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Dynamical

We focus on deterministic differential equation models of dynamical systems, in time

® All numerical simulation methods executed on a computer discretise time

We highlight some relevant properties of continuos-time systems

® How to convert them to discrete-time systems

Continuous-time systems are often described by ordinary differential equations (ODE)

® Other common forms of differential equations
¢ Differential-algebraic equations (DAE)
® Partial differential equations (PDE)
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Continuous-time

Discrete-time

Continuous-time models (cont.)
We describe a controlled dynamical system in continuous with a differential equation

&(t) = f (¢, (), u(t)|0z)

~ z(t) € RN
Nonlinear time-varying systems ~ u(t) € RNu
~ 0y € RNes

u(t) #(t) = f (&, (), u(t)|0s) y(®) ~ tER

), u(t)]0
y(t) = g (¢, 2(1), u(t)|0y)

~ y(t) € RNy
w0, € RVoy
Function f is a general map from time ¢, state z(¢), controls u(¢) and parameters 6

® f:00, T] x RNe x RNu s RNz to the rate of change of the state

® Because of t is an explicit argument, function f is time-varying

fl(t) f (Il(t), :Eg(t), ey INI(t), ul(t), uz(t), RN uNu(t), t|91)
@2 (t) fo (@1 (t), 22(8), . 2w, (1), wa (1), ua(t), .. un, (1), £16:)

i (0] Uy (a1(,22(8), o, (8), i (8), wa(0), . uw, (1), £162)
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Continuous-time m.l(t) N (Il(t)va(t)v"'7INm(t)7u1(t)’u2(t)r"'7UNu(t)vt|ez)
Discrete-time ‘iQ(t) f2 (El(t)w'r?(t)"'~7xNg;(t)7ul(t))u2(t)7"~7uNu(t)at|027)
i, (1) N, (z(t), 22(t), - oy, (8), ua (t), ua(t), - .. un, (2), t]62)
—_———
z(t) fz(t),u(t),t0s)

We are interested in the conditions under which the differential equation has a solution

® Given a fixed initial value for the state z(0), and controls u(t) with ¢ € [0, T

The dependence of f on the the controls u(t) is equivalent to another time-dependence
=7 <x(t), t|§z>

A time-varying uncontrolled (autonomous, or time-homogeneous) differential equation



cuem.erzzs  Continuous-time models (cont.)
2021-2022

Continuous-time

Discrete-time

#(t) = f (x(t), t|§z)

An initial value problem (IVP) consists of a differential equation and a restriction

® At ¢t =0, we constrain z(t) to be some fixed value z(0) = zo

A solution to the initial value problem on the open interval [0,¢) that contains the
origin t = 0 is the differentiable function z(-) with #(0) = zp and &(t) = f (:c(t), t|§x>

The solution to the IVP is equivalent to the solution to an integral equation,

z(t) = z0 + /Otf (.T(T),Tlgm) dr
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For notational simplicity, we leave away the dependence of function f on controls u(t)
Continuous-time ® We can keep them fixed in time, together with the other parameters 6,

B ® (An the initial condition, z(t = 0) = o)

Then, we have the uncontrolled dynamical system

z(t) = f (t,z(t)|0z), t€][0,T]
z(0) = 2o

The solution,

t
(1) =xo+/0 F (2(r), 7102) dr

Existence and uniqueness of the solution to the IVP are implied by the properties of f

® Existence is guaranteed by the continuity of f with respect to z(t) and ¢

® For continuous-time systems, existence is not a granted property
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Continuous-time

Discrete-tim Let f : [tini, tan] X RYs — RN+ be some continuous function in z(t) and ¢
Consider the initial value problem with initial value
&(t) = f (L, 2(t)|0<), t € [tini, tan]
x(tini) = 20

The IVP has a solution  : [tini, tan] — RNz and that solution is the unique solution to
the IVP problem if and only if function f is Lipschitz continuous with respect to z(t)

That is, there exists a constant value L € (0, 00) such that for any z(¢t) and z’(¢),

I (z(t), tl6z) — f ('(2), t62) I| < Lllz(t) — " (), V¢t € [tini, tan]

Or, equivalently

IF (2(2), t10z) — f (2'(2), 102) ||
() — 2’ ()]

< L7 vVt € [tini7 tﬁn]
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Continuous-time

Discrete-time

I ((2), £102) — f (2" (2), £[62) ||
llz(t) — 2’ (8)]]

<L, VtE€ [tni, thn]

Lipschitz continuity of f with respect to z(t) is a property that is difficult to determine

® Tt is difficult to determine a global (over the time-interval) Lipschitz constant L

An simpler property to verify is the differentiability of function f with respect to z(t)

Because every function f which is differentiable with respect to z(t) is locally Lipschitz
continuous, we define the condition for local existence and uniqueness of the solution
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Continuous-time

Let f : [tini, tan] X RYs — RN+ be some continuous function in z(¢) and ¢
Consider the initial value problem with initial vale
I(t) :f(tvx(t)lefﬂ)v te [tinivtﬁn]
z(tini) = 20

If f is continuously differentiable with respect to z(t) for all ¢ € [tini, t} ], there exists a
non-empty interval [tin;, ttém] with ti/in € (tini, tan) where the IVP has a unique solution
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Consider the initial value problem
100[ ]

with initial value,
t€[0,2]

&(t) = =(t),
z(0) =1 —
= 0
8
The explicit closed-form solution
1 —100 - =
z(t) = —— \ | !
1—t 0 1 2
t

z(t) is only defined for ¢ € [0, 1)
Over the shorter interval [0, T'] with T’ < 1, the solution exists and it is also unique
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Continuous-time

Discrete-time 4 T ]
Function f (z(t)) = 22(t) is not a
— globally Lipschitz continuous function
\t 2 | —
s I 0) =S A0,
\ / [z (t) — =4 (t)]
= NS . There is no single L that satisfies the
_‘2 6 5 inequality for all pairs (z%*(t), z%(¢))
z(t)

Function z2(t) is continuously differentiable with respect to z(t), thus locally Lipschitz

|
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Continuous-time

o[ T ]
Is function f (z(t)) = |z(t)| a globally
= Lipschitz continuous function?
~— 1 | —
8
= If (z*(1) = f (=*@) |
L el <L ()
z%(t) — z* (D)l
oL | | L If not, is it at least locally Lipschitz?
-2 0 2
z(t)
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Continuous-time
Discrete-time

15T B

1l i Is function f (z(t)) = |=(¢)|1/2
= globally Lipschitz continuous?
B
= 05| - If (z*(8)) = F («*(1)

oy <L (@
llz%(t) — = (L)l
o | ] ] If not, is it at least locally Lipschitz?
=7 0 2
(1)
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Continuous-time

T T T
1 | - .
Is function f (z(t)) = sign(z)|z(¢)|*/2
= globally Lipschitz continuous?
~— 0 | —
8
= If @) = £ @A),
=i - z®(t) —z® ()
| | | If not, is it at least locally Lipschitz?
-2 0 2
z(t)
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Continuous-time

Is f (z(t)) = ||lz(¢)]|3 a globally
Lipschitz continuous function?

= 9 *(1)) _ f (W
g GO GO,
=, 2 llz®(t) — =*(2)]l
-2 0 0 If not, is it at least locally Lipschitz?
2_9 .
1 (t) z2(t)
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Continuous-time

Is £ (2(8)) = [lz(1)]]2 a globally
Lipschitz continuous function?

ol I @40) =1 D),
=, 2 z®(t) —z® ()~
-2 0 0 If not, is it at least locally Lipschitz?
22
z1 (1) z2(t)
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Continuous-time
Discrete-time

Is f (2(t)) = [|lz(t)]|/* a globally

0.4 Lipschitz continuous function?
2 02 I @*0) = @O _
8 llz%(t) — 2* ()]
~ 9 0.1
0.1 0 If not, is it at least locally Lipschitz?
0.1
21 () z2(t)
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Continuous-time

Discrete-time

Continuous-time models (cont.)

Conditions for global and local existence and uniqueness of the solution of an IVP are
extended to systems with finitely many discontinuities of function f with respect to ¢

® The solution must be defined separately on each of the continuous subintervals

® At the discontinuity time points, the derivative is not (strongly) defined

Continuity of the state trajectory is used to enforce the transition between subintervals

® (The end state of one interval need be the initial state for the next one)
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Continuous-time

Discrete-time

Continuous-time models (cont.)

Steady-state, stationary, equilibrium, or fixed points
® Values of z (fixed 0; and u) such that f (z(¢)|0z) =0

dz(t)
dt

— 1 (2(1)/62)
=0

Stability

Consider the time evolution of a (set of) variable(s) of system originally at steady-state

® At some point in time, the system is perturbed, some change occurs

~~ The system will respond to the perturbation, move away from SS

A system is stable if its variable(s) return autonomously to their steady-state value(s)

® A stable system is also said to be a self-regulating process
® A stable system would not need a controller, in general
® (If the steady-state condition is the desired state)

® (And, if we have an infinite amount of time)
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Stable

Dynamical
models
Continuous-time

Discrete-time

Numerical

simulations SS |

Unstable

Time (t)
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A very important class of dynamical system are linear time-invariant systems, or LTIs
Continuous-time ) t e R
Discrete-time
~ z(t) € RNz
~ u(t) € RNu
Linear time-invariant systems, LTI ~ A € RNeXNa

~ B € RNexNu
u(t) |&(t) = Az(t) + Bu(t) | y(t) v {A, B} = 0, € RONaXNa)+(No X No)

y(t) = Cz(t) + Du(t)

~ y(t) € RNy

— CGRNyXNz

D ERNyXNu

~ {C,D} =0, ¢ R(Ny XNy )+(Ny X Ny)

Linear time-invariant systems f = Az + Bu are Lipschitz continuous with respect to z

® The global Lipschitz constant L = ||A||



cuem.erzzs  Continuous-time models | LTIs (cont.)

2021-2022

Dynamical
model

Continuous-time

Discretetime The solution to the analysis, for ¢ > {;;, an initial state z(ti,;) and an input w(t > ty;)

Numerical
simulation

t
I(t):eA(L—L;,,;)gC(tim)+/ eA(”*T)Bu(T)dT

tini

t
y(t) = CeAl—tindg(fa) + c/ A=) By(7)dr +Du(t)

tini

Cz(t)

The solution is known as the Lagrange formula

® Based on the state transition matrix

s At
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CELEEI Consider a linear and time-invariant system (A, B), with z(t) € RY> and u(t) € RN«

z(t) = Az(t) + Bu(t)
The system is said to be , if and only if it is possible to transfer the state
of the system from any initial value zop = z(0) to any other final value zy = x(t;)
® ..., only by manipulating the input w(t)

® ..., in some finite time ¢; > 0

The final state z; is called the or the
Process
u(t) |&(t) = Az(t) + Bu(t) y(t) = z(t)
y(t) = Iz (t)
Controller

u(t) =7 (z(1))
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Continuous-time

e i Consider the linear and time-invariant system (4, B), with z(t) € RN> and u(t) € RN«

z(t) = Az(t) + Bu(t)

The system’s is a (Nz X Ng) matrix, real and symmetric

t
We(t) = / eATBBT A Tdr
0

Consider the linear and time-invariant system (A, B), with z(t) € RNz and u(t) € RN«
z(t) = Az(t) + Bu(t)

Let Wc(t) = fot eATBBT ¢AT7dr be the controllability gramian of the system
® The system is controllable iff W,(t) is non-singular, for all t > 0
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We have system @(t) = Az(t) + Bu(t), we can perfectly measure its state z(t) = y(¢)

Continuous-time

Discrete-time

u(t)

System

z(t) = Az(t) + Bu(t)
y(t) = Iz(1)

y(t) = (1)

Controller

u(t) = —Kz(t)

We design controllers that define an optimal control action u(t), given the state z(t)

~ u(t)=—Kuz(t)

Linear-quadratic regulators (LQR) are model-based K = (B/ QrB + 1\’,)_1 B'QrA
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When we cannot measure the state, z(t) # y(t), we design a device capable to estimate
it from measurable quantities (data) and knowledge about the dynamics (a model)

Continuous-time

Discrete-time The device that approximates the system’s state is a state observer, or estimator

System
u(t) |&(t) = Az(t) + Bu(t)| y(t)
y(t) = Cz(t)
Estimator

ii(t)

u(t) = —K(@(t))

Controller

Were the state estimate Z(t) accurate, we could use it with the optimal controller (—K)
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Continuous-time

Discrete-time

Observability of linear-time-invariant systems

Consider a linear and time-invariant system (A, C) with z(t) € RY> and u(t) € RN

z(t) = Az(t)

y(t) = Cz(t)
The system is said to be observable if and only if it is possible to determine its state
z(t) from the force-free response of its measurements over a finite time (t; < o)

® .., from any arbitrary initial state z(tp)
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Continuous-time

Consider the linear and time-invariant system (4, C), with z(¢) € R and y(t) € RNy
z(t) = Az(t)
y(t) = Cz(t)

The system’s is a (Ng X N;) matrix, real and symmetric

t
Wo(t):/ eATT 0T CeATar
0
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Continuous-time

Consider the linear and time-invariant system (4, C), with z(t) € RY> and y(t) € R

i(t) = Az(t)
y(t) = Cz(t)
Let W, (t) = f eATT 0T CeATdr be the observability gramian of the system
® The system is observable iff W, (¢) is non-singular, for all ¢ > 0
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Proof (Sufficient condition)

From the second Lagrange equation, we have the force-free evolution of the output

Continuous-time

y(r) = CEATJJ(O)

Discrete-time

We left-multiply the equation by eAT", then we integrate between 0 and some ¢y

i i
/ eATTy(T)dT :/ eATTCeATz(O)dT
0 0
= Wo(t)z(0)
Thus, we have

2(0) = Wo_l(tf)/otf AT Oy(r)dr

The initial state is given as a function of the inverse of the observability gramian W, (tf)
and the integral fotf eATT CeA7 y(1)dr which can be computed from measurements ()
® The observability gramian need be non-singular

® Needed for the inverse to exist
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Consider a linear and time-invariant system, z(t) € RN, u(t) € RV« and y(t) € RNy

z(t) = Az(t) + Bu(t)
y(t) = Cx(t) 7

The linear and time-invariant dynamical system

2(t) = Ax(t) + Bu(t) + K (y(t) — §(t))
(t) = Cz(2) ’

with Z € RM», 5(t) € RNv is a Luenberger observer of the system iff K; € RN=*Ny ig
any matrix such that the eigenvalues of matrix A — K, C all have a negative real part

@) %e)
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Continuous-time

Discrete-time

Continuous-time models | LTIs (cont.)

System
u(t) i(t) = Az(t) + Bu(t) y(t)
y(t) = Cu(t)

Estimator
@(t) = AB(t) + Bu(t) + K1 (y(t) — §(1))
G(t) = CZ(t)

la®) T T
u(t) = K(@(1)) T
Controller

Luenberger observers are asymptotic state observers that are also model-based

® The Kalman filter is the stochastic counterpart, a linear-quadratic estimator
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Another class of systems combines differential states z(¢) and algebraic states z(t)

Continuous-time ® The derivative of function z(t) is not expressed explicitly in the model

Discrete-time

® z(t) is determined implicitly by an algebraic (set of) equation(s) h

~ z(t) € RN
R . . . = u(t) € R
(Time-invariant) Differential algebraic systems, DAE w0 2(t) € RN:
~ 0y € RNoa
z(t) = f (x(t),u(t), z(t)|0
iy |FO=1 @@ S
——  0=h(z(®),u(®),2())0:) —— LeR
~ le
y(t) = g (2(1), 2(¢), u(t)|0y)
~ y(t) € RNy
w0, € RVoy

The algebraic equations cannot be solved independently of the differential equations
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o [2() T [ A, v, (8), ur(t),. .. un, (8), 21(t), - - 2w, (8)]02) ]
i?"i'ﬁ"‘):i“me 22 (t) fa(z1(t), ..., zn, (), ur(t),. .., un, (t), 21(t),..., 2N, (t)|0z)
xf\fz.(t) I, (@1 (1), -5 2w, (8), ua (1), - . un, (t), 21(t), ..., 2y, (£)[0z)
0 by (z1(2), - - -, ri(t)v ui(t),..., uNu,(t)7 z1(t), .-, 2N, ()6=)
0 ho (Il(t), .. IN,(t)v ’u,1(t), e uNu(t), Zl(t), o5 2N, (t)‘@z)
L0 ) D @) (0w (0, (0, 5 (0, 2 (8)]62)]

Uniqueness of a numerical solution requires non-singularity of the Jacobian of h wrt z

det<6h<x(t)$”““”> 40

These specific differential algebraic equations are known as index-one DAE
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Function h : RNz x RNu x RNz — RNz

h(2(t), u(t), 2(1)|0z) =
hy (21 (), o, (8), un(8), .o uw, (1), 21(2), - . ., 2w, ()]602)
ho (21 (), o, (), ua (8), - - uw, (1), 21 (), -, 2w, (£)]602)

Continuous-time (1271
(z1

Discrete-time

th (Il(t), ey me(t), ul(t), . s uNu(t), Zl(t), oy 2N, (t)|02)

The Jacobian of h with respect to the algebraic state variables z

Oh (z(t), u(t), z(t))
0z

[ [0k (z,u,2)/0z Ohy (z,u,2)/0z,, -+ Oh(z,u,2)/0zy,]
[8h2 (z,u,2)/0z Ohy (z,u,2)/0z, -+ Oha(z,u,z)/0zn,]
: (1)
[ahnz (z,u,z)/02 Ohn, (z,u,2)/0zn, -+ Ohn, (z, u,z)/@zNz}
_[BhNZ (z,u,z2)/0=x Ohn, (z,u,2)/0z, --- Ohy, (z,u,z)/azNz]_

N, XN,
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Any index-one differential-algebraic equation can be differentiated with respect to time

® This allows for a practical numerical solution using ODE integrators
Continuous-time

Discrete-time

Because we have that h (z(t), z(t)) = 0, we also have

dh ((1), 2(t))
dt

=0

For the total derivative of the algebraic equations, we have

dh (z(t), z(t)) N\ Oh (z(t), z(t)) dz(t)+8h (z(t), 2(¢t)) da(t)

dt 0z dt ox dt
—— ——
5(t) Fx(t),2(¢))
=0

Using the non-singularity of the Jacobian with respect to z, we have

(1) = — (ah (z(¢), z(t))) 1 on (2(t), 2(1))

- S (a(t), #(1)
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A differential model describes the microscopic (in time) behaviour of process {z(t)};>0
® That is, the motion of the process in an infinitesimal time period

Continuous-time

Discrete-time Consider a tiny time interval At, then f (2(t)) is approximately constant over [0, At]

At
z(At) = xo + A f(z(t)) dt

At
z:pg+f(xo)/(; dt

=20+ f (w0) [t]5"
=20 + f (z0) At

More generally, the discretisation of infinitesimal dynamics over intervals [t, ¢ + At]

t+ AL
ot + At) = o(t) +/t f(a(r)) dr
~ 5(t) + f (5(8) At

Equivalently, we have
z(t + At) — z(t) = f (z(¢)) At
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z(t+ At) = z(t) + f (z(¢)) At
Gl To approximate the evolution of process {x(t)}tho, we divide the interval in K pieces
Discratestime
® For simplicity, we would typically let the size of each piece be At = %

® We apply the discretisation scheme on each piece, from zp at t =0

z(1At) = z(0) + f (z(0)) At
z(2At) = z(1AL) + f (z(1At)) At

2(kAt) = z((k — 1)AL) + f (2((k — 1)At)) At

2((K — 1)At) = z((K — )A) + f | 2((K — 1)At) | At
—— ——
T—-At T—-2At T—-2At

(KAL) = z((K — )AL + f | 2((K —1)At) | At
> TTa rarva
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t
z(t) = 20 +/O f(z(1),u(r)) dr

Continuous-time

Piencteme Consider a tiny time interval At¢, then f (z(t), u(t)) is approximately constant in [0, At]

At
z(At) =z + p I (z(t), u(t)) dt

At
zm+ﬂmmw/ dt
0
= 20 + f (20, u0) At

The discretisation of infinitesimal dynamics over intervals [¢, t + At]

t+ AL
se+ A0 =o)+ [ (), ulr) dr
t
~x(t) + f (2(t), u(t)) At
After we divide the interval in K pieces, the approximation of the evolution of {x(t)}tTZO

2(kAt) = z((k — DAL + f (z((k — DAL, u((k — DAD) At (k=1,...K)
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Continuous-time

Discrete-time

Continuous-time models (cont.)

The inputs are generated by a computer and implemented as piecewise constant signals
Zero-order hold controls

That is, the input u(¢) is kept constant between two equally spaced times ¢, and ¢4
® We define the times when the control is applied as sampling times

® We let the sampling times {t; = kAt}kK:O, At the duration

The sampling interval At need not be the same one we used for approximating {z(¢)}

Zero-order holding is the operation of keeping a signal constant for ¢ € [tx, tk41)
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Continuous-time

D Suppose that ©(¢) = f (z(t), u(t)|0s) is differentiable and that the inputs are piecewise
constant with fixed values u(t) = u; with u;, € RN over each interval t € [ty, tx+1)

We can treat the transition from state z(t;) to z(tx+1) as a discrete-time system

® The time in which the system evolves takes values only on a time grid

vty ootpeene boor by by ti—1-ti
At

In each interval (tx, tx+1], the solution to the individual IVP exists and it is unique

® With initial value z(t;) = Zinit
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Continuous-time

Discrete-time

Continuous-time models (cont.)

We consider the initial value problem, z(0) = ziy; and constant control u(t) = uconst

aj(t) :f(w(t)auconstlaz), t e [O,At]
CL‘(O) = Zini

The unique solution z : [0, At] — RNz to the IVP with Tinit and Uconst is a function
® The arguments are initial state z;,; and the constant control uconst
The solution is the state trajectory over the short interval [0, At]

x(t|$ini7uconst§ez), t e [O,At}

The map from pair (Zinit, Uconst) to process {z(¢)}& is denoted as the solution map

The final value (At|Zinit, Uconst, 0z ) of this short trajectory is important

® z(At) defines the initial state of the next initial value problem

I(t) =f (x(t): Uconst‘gz) , tE€ [At, QAﬂ
z(At) = Tini
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Continuous-time models (cont.)

We define the transition function that returns the final value z(A¢|Zini, tconst; 0z )

fae: RYe x RNw — RNe

The transition function returns the state z(A¢|Zini, Uconst; 0z ), given Tin; and uconst

‘T(Atkcinh Uconst 3 01) = fAt ("Einiy 'Ufconst‘gz)

fat is used to define a discrete-time system whose evolution describes the state at {t;}

x(tk+1)=fAt (m(tk),usz) (kZO,l,...K)

When we discuss general dynamical system, we will often refer to discrete-time systems

® The transition function fa; may be only available implicitly

® Often, we will define it as a computer routine/function
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For linear and time-invariant dynamical systems & (¢) = Az (¢)+ Bu(t) with £(0) = init
and constant input uconst, the solution map x(t|Zini, wini, O«) is explicitly known

Continuous-time

t
At A(t—
Discrete-time x(t‘zinhuiniyew) =€ -Tini+/ € ( 7—)B'UJconstd'r
0

fat(Zini uconst [0z)

t
eAtmini + Buconst / eA(t_T) dr
0

fat(@inistconst |0z)

The corresponding discrete-time system with sampling time At is linear time-invariant
I(tk+1)=AAtl‘(tk)+BAtuk, (k:071,...,K—1)
[ ———
Tt (z(t),ugl0z)
~ Apg = et and Bay = BfOAt eABI=T) 1
Because At is fixed, also Aa¢ and By are fixed (the elements are not function of time)

® LTI continuous-time system (A, B) maps to LTI discrete-time system (Aa¢, BAt)
O
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We describe a controlled dynamical system in discrete-time with a difference equation

Continuous-time

Discrete-time

Tp1 = fr (@n, url0z), Kk € Nowr—1

~ K + 1 state vectors, 29,1, ..., T, ..., g € RNV
~ K input vectors, ug, Ui, ..., Uy, .., ux—1 € RVu
~» Some time horizon of length K

~ Parameter vector 0, € R0z

~ (Time-varying dynamics)

Given the initial state zp and all the controls ug, u1, ..., ux_1, we could recursively call
the functions fj (zx, ux|0) and sequentially obtain all the other states z1, 22, ..., zx

® This recursion is known as forward simulation of the system dynamics
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Continuous-time _

Discrete-time

The forward simulation of the system dynamics is formally defined as a function
® The argument are zp and the collection ug, ui, ..., ux_1
® The image is the collection zg, x1, ..., T
That is, we have
Fuim : RVaHEXND) ) R(KF1)N,

s (20, w0, u1, . .-, ug—1) = (20,21, . ., T)

Function fs;, is defined by the recursive solution of the problem

Tpoy1 = fio (@, ui|0z) (for all k € Nowr—1)
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o - K RNz
TO, Ty v-s T yoe o, TK €
Linear time-invariant systems, LTI ® UG, UL,y .oy Uy e, UK —1 € RNu
Continuous-time e Ac RNIXNZ
Discrete-time Tpy1 = Az + Bug, k€ NOM,Kfl

o B g RNaXNu
{A, B} =0, € R(NIXNI)+(NI><NH)

The forward simulation map of linear time-invariant systems with horizon of length K

20
]
X
fsim(mﬂvuf)va“K—l): 2
LTK
_ -
Azo + Bug

A21:0 + ABug + Buj

_AK[EQ + ZkK:_Ol AK_I_kBuk
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0 0
Continuous-time x1 Axg + Bug
Discrete-time T2 _ A2$O + AB’U,() + Bu1
| Kf.l —1—
TK AR gy + S [P AR 1=k By,

fsim (20,u0,5--- uk —1)

Consider the terminal value zx after K steps from zp and subjected to ug ~» ug_1,

uo
U1

zx = [AK-1B  AX-2B ... B]
cx UK —1

Matrix Ck is the discrete-time controllability matrix of the linear time-invariant system

® The discrete-time version because based on the discrete pair (4, B)
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Affine time-varying systems are an important generalisation of the plain LTI model

Continuous-time

Discrete-time
® IO, L1, .., T,y ..., T € RNe
Affine time-varying systems ® UQ, ULy, Uy, U —1 € RNVu
Tp+1 = Agzy + Bruk + ¢k, k € Nowk—1 ® Ao A Ay, A € RN
® Bo,B1,...,Bi,...,Bg € RNexNu
® {Ay, By} =6, € R (N X Ny )+ (N X Ny)

Affine time-varying systems arise from trajectory linearisations of nonlinear models

Tpp1 = fi (o, ukl0z)
® Linearisation of nonlinear (and time-varying) dynamics around point (T, uy)
® We assume the that point (Zj,uy) is a term in a trajectory {(zx, uk)}

® (For example, {Zo,Z1,...,Zx} and {Uo,U1,...,Ux—1})



: 8(8) = fi (2(2), u(t)[62)

2021-2022

In continuous-time, we would approximate (nonlinear and time-varying) dynamics f*
with a first-order Taylor’s expansion around the point (Z(t),%(t)) along the trajectory

Continuous-time
After defining the deviation variables z’/(t) = z(¢t) — Z(¢) and v’ (t) = u(t) — u(t)

Discrete-time

af aff aff af]
o1 (t) oy By, o] (t) duy duy, ui (t)
Sl = : N S . :
o 0] o) ar,. ok, (0] |ar arl, uhy, (8)
e Oy a oz, @(t),m(ty) =1 Quy Quy, @,y v
v
i
fa
+1 .

¢
TN, (T(1),u(t))
—_———

et

® A'is the Jacobian of f! with respect to =, at (T(t),u(t)
® B! is the Jacobian of f! with respect to u, at (z(t) w(t)

o clis ft evaluated at (Z(t),u(t))

)
)
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(D‘tt‘ The affine continuous-time approximation expressed in terms of deviation variables,
et
/ l . t / t . t /
(1) ay 1 ay N, o1 (1) bi 1 bi N, u (1)
= : + ) .
/ t t / t t /
zy, (1) ay, 1 ay n | LEN, (0 by, o by ow ] Luw, (9
@’ (t) (Ny X Ng) (Nzx1) (N %X Ny,) (N x1)
t
a
)
+ | .
t
cn,

Nz x1
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Tp1 = fi (zh, uel6)

Continuous-time

Similarly, we can approximate nonlinear and time-varying dynamics in discrete-time

Discrete-time

We have the affine time-varying system,

T4l — Tht1 = fio (Tp, U) — Thop1
—_————

zlf:+1
of _ of _ _ _
= (me—me)+ | (ue =) + i (T, UR) — Thg
Oz (T, Tp) e OUN (T, W) N el e
~— z] — uf, cp €ERNe X1

Ay €RNe X Nz B, €RNz X Nu

The forward simulation map of affine time-varying systems, for a horizon of length K

K—-1 K—-1
ok = (Ax—1--A)z0+ > | [ 4 ) Bew + )
k=0 \j=k+1
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Numerical simulations

The design/deployment of optimal controllers depends on the availability of efficient/
accurate numerical simulation tools that build discretisations of continuous dynamics

We know that the IVP &(t) = f (z(t), u(¢)|0z) with 2(0) = 2o has a unique solution
when f is Lipschitz continuous with respect to z(t) and continuous with respect to ¢

~ A solution exists on the interval [0, T], even if time T > 0 is arbitrary small

Numerical simulation methods compute approximate solutions to some well-posed IVP

® (Well-posedness is in the sense of the existence/uniqueness theorem)

For practical reasons, numerical simulation methods can be categorised in two groups

® Single-step methods and multi-step methods

Typically, each group is then divided into two main subgroups

® Explicit methods and implicit methods
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Numerical simulations (cont.)

The idea of a numerical simulation method is to compute an approximation to a solu-
tion map z(t|Tini, Uconst; Oz ) for ¢ € [0, T'], the computation is known as an integrator

~~ Remember, the function from pair (Zini, Uconst) to process {z(¢)}d

An intuitive way to compute an approximation for z(t|Zinit, Uconst; 0z) when t € [0, T
® Perform a linear extrapolation, based on the time derivative of z(t)
® From the initial point zj,it, under constant controls uconst

® (The time-derivative is the &(t) = f (z(t), u(¢)|0z))
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Continuous-time

Discrete-time
Numerical The approach is an explicit Euler integration step, a good approximation if 7' is tiny
telo,T]

simulations

E(tlminitv Uconst ; 0:&) ~ $(0|xinit, Uconst ; ew) +f (Iinit, Uconst|91) (t - 0)

tf (Tinit , Uconst |0z )

Tini

= ?E(t|zini7 Uconst ez)

The error of the explicit Euler integration step is of order 72, it grows as T2 grows

® Or informally, the approximation error is small if 7" is very small

® The error is directly related to the truncation in the expansion
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The practical implementation of the explicit explicit Euler integration method
We consider a now longer interval with ¢ € [0, T] and we divide it in K subintervals
Continuous-time
Discrete-time
0 d 2o (b ) b (A D) (K =) K
At

simulations
® Typically, we set each subinterval to have the same time-length
T

At = —
K

® We denote the K time points {#} as nodes in the time grid

Starting from Zp = Zinit, we then perform K sequential linear extrapolation steps

§k+l =y +f()ik»uconst|ea:)At7 k=0,1,....,K -1

For notational simplicity, we set the indexing for k to start from zero

® This allows us to start the sequence with Ty = zjn;
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Continuous-time

Discrete-time

Numerical
simulations

Sequentially, the individual integration steps

~ k=0

T =T +f(§0,uconst|ez)At
~ k=1

/.7?2 = /fl +f (/951, uconst|9z) At
JoNS
~ k=K -1

EK = ZEK—I +f(-/iK—17uconst‘gz)At
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Numerical simulations | Explicit Euler (cont.)

Explicit Euler (f and At)

Zini, Ucont ZIF\kJﬁl = + f (Ek:v 'Ufconst‘ew) At /I\( T)
k=0,1,..., K -1

To compute the approximation Zx41 at node k + 1, an explicit Euler integration only
requires information related to node k, specifically the numerical approximation Zj

® (The method is presented assuming that the dynamics are time-invariant)

The local (at k) approximation error gets smaller with the ‘length’ of the subintervals

® Using smaller (more) subintervals would lead to more accurate approximations

The Euler method is stable as the propagation of local errors is bounded by a constant

H/f(T‘Iinity Uconst » 91) - I( Tlxinity Uconst ez)H

Accumulated approximation error
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Numerical simulations | Explicit Euler (cont.)

T
The consistency error of each subinterval is of order (At)? and there are Al subintervals

T
® The global, accumulated, error at the final time has order (At)?2— = TAt

At
) Explicit Euler
10— :
‘o'“
“o..
107 S E
o,
8 e
5 -
5107 S E
.8 S
o} o
0.
107 o E
“o.
-5
10 ! !
10° 10’ ? 10° 10*

Number of steps

The error function is linear in the number of function evaluations, slope equal to one
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Numerical simulations | Explicit Euler (cont.)

This would suggest running integration procedures with many small-sized subintervals

~+ The scheme requires the evaluation of function f (Zini, Uconst|0z) at each step

~+ Good approximations with many steps require many function evaluations

(Other methods can achieve the desired accuracy levels with lower computational cost)
O
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Numerical simulations | Explicit Runge-Kutta

The order-4 Runge-Kutta integration method, RK4 generates a sequence of
values 7y, by evaluating (and store) function f four times at each node k, from Zg = Zinit

From approximation 7 and with constant input uconst, at each node k we have

k1 =f (/fky uconst|oz)
At
ke = f |2 + '%17 uconstlgzc
At
k3 =f |2 + "727 uconst|9z
k4 =f (?U\k + Atkg, uconst|0x)

Each function evaluation is explicit and performed around the approximation point Ty

® The evaluations are stored as x; € R+, i € {1,2,3,4}

The evaluations are then combined to construct the next approximation ;1 point

h
Ek_,.l:§k+6(51+2n2+2n3+r$4), k=0,1,...,K —1
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Numerical simulations | Explicit Runge-Kutta (cont.)

The solution map obtained by using an explicit Runge-Kutta method of order-4, RK4

Explicit Runge-Kutta (f and At)

h Iy
Tini, Ucont Tpe1 = Tp + g(ml + 2k + 2k3 + K4) z(T)
L “N-) e

k=0,1,..., K —1

It can be understood as a continuous and differentiable nonlinear function

® The maximum order of differentiability depends on function f
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Numerical simulations | Explicit Runge-Kutta (cont.)

One step of the RK4 method is as expensive as four Euler steps, though more accurate

® The accumulated approximation error has order T(At)%

Explicit Euler vs Runge-Kutta 4
T

10° ‘
O gl g o
: O-ollgl
- TO-gllgl
107+ o N
6.
o
<107 o 7
. o..
o o
ORI
107 7
~20
10 |
i - 10"

1
Number of steps
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Numerical simulations | Explicit Runge-Kutta (cont.)
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Numerical simulations (cont.)

Summarising, consider a numerical simulation scheme over some time interval [to, tf]

® The subintervals have a length At = (to — t7)/K

R to gty gy t_1-ti
At

® The nodes are indexed as k =0,1,..., K
® The position of the nodes

tp :==to + kAt, k=0,1,...,K
The solution is approximated at nodes t; by discrete values
T, ~ z(tk|z(t0), tconst; Oz) (k=0,1,...,K)
Convergence
We define the order-p convergence of a method as worst-case local approximation error

pmax @k — 2 ()l = O (A1)

As K — oo, we expect that Ty gets closer to z ()
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