frac{\partial f\left(x_{k}, u_{k}\right)}{\partial x_{k}}
$$

Remember that for the dynamics $f\left(x_{k}, u_{k}\right)$, we have the component functions

$$
f\left(x_{k}, u_{k}\right)=\left[\begin{array}{c}
f_{1}\left(x_{k}^{(1)}, \ldots, x_{K}^{\left(N_{x}\right)}, u_{k}\right) \\
\vdots \\
f_{n_{x}}\left(x_{k}^{(1)}, \ldots, x_{K}^{\left(N_{x}\right)}, u_{k}\right) \\
\vdots \\
f_{N_{x}}\left(x_{k}^{(1)}, \ldots, x_{K}^{\left(N_{x}\right)}, u_{k}\right)
\end{array}\right]
$$

$$
f\left(x_{k}^{(1)}, \ldots, x_{k}^{\left(N_{x}\right)}, u_{k}\right)=\left[\begin{array}{c}
f_{1}\left(x_{k}^{(1)}, \ldots, x_{K}^{\left(N_{x}\right)}, u_{k}\right) \\
\vdots \\
f_{n_{x}}\left(x_{k}^{(1)}, \ldots, x_{K}^{\left(N_{x}\right)}, u_{k}\right) \\
\vdots \\
f_{N_{x}}\left(x_{k}^{(1)}, \ldots, x_{K}^{\left(N_{x}\right)}, u_{k}\right)
\end{array}\right]
$$

Thus, we have the corresponding component terms for the derivative of the dynamics

$$
\frac{\partial f\left(x_{k}^{(1)}, \ldots, x_{k}^{\left(N_{x}\right)}, u_{k}\right)}{\partial x_{k}}=\left[\begin{array}{c}
\frac{\partial f_{1}\left(x_{k}^{(1)}, \ldots, x_{k}^{\left(N_{x}\right)}, u_{k}\right)}{\partial x_{k}} \\
\vdots \\
\frac{\partial f_{n_{x}}\left(x_{k}^{(1)}, \ldots, x_{k}^{\left(N_{x}\right)}, u_{k}\right)}{\partial x_{k}} \\
\vdots \\
\frac{\partial f_{N_{x}}\left(x_{k}^{(1)}, \ldots, x_{k}^{\left(N_{x}\right)}, u_{k}\right)}{\partial x_{k}}
\end{array}\right]
$$

After further expanding the expression to highlight all of its terms, we have

$$
\frac{\partial f\left(x_{k}, u_{k}\right)}{\partial x_{k}}=\underbrace{N_{x \times N_{x}}}_{\left.\begin{array}{cccc}
\frac{\partial f_{1}\left(x_{k}, u_{k}\right)}{\partial x_{k}^{(1)}} & \frac{\partial f_{1}\left(x_{k}, u_{k}\right)}{\partial x_{k}^{(2)}} & \cdots & \frac{\partial f_{1}\left(x_{k}, u_{k}\right)}{\partial x_{k}^{\left(N_{x}\right)}} \\
\frac{\partial f_{2}\left(x_{k}, u_{k}\right)}{\partial x_{k}^{(1)}} & \frac{\partial f_{2}\left(x_{k}, u_{k}\right)}{\partial x_{k}^{(2)}} & \cdots & \frac{\partial f_{2}\left(x_{k}, u_{k}\right)}{\partial x_{k}^{\left(N_{x}\right)}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{N_{x}}\left(x_{k}, u_{k}\right)}{\partial x_{k}^{(1)}} & \frac{\partial f_{N_{x}}\left(x_{k}, u_{k}\right)}{\partial x_{k}^{(2)}} & \cdots & \frac{\partial f_{N_{x}}\left(x_{k}, u_{k}\right)}{\partial x_{k}^{\left(N_{x}\right)}}
\end{array}\right]}
$$

For the inner product with the associated equality multiplier, we get

$$
\underbrace{\frac{\partial f\left(x_{k}, u_{k}\right)^{T}}{\partial x_{k}} \underbrace{\lambda_{k+1}}_{N_{x} \times N_{x}}}_{N_{x} \times 1}
$$

$$
\nabla_{x_{0}} \mathcal{L}(w, \lambda)=\nabla_{x_{0}} L\left(x_{0}, u_{0}\right)+\frac{\partial f\left(x_{0}, u_{0}\right)^{T}}{\partial x_{0}} \lambda_{1}+\underbrace{\frac{\partial r\left(x_{0}, x_{K}\right)^{T}}{\partial x_{0}}} \lambda_{N_{r}}
$$

Consider the derivatives of the boundary conditions with respect to x_{0}

$$
\frac{\partial r\left(x_{0}, x_{K}\right)}{\partial x_{0}}
$$

$$
\nabla_{x_{K}} \mathcal{L}(w, \lambda)=\nabla_{x_{K}} E\left(x_{K}\right)-\lambda_{K}+\frac{\partial r\left(x_{0}, x_{K}\right)^{T}}{\partial x_{K}} \lambda_{N_{r}}
$$

Consider the derivatives of the boundary conditions with respect to x_{K} \rightsquigarrow

$$
\frac{\partial r\left(x_{0}, x_{K}\right)}{\partial x_{K}}
$$

Remember that for the boundary constraints on the initial ad terminal state, we have

Problem formulations | Simultaneous approach (cont.)

For the derivative of the boundary constraints with respect to x_{0}, we have

$$
\underbrace{\partial r(\underbrace{x_{0}^{(1)}, x_{0}^{(2)}, \ldots, x_{0}^{\left(N_{x}\right)}}, x_{K})}_{\underbrace{\partial x_{0}}}\left[\begin{array}{c}
\frac{\partial r_{1}\left(x_{0}^{(1)}, x_{0}^{(2)}, \ldots, x_{0}^{\left(N_{x}\right)}, x_{K}\right)}{\partial x_{0}} \\
\frac{\partial r_{2}\left(x_{0}^{(1)}, x_{0}^{(2)}, \ldots, x_{0}^{\left(N_{x}\right)}, x_{K}\right)}{\partial x_{0}} \\
\vdots \\
\frac{\partial r_{N_{x}}\left(x_{0}^{(1)}, x_{0}^{(2)}, \ldots, x_{0}^{\left(N_{x}\right)}, x_{K}\right)}{\partial x_{0}} \\
\frac{\partial r_{N_{x}+1}\left(x_{0}^{(1)}, x_{0}^{(2)}, \ldots, x_{0}^{\left(N_{x}\right)}, x_{K}\right)}{\partial x_{0}} \\
\frac{\partial r_{N_{x}+2}\left(x_{0}^{(1)}, x_{0}^{(2)}, \ldots, x_{0}^{\left(N_{x}\right)}, x_{K}\right)}{\partial x_{0}} \\
\frac{\partial r_{2 N_{x}}\left(x_{0}^{(1)}, x_{0}^{(2)}, \ldots, x_{0}^{\left(N_{x}\right)}, x_{K}\right)}{\partial x_{0}}
\end{array}\right]
$$

After further expanding the expression to highlight all of its terms, we have

$$
\frac{\partial r\left(x_{0}, x_{K}\right)}{\partial x_{0}}=\underbrace{}_{\left.\begin{array}{cccc}
\frac{\partial r_{1}\left(x_{0}, x_{K}\right)}{\partial x_{0}^{(1)}} & \frac{\partial r_{1}\left(x_{0}, x_{K}\right)}{\partial x_{0}^{(2)}} & \cdots & \frac{\partial r_{1}\left(x_{0}, x_{K}\right)}{\partial x_{0}^{\left(N_{x}\right)}} \\
\frac{\partial r_{2}\left(x_{0}, x_{K}\right)}{\partial x_{0}^{(1)}} & \frac{\partial r_{2}\left(x_{0}, x_{K}\right)}{\partial x_{0}^{(2)}} & \cdots & \frac{\partial r_{2}\left(x_{0}, x_{K}\right)}{\partial x_{0}^{\left(N_{x}\right)}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial r_{2 N_{r}}\left(x_{0}, x_{k}\right)}{\partial x_{0}^{(1)}} & \frac{\partial r_{2 N_{r}}\left(x_{0}, x_{K}\right)}{\partial x_{0}^{(2)}} & \cdots & \frac{\partial r_{2 N_{r}\left(x_{0}, x_{K}\right)}^{\partial x_{0}^{\left(N_{x}\right)}}}{2 N_{r} \times N_{x}}
\end{array}\right]}
$$

For the inner product with the associated equality multiplier, we get

Similarly, for the derivative of the boundary constraints with respect to x_{K}, we get

$$
\frac{\partial r\left(x_{0}, x_{K}\right)}{\partial x_{K}}=\underbrace{}_{\left.\begin{array}{cccc}
\frac{\partial r_{1}\left(x_{0}, x_{K}\right)}{\partial x_{K}^{(1)}} & \frac{\partial r_{1}\left(x_{0}, x_{K}\right)}{\partial x_{K}^{(2)}} & \cdots & \frac{\partial r_{1}\left(x_{0}, x_{K}\right)}{\partial x_{K}^{\left(N_{x}\right)}} \\
\frac{\partial r_{2}\left(x_{0}, x_{K}\right)}{\partial x_{K}^{(1)}} & \frac{\partial r_{2}\left(x_{0}, x_{K}\right)}{\partial x_{K}^{(2)}} & \cdots & \frac{\partial r_{2}\left(x_{0}, x_{K}\right)}{\partial x_{K}^{\left(N_{x}\right)}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial r_{2 N_{r}}\left(x_{0}, x_{k}\right)}{\partial x_{K}^{(1)}} & \frac{\partial r_{2 N_{r}}\left(x_{0}, x_{K}\right)}{\partial x_{K}^{(2)}} & \cdots & \frac{\partial r_{2 N_{r}\left(x_{0}, x_{K}\right)}^{\partial x_{K}^{\left(N_{x}\right)}}}{2 N_{r} \times N_{x}}
\end{array}\right]}
$$

For the inner product with the associated equality multiplier, we get

$$
\underbrace{\underbrace{\frac{\partial r\left(x_{0}, x_{K}\right)^{T}}{\partial x_{K}}}_{N_{x} \times 2 N_{r}} \underbrace{\lambda_{N_{r}}}_{2 N_{r} \times 1}}_{N_{x} \times 1}
$$

$$
\underbrace{E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right)+\left(\sum_{k=0}^{K-1} \lambda_{k+1}^{T}\left(f\left(x_{k}, u_{k}\right)-x_{k+1}\right)+\lambda_{N_{r}}^{T} r\left(x_{0}, x_{K}\right)\right)}_{\mathcal{L}(w, \lambda)}
$$

The derivatives of the Lagrangian function with respect to the control variables u_{k}

- For any $k=0, \ldots, K-1$, we have

$$
\nabla_{u_{k}} \mathcal{L}(w, \lambda)=\nabla_{u_{k}} L\left(x_{k}, u_{k}\right)+\frac{\partial f\left(x_{k}, u_{k}\right)^{T}}{\partial u_{k}} \lambda_{k+1}
$$

$$
\begin{aligned}
\nabla_{w} \mathcal{L}(w, \lambda) & =0 \\
g(w) & =0
\end{aligned}
$$

We can collect all the KKT conditions and solve them using a Newton-type method

- The approach solves the problem in the full space of the decision variables

Problem formulations \mid Simultaneous approach (cont.)

The approach can be extended to more general discrete-time optimal control problems

$$
\begin{array}{rlr}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K-1}}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L_{k}\left(x_{k}, u_{k}\right) & \\
\text { subject to } & x_{k+1}-f_{k}\left(x_{k}, u_{k} \mid \theta_{x}\right)=0, & k=0,1, \ldots, K-1 \\
& h_{k}\left(x_{k}, u_{k}\right) \leq 0, & k=0,1, \ldots, K-1 \\
& R_{K}\left(x_{K}\right)+\sum_{k=0}^{K-1} r_{k}\left(x_{k}, u_{k}\right)=0 & \\
& h_{K}\left(x_{K}\right) \leq 0 &
\end{array}
$$

All problem functions are explicitly time-varying and we have also a terminal inequality

- Moreover, the boundary conditions are expressed in general form

By collecting all variables in the vector w, we have the complete Lagrangian function

$$
\mathcal{L}(w, \lambda, \mu)=f(w)+\lambda^{T} g(w)+\mu^{T} h(w)
$$

The sequential approach

Problem formulations

$$
\begin{array}{rlr}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K-1}}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) & \\
\text { subject to } & x_{k+1}-f\left(x_{k}, u_{k} \mid \theta_{x}\right)=0, & k=0,1, \ldots, K-1 \\
& h\left(x_{k}, u_{k}\right) \leq 0, & k=0,1, \ldots, K-1 \\
& r\left(x_{0}, x_{N}\right)=0 &
\end{array}
$$

The sequential approach solves the same task, in a reduced space of decision variables
The idea is to eliminate all the state variables $x_{1}, x_{2}, \ldots, x_{K}$ by a forward-simulation

$$
\begin{aligned}
x_{0} & =x_{0} \\
x_{1} & =f\left(x_{0}, u_{0}\right) \\
x_{2} & =f\left(x_{1}, u_{1}\right) \\
& =f\left(f\left(x_{0}, u_{0}\right), u_{1}\right) \\
x_{3} & =f\left(x_{2}, u_{2}\right) \\
& =f\left(f\left(f\left(x_{0}, u_{0}\right), u_{1}\right), u_{2}\right) \\
\cdots & =\cdots \\
x_{K} & =\underbrace{\left.f\left(f\left(f\left(x_{0}, u_{0}\right), u_{1}\right), u_{2}\right), \ldots, u_{K-1}\right)}_{\bar{x}_{K}\left(x_{0}, u_{0}, u_{1}, u_{2}, \ldots, u_{K-1}\right)}
\end{aligned}
$$

Problem formulations \mid Sequential approach (cont.)

We can express the states as function of the initial condition and previous controls

$$
\begin{aligned}
x_{0} & =\underbrace{x_{0}}_{\bar{x}_{0}\left(x_{0}\right)} \\
x_{1} & =\underbrace{f\left(x_{0}, u_{0}\right)}_{\bar{x}_{1}\left(x_{0}, u_{0}\right)} \\
x_{2} & =f\left(x_{1}, u_{1}\right) \\
& =\underbrace{f\left(f\left(x_{0}, u_{0}\right), u_{1}\right)}_{\bar{x}_{2}\left(x_{0}, u_{0}, u_{1}\right)} \\
x_{3} & =f\left(x_{2}, u_{2}\right) \\
& =\underbrace{f\left(f\left(f\left(x_{0}, u_{0}\right), u_{1}\right), u_{2}\right)}_{\bar{x}_{3}\left(x_{0}, u_{0}, u_{1}, u_{2}\right)} \\
\cdots & =\cdots
\end{aligned}
$$

More generally, the dependence is on all the control variables and the initial condition

$$
\begin{aligned}
\bar{x}_{0}\left(x_{o}, u_{0}, u_{1}, \ldots, u_{K-1}\right) & =x_{0} \\
\bar{x}_{k+1}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right) & =f\left(\bar{x}_{k}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right), u_{k}\right), \quad k=0,1, \ldots, K-1
\end{aligned}
$$

$$
\begin{array}{rlr}
\min _{\substack{x_{0}, x_{1}, \ldots, x_{K} \\
u_{0}, u_{1}, \ldots, u_{K}-1}} & E\left(x_{K}\right)+\sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) & \\
\text { subject to } & x_{k+1}-f\left(x_{k}, u_{k} \mid \theta_{x}\right)=0, & k=0,1, \ldots, K-1 \\
& h\left(x_{k}, u_{k}\right) \leq 0, & k=0,1, \ldots, K-1 \\
& r\left(x_{0}, x_{N}\right)=0 &
\end{array}
$$

We can re-write the general discrete-time optimal control problem in such reduced form

$$
\min _{\substack{x_{0}, u_{K-1} \\ u_{0}, u_{1}, \ldots, u_{K-1}}} E(\underbrace{\bar{x}_{K}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right)})+\sum_{k=0}^{K-1} L(\underbrace{\bar{x}_{k}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right)}, u_{k})
$$

$$
\text { subject to } \quad h(\underbrace{\bar{x}_{k}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right)}, u_{k}) \leq 0, k=0,1, \ldots, K-1
$$

$$
r(x_{0}, \underbrace{\bar{x}_{K}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right)})=0
$$

Problem formulations \mid Sequential approach (cont.)

$$
\begin{array}{rl}
\min _{x_{0}} & E\left(\bar{x}_{K}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right)\right)+\sum_{k=0}^{K-1} L\left(\bar{x}_{k}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right), u_{k}\right) \\
u_{0}, u_{1}, \ldots, u_{K-1} & \\
\text { subject to } & h\left(\bar{x}_{k}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right), u_{k}\right) \leq 0, k=0,1, \ldots, K-1 \\
& r\left(x_{0}, \bar{x}_{N}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right)\right)=0
\end{array}
$$

The objective function, sum of stage costs $L\left(\bar{x}_{k}, u_{k}\right)$ and a terminal cost $E\left(\bar{x}_{K}\right)$

$$
\underbrace{\sum_{k=0}^{K-1} L\left(\bar{x}_{k}, u_{k}\right)+E\left(\bar{x}_{K}\right)}_{f(w) \in \mathcal{R}}
$$

That is,

$$
L\left(x_{0}, u_{0}\right)+L\left(\bar{x}_{1}, u_{1}\right)+\cdots+L\left(\bar{x}_{K-1}, u_{K-1}\right)+E\left(\bar{x}_{K}\right)
$$

Stage cost is a (potentially nonlinear and time-varying) function of state and controls The decision variables, $K \times N_{u}$ control and N_{x} state variables

$$
\underbrace{\left(x_{0}\right) \cup\left(u_{0}, u_{1}, \ldots, u_{K-1}\right)}_{w \in \mathcal{R}^{K \times} N_{u}+N_{x}}
$$

$$
\begin{array}{rl}
\min _{x_{0}} & E\left(\bar{x}_{K}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right)\right)+\sum_{k=0}^{K-1} L\left(\bar{x}_{k}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right), u_{k}\right) \\
u_{0}, u_{1}, \ldots, u_{K-1} & \\
\text { subject to } & h\left(\bar{x}_{k}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right), u_{k}\right) \leq 0, k=0,1, \ldots, K-1 \\
& r\left(x_{0}, \bar{x}_{N}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right)\right)=0
\end{array}
$$

The equality constraints, the N_{r} boundary conditions

$$
\underbrace{r\left(x_{0}, \bar{x}_{K}\right)=0}_{g(w) \in \mathcal{R}^{N_{g}}}
$$

The inequality constraints

$$
\underbrace{h\left(\bar{x}_{k}, u_{k}\right) \leq 0 \quad(k=0,1, \ldots, K-1)}_{h(w) \in \mathcal{R}^{N_{h}}}
$$

$$
\begin{array}{rl}
\min _{x_{0}} & E\left(\bar{x}_{K}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right)\right)+\sum_{k=0}^{K-1} L\left(\bar{x}_{k}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right), u_{k}\right) \\
u_{0}, u_{1}, \ldots, u_{K-1} & \\
\text { subject to } & h\left(\bar{x}_{k}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right), u_{k}\right) \leq 0, k=0,1, \ldots, K-1 \\
& r\left(x_{0}, \bar{x}_{N}\left(x_{0}, u_{0}, u_{1}, \ldots, u_{K-1}\right)\right)=0
\end{array}
$$

The Lagrangian function of the problem,

$$
\mathcal{L}(w, \lambda, \mu)=f(w)+\lambda^{T} g(w)+\mu^{T} h(w)
$$

The Karush-Kuhn-Tucker conditions,

$$
\begin{aligned}
\nabla f\left(w^{*}\right)-\nabla g\left(w^{*}\right) \lambda^{*}-\nabla h\left(w^{*}\right) \mu^{*} & =0 \\
g\left(w^{*}\right) & =0 \\
h\left(w^{*}\right) & \geq 0 \\
\mu^{*} & \geq 0 \\
\mu_{n_{h}}^{*} h_{n_{h}}\left(w^{*}\right) & =0, \quad n_{h}=1, \ldots, N_{h}
\end{aligned}
$$

Formulations
Simultaneous approach
Sequential approach

Problem formulations | Sequential approach (cont.)

SQP Iter: 1

SQP Iter: 16

For computational efficiency, it is preferable to use specific structure-exploiting solvers

- Such solvers recognise the sparsity properties of this class of problems

