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Dynamical models

We focus on deterministic differential equation models of dynamical systems, in time

® All numerical simulation methods executed on a computer discretise time

We highlight some relevant properties of continuos-time systems

® How to convert them to discrete-time systems

Continuous-time systems are often described by ordinary differential equations (ODE)

~» Other common forms of ODEs (delayed ODE)
~ Differential-algebraic equations (DAE)
~ Partial differential equations (PDE)
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Continuous-time

Discrete-time

Continuous-time models (cont.)

We describe controlled dynamical systems in continuous-time with a first-order ODE

&(t) = f (¢, 2(t), u(t)|0z)

~ z(t) € RNe
Nonlinear time-varying systems ~ u(t) € RNw
s 0y € RNos
u(t) i(t) = f (¢, 2(t), u(t)|0z) y(t) - teER
y(t) = g (t,z(t), u(t)|0y)
~ y(t) € RNy
~ Oy € RNoy

Function f is a general map from time ¢, state z(t), controls u(¢) and parameters 0,
® £:00, T] x RN+ x RNu s RNz to the rate of change of the state

® Because t is an explicit argument, function f is time-varying

‘Tl(t) fl ($1(t)7 IQ(t)v BN ZNI(t)v ul(t)v u2(t)7 sy ’LLNu(t), t|02)
22(t) fo (z1(t), z2(2), ..., :ENZ(t), ui (t), u2(t),..., uNu(t), t|02)

eiv, () v, (@(8), 22(8), -, 2w, (), w1 (£), wa(t), - ., un, (1), £16a)
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Continuous-time 71 (1) fi (z1(t), 32(2), ..., o, (8), ur (t), ua(t), . .., un, (t), t]0z)
Discrete-time z2(t) Jo (@1 (t), 32(t), ..., zn, (£), wa (t), u2(t), ..., un, (1), t|0z)
zy, (1) N, (21(2), 22(2), - - s 2N, (8), ua (8), u2(t), . . ., un, (1), £]0z)
—_———
@(t) fz(t),u(t),t|0z)

We are interested in the conditions under which the differential equation has a solution
® Given a fixed initial value z(0) for the state, and controls u(t) with ¢ € [0, T

The dependence of f on the the controls u(t) is equivalent to another time-dependence

z(t) = f (z(), u(t), t|0)
::f(x(t),t@z)

A time-varying uncontrolled (autonomous, or time-homogeneous) differential equation



P Continuous-time models (cont.)
2024

Continuous-time

Discrete-time

#(t) = f (x(t), t|§z>

An initial value problem (IVP) consists of a differential equation (ODE) and a restriction

® At ¢t =0, we constrain z(t) to be some fixed value z(0) = zo

A solution to the initial value problem on the open interval [0,¢) that contains the
origin t = 0 is the differentiable function z(-) with x(0) = zp and &(t) = f (:c(t), t|§x>

The solution to the IVP is equivalent to the solution to an integral equation,

z(t) = z0 + /Otf (.T(T),Tlgm) dr
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For notational simplicity, we leave away the dependence of function f on controls u(t)
oo satins ® We can keep them fixed in time, together with the other parameters 0,

Discrete-time
® (The initial condition, z(t = 0) = xo, is also fixed)

Then, we have the uncontrolled dynamical system

z(t) =f(t,z(t)|0z), te€][0,T]
z(0) = 2o

The solution,

t
z(t) = 20 +/0 f(z(1),7|02) dT

Existence and uniqueness of the solution to the IVP are implied by the properties of f
® Existence is guaranteed by the continuity of f with respect to z(t) and ¢

® For continuous-time systems, existence is not a granted property
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Continuous-time

BiEErcie-im Let f : [tini, tan] X RY> — RN+ be some continuous function in z(¢) and ¢
Consider the initial value problem with initial value
#(t) = f (¢, 2(t)|0z), t € [tini, thn)
m(tini) = 2o

The IVP has a solution z : [tini, tan] — RNz and that solution is the unique solution to
the IVP problem if and only if function f is Lipschitz continuous with respect to z(t)

That is, there exists a constant value L € (0, 00) such that for any pair (z(t), z’(¢)),

I (1), tl6z) — f ((t), t102) || < Lllz(t) — " (), Yt € [tini, tin]

Or, equivalently, for any pair (z(t), z’(t))

IF (2(2), t10z) — f (2 (1), 102) ||
llz(t) — 2’ ()]

<L, Vte [tini: tﬁn}
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Continuous-time

Discrete-time

If (z(t), t162) — f (' (1), 162) ||
llz(t) — 2’ ()]

S L7 Vit € [tiniy tﬁn}vx(t) € RNzrxl(t) €eR?

Lipschitz continuity of f with respect to z(t) is a property that is difficult to determine

® Tt is difficult to determine a global (over the time-interval) Lipschitz constant L

A simpler property to be verified is the differentiability of f with respect to z(t)

Because every function f which is differentiable with respect to z(t) is locally Lipschitz
continuous, we define the condition for local existence and uniqueness of the solution
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Continuous-time

Let f : [tini, tan] X RYs — RN+ be some continuous function in z(¢) and ¢
Consider the initial value problem with initial value
I(t) :f(tvx(t)lefﬂ)v te [tinivtﬁn]
z(tini) = 70

If f is continuously differentiable with respect to z(t) for all ¢ € [tini, t} ], there exists a
non-empty interval [tin;, ttém] with ti/in € (tini, tan) where the IVP has a unique solution
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T
100 |- E

Consider the initial value problem
&(t) = 22(t), te]o0,2]
z(0) =1
N 0 B
8
The explicit closed-form solution
1 _ | B
z(t) = — 100 ‘
- 0 1 2
t

z(t) is only defined for ¢ € [0, 1)

Over the shorter interval [0, T'] with T’ < 1, the solution exists and it is also unique
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Continuous-time

Discrete-time 4 - ‘ —
Function f (z(t)) = 22(t) is not a

~ globally Lipschitz continuous function

: 2 | —

s s @) = @O
/ [z (t) — 2%( t)H
\\\ //
0 ‘ - N There is no single L that satisfies the
D) 0 9 inequality for all pairs (z%*(t), z%(¢))
z(t)

Function z2(t) is continuously differentiable with respect to z(t), thus locally Lipschitz

|
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Continuous-time

o[ T ]
Is function f (z(t)) = |z(t)| a globally
= Lipschitz continuous function?
~— 1 | —
8
= If (z*(t)) = f (=*@) |
(LG
llz%(t) —z* (D)l
0, | L] If not, is it at least locally Lipschitz?
=2 0 2
(1)
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Continuous-time
Discrete-time

1.5 7 T =

1L i Is function f (z(t)) = |=(¢)|*/2
= globally Lipschitz continuous?
B
= 05| | If @*@) = @*E I,

* . st @
z%(t) — z# (D)l
oL ! ! L] If not, is it at least locally Lipschitz?
=2 0 2
(1)
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Continuous-time

T T T
1 | - .
Is function f (z(t)) = sign(z)|z(¢)|*/2
= globally Lipschitz continuous?
~— 0 | —
8
= If (a*(8)) = f (a*(@®) | <L @
-1t - z®(t) —z® ()
L L L If not, is it at least locally Lipschitz?
-2 0 2
z(t)



CHEM-E7225
2024

Continuous-time
T _

Is f (2(t)) = |[2(£) 13 a globally
Lipschitz continuous function?

s ° If (@*©) = £ @*O) |,
= 2 z®(t) —z® ()~
-2 0 0 If not, is it at least locally Lipschitz?
2-2
71(t) z2(1)
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Continuous-time

Is £ (2(8)) = [lz(1)]]2 a globally
Lipschitz continuous function?

= 2
< I (*@) 7 @O
= 0 2 z®(t) —z® ()~
-2 0 0 If not, is it at least locally Lipschitz?
22
21 (%) z2(2)
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Continuous-time
Discrete-time

Is f (2(t)) = |l=(t)[|3* a globally

0.4 Lipschitz continuous function?
= 02 If (a*(8)) = f (a*(@®) <L @
= . . llz%(t) — 2® ()]
—0.1 0 If not, is it at least locally Lipschitz?
0.1¢g.1
21 () w2 (t)
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Continuous-time

Discrete-time

Continuous-time models (cont.)

Conditions for global and local existence, and uniqueness of the solution of an IVP are
extended to systems with finitely many discontinuities of function f with respect to ¢

® The solution must be defined separately on each of the continuous subintervals

® At the discontinuity time-points, the derivative is not (strongly) defined

Continuity of the state trajectory is used to enforce the transition between subintervals

® (The end-state of one interval need be the initial state for the next one)
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Continuous-time

Discrete-time

Continuous-time models (cont.)

Steady-state (stationary, equilibrium, or fixed) points

® Values of z (fixed 0, and u) such that f (z(¢)|0;) =0

dz(t)
"= i)

=0

Stability

Consider the time evolution of a (set of) variable(s) of a system starting at steady-state
® At some point in time, the system is perturbed, some change occurs

~~ The system will respond to the perturbation, move away from SS

A system is stable if its variable(s) return autonomously to their steady-state value(s)
~~ A stable system is also said to be a self-regulating process
® A stable system would not need a controller, in general
® (If the steady-state condition is the desired state)

® (And, if we have an infinite amount of time)
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Continuous-time models (cont.)

SS

SS

Stable

Unstable
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A very important class of dynamical system are linear time-invariant systems, or LTIs

Continuous-time - t e R
~ z(t) € RN=
~ u(t) € RN
Linear time-invariant systems, LTI s A € RNaXNg
~ B € RNexXNu
u(t) |&(t) = Az(t) + Bu(t) | y(b) o {A, B} = 6, € RWeXNa)+(NoxNo)

—_— —

y(t) = Cz(t) + Du(t)

Discrete-time

~ y(t) e RN

~ O € RNyXNa

v D e RNyxNu

— {07 D} — 9y c R (Ny X Ng)+(Ny X Ny)

Linear time-invariant systems f = Az + Bu are Lipschitz continuous with respect to z
® The global Lipschitz constant L = || A||
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Dynamica

model
Continuous-time

Discrete-time

e The solution to the analysis, for ¢ > i, an initial state z(ti,;) and an input w(t > t,;)

imulation

t
z(t) = eA(tft"“‘)aj(tim) +/ eA(th)Bu(T)dT

tini

t
y(t) = Ce M~ tini) g (1) + C/ eAU=7) Bu(r)dr + Du(t)

tinj

Cz(t)

The solution is known as the Lagrange formula

~ Based on the state transition matrix, e
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Continuous-time Consider a linear and time-invariant system (A, B), with z(t) € RY> and u(t) € RN«

Discrete-time
z(t) = Az(t) + Bu(t)
The system is said to be , if and only if it is possible to transfer the state
of the system from any initial value 20 = 2(0) to any other final value zy = z(ts)
¢ ..., only by manipulating the input (%)

® ..., in some finite time ¢; > 0

The final state z; is called the or the
Process
u(t) |#(t) = Az(t) + Bu(t) y(t) = z(t)
y(t) = Ix(t)
Controller

u(t) = m (z(1))
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Continuous-time

e i Consider the linear and time-invariant system (4, B), with z(t) € RN> and u(t) € RN«

z(t) = Az(t) + Bu(t)

The system’s is a (Ny X N;) matrix, real and symmetric

t
We(t) = / eATBBT A Tdr
0

Consider the linear and time-invariant system (A, B), with z(t) € RNz and u(t) € RN«
z(t) = Az(t) + Bu(t)

Let Wc(t) = fot eATBBT ¢AT7dr be the controllability gramian of the system
® The system is controllable iff W,(t) is non-singular, for all t > 0
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commmoneime _
Discrete-time

Consider a linear and time-invariant system (A, B), with z(t) € RY> and u(t) € RN«

() = Az(t) + Bu(t)

We define the (N; X (Ny X Ng))

c=[B | AB | A?B | ... | AN:71p]

Necessary and sufficient condition for controllability

rank(C) = N
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We have system @(t) = Az(t) + Bu(t), we can perfectly measure its state z(t) = y(t)

Continuous-time

Discrete-time

u(t)

System

z(t) = Az(t) + Bu(t)
y(t) = Iz(1)

y(t) = =(t)

Controller

u(t) = —Kz(t)

We design controllers that define an optimal control action «(t), given the state x(t)

~ o u(t) = —Kz(t)

Linear-quadratic regulators (LQR) are model-based controllers

K= (B'QfB+R) "B QA
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When we cannot measure the state, z(t) # y(t), we design a device capable to estimate
it from measurable quantities (data) and knowledge about the dynamics (a model)

Continuous-time

Discrete-time The device that approximates the system’s state is a state observer, or estimator

System
u(t) |&(t) = Az(t) + Bu(t)| y(t)
y(t) = Cz(t)
Estimator

ii(t)

u(t) = —K(z(1))

Controller

Were the state estimate Z(t) accurate, we could use it with the optimal controller (—K)
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Continuous-time

Discrete-time

Observability of linear-time-invariant systems

Consider a linear and time-invariant system (A, C) with z(t) € RY> and u(t) € RN

z(t) = Az(t)

y(t) = Cz(t)
The system is said to be observable if and only if it is possible to determine its state
z(t) from the force-free response of its measurements over a finite time (t; < o)

® .., from any arbitrary initial state z(tp)
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Continuous-time

Consider the linear and time-invariant system (4, C), with z(¢) € R and y(t) € RNy
z(t) = Az(t)
y(t) = Cz(t)

The system’s is a (Nz X Ng) matrix, real and symmetric

t
Wo(t):/ eATT 0T CeATar
0
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Continuous-time

Consider the linear and time-invariant system (4, C), with z(t) € RY> and y(t) € R
(t) = Az(t)
y(t) = Cx(t)

Let W, (t) = fot eATT 0T CeATdr be the observability gramian of the system
® The system is observable iff W, (¢) is non-singular, for all ¢ > 0
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Continuous-time

Discrete-time

Continuous-time models | LTIs (cont.)

Proof (Sufficient condition)
From the second Lagrange equation, we have the force-free evolution of the output

y(7) = Ce’7(0)
We left-multiply the equation by eAT", then we integrate between 0 and some t;

i i
/ CATTy(T)dT :/ eATTCeATx(O)dT
0 0
= Wo(tr)=(0)
Thus, we have

t T
#(0) = W, (1f) /0 " AT oy(r)dr

The initial state is given as a function of the inverse of the observability gramian W, (tf)
and the integral fotf eATT CeATy(r)dr which can be computed from measurements y(7)

® The observability gramian need be non-singular for the inverse to exist
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Continuous-time

et Consider a linear and time-invariant system (4, C), with z(t) € RNz and y(t) € RNv

(t) = Ax(t)
y(t) = Cx(t)
We define the (N; X (Ny X Ng))

c
CA

2
P e

oAt
Necessary and sufficient condition for observability,

rank(O) = N,
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Consider a linear and time-invariant system, z(t) € RN, u(t) € RV« and y(t) € RNy

z(t) = Az(t) + Bu(t)
y(t) = Cx(t) 7

The linear and time-invariant dynamical system

2(t) = Ax(t) + Bu(t) + K (y(t) — §(t))
(t) = Cz(2) ’

with Z € RM», 5(t) € RNv is a Luenberger observer of the system iff K; € RN=*Ny ig
any matrix such that the eigenvalues of matrix A — K, C all have a negative real part

@) %e)
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Continuous-time

Discrete-time

Continuous-time models | LTIs (cont.)

System
u(t) z(t) = Az(t) + Bu(t) y(t)
y(t) = Ca(t)

Estimator
@(t) = AB(t) + Bu(t) + Ki(y(t) — 4(t))
3(t) = CE(1)

ED T3
u(t) = K(@(t) s
Controller

Luenberger observers are asymptotic state observers that are also model-based

® Kalman filters are stochastic counterpart, linear-quadratic estimators
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Continuous-time

Discrete-time

Continuous-time models | DAEs

A class of system models combine differential states z(t) and algebraic states z(t)
® The derivative of function z(t) is not expressed explicitly in the model

® z(t) is determined implicitly by an algebraic (set of) equation(s), h

~ z(t) € RN
s u(t) € RN
(Time-invariant) Differential algebraic systems, DAE N
~ z(t) € RY=
~ 0, € RNew
&(t) = f (x(8), u(t), 2(¢)[0) *
u(t) y(t) w0, € RNo-
——  0=nh(z(d),u(d),2())0:)
~ teR
y(t) = g (x(t), 2(t), u(t)|0y)
~ y(t) € RNy
w0, € RV

The algebraic equations cannot be solved independently of the differential equations
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o [z() T [ A, v, (8), un(t), ... un, (8), 21(t), - - 2w, (8)[02) ]
i?rji‘nl‘?o:ihme (1) fo(zi(t), .-, INz(t)v ui(t),..., uNu(t)v 21 (t),-- -, zNz(t)lez)
IN@‘(t) I, (@1 (t), -5 2w, (8), ua (2), - . un, (t), 21(2), -, 2w, (t)162)
0 by (21 (t), - -, ri(t)v ui(t),. .., uNu,(t)7 z1(t), .-, 2N, ()6=)
0 ho (Il(t), e IN,(t)v ’u,1(t), e uNu(t), Zl(t), o5 2N, (t)‘@z)

L0 ) D @), (0w (8, uy (0, 5 (1), 2 (8)]62)]

Uniqueness of a numerical solution requires non-singularity of the Jacobian of h wrt z

det<6h<x(t)$”““”> 40

These specific differential algebraic equations are known as index-one DAE
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Function h : RNz x RNu x RNz — RNz

h(2(t), u(t), 2()|0z) =
hy (21(t), ..o, (8), ur (8), - o uw, (1), 21(2), - . ., 2w, ()]602)
ho (21 (), o, (8), ur (8), - - uw, (1), 21 (), -, 2w, (£)]602)

Continuous-time (1271
(m1

Discrete-time

th (Il(t), ey me(t), ul(t), . s uNu(t), Zl(t), <oy 2N, (t)|02)

The Jacobian of h with respect to the algebraic state variables z

Oh (z(t), u(t), z(t))
0z

[ [0k (z,u,2)/0z Ohy (%,u,2)/02, -+ Oh(z,u,2)/0zy,]
[0h2 (z,u,z)/0z Ohy (z,u,2)/0z, -+ Oha(z,u,z)/0zn,]
: (1)
[ahnz (z,u,z)/02 Ohn, (z,u,2)/0zn, -+ Ohn, (z, u,z)/@zNz}
_[BhNZ (z,u,z2)/0=x Ohn, (z,u,2)/0z, --- Ohy, (z,u,z)/azNz]_

N, XN,
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Continuous-time

Discrete-time

Continuous-time models | DAE (cont.)

Any index-one differential-algebraic equation can be differentiated with respect to time

® This allows for a practical numerical solution using ODE integrators

Because we have that h (z(t), z(t)) = 0, we also have

dh ((t), 2(t))
dt

=0

For the total derivative of the algebraic equations, we have

dh (z(¢), z(¢)) _ Oh (z(t), z(t)) dz(t)+8h (z(¢), 2(¢)) dz(t)

dt 0z dt ox dt
N—— N~
2(t) f(z(t),2(t))
=0

Using the non-singularity of the Jacobian with respect to z, we have

o (R (a(),2(0)) R (), (1)
#(t) = 0z oz

f (1), 2(1))
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i(t) = £ (w(t)[0: )

Continuous-time

Discrete-time An initial value problem (IVP) consists of a differential equation (ODE) and a restriction
® At ¢t =0, we constrain z(t) to be some fixed value z(0) = zp

A differential model describes the microscopic (in time) behaviour of process (z(t));s

Let us consider the motion of the state over an certain time interval such that ¢ € [0, At]

At
z(At) =z + . I (z(¢))dt

Consider a tiny time interval At, then f (z(t)) is approximately constant over [0, At]
At
2(AL) = 20 +/ F(a(t)) dt
0

At
~ 1 +f(x(0))/0 dt

=20+ f (w0) [
=1 + f (z0) At
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Continuous-time

Discrete-time

More generally, the discretisation of infinitesimal dynamics over intervals [t, ¢ + At]

t+At
o(t+ A :x(t)-i—/t f (a(7)) dr
~z(t)+ f (z(t)) At

Equivalently, we have
z(t+ At) —z(t) = f (z(t)) At

Az(t)
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z(t + At) = z(t) + f (z(t)) At

P To approximate the evolution of process (x(t))tT:O, we divide the interval in K pieces

Discrete-time T-0
® For simplicity, we would typically let the size of each piece be At = a

® We apply the discretisation scheme on each piece, from zg at ¢ = 0
z(0At) = o
z(1At) = z(0) + f (z(0)) At
z(2At) = x(1At) + f (z(1At)) At

w(kAL) = o((k — 1)AL) + f (2((k — 1)At)) At

2((K — )AL = z((K — 2)At) + f | o((K — 2)At) | At
—— —— ——

T—At T—2At T—-2At

m(%_;) = z(K — DA + f | 2(K — 1)At) | At
T—At T—At
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t
=m+Af@WﬂWWT

Continuous-time

Dierete e Consider a tiny time interval A¢, then f (z(t), u(¢)) is approximately constant in [0, At]

At
z(At) = 20 + [ (z(t), u(t)) dt

Nxo—‘rf )/At

=0 + f (20, uo) At

The discretisation of infinitesimal dynamics over intervals [t, t + At]

t+AL
s(e+ A0 =o()+ [ (o), u(r) dr
t
~x(t) + f (2(t), u(t)) At
After we divide the interval in K pieces, the approximation of the evolution of (x(t))tT:O

s(kAt) = ((k — )AL + f (z((k — DAL, u((k — DA AL (k=1,...K)
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Continuous-time

Discrete-time

Continuous-time models (cont.)

The inputs are generated by a computer and implemented as piecewise constant signals
Zero-order hold controls
That is, the input u(¢) is kept constant between two equally spaced times, ¢, and ¢4
® We define the times when the control is applied as sampling times
® We let the sampling times be {t;, = kAt}E |
® At denotes the (common) duration
The sampling interval A¢ need not be the same one we used for approximating (z(t))

{z(ty, = kA)}E,

Zero-order holding is the operation of keeping a signal constant for ¢ € [tx, tx41)
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Continuous-time

Discrete-time

Continuous-time models (cont.)

Suppose that &(t) = f ((t), u(t)|0z) is differentiable and that the inputs are piecewise
constant with fixed values u(t) = u;, with u, € RV« over each interval, for t € [ty, tpa1)

We can treat the transition from state z(¢;) to z(¢;+1) as a discrete-time system

® The time in which the system evolves takes values only on a time grid

O oty -votgeerve- [TSEPIERRE PR PR tio_1--ti
N——

In each interval (#x, ti41], the solution to the individual IVP exists and it is unique

® With initial value z(t) = Zinit
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Continuous-time models (cont.)
We consider the initial value problem, z(0) = ziy; and constant control u(¢) = uconst

z(t) =f (:L’(t), uconstlex) , te€ [0, At]
‘T(O) = Tini

The unique solution z : [0, At] — RNz to the IVP with zini¢ and uconst is a function
The solution is the state trajectory over the short interval [0, At]

:l?(t | Zini, Uconst ; ex), te [0, At]

The map from pair (Zinjt, tconst) to process (z(t) OAt is denoted as the solution map

® The arguments are: 1) the initial state zj,; and 2) the constant control uconst

The final value z(t = At|Zinit, Uconst, 0z ) of this short trajectory is important

® z(At) defines the initial state of the next initial value problem

I(t) =f (.T(t), uconst‘ez) , te€ [At, QAﬂ
‘T(At) = Zini
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Continuous-time models (cont.)
We define the transition function which returns that final value z(At|Zini, Uconst; Oz)
far i RYNe x RNv — RNe

The transition function returns the state z(A¢|Zini, tconst; 0z ), given Zini and Uconst

I(Aﬂl‘iniy Uconst ; ez) = fAt ("l;inh Uconst‘ez)

fat is used to define a discrete-time system whose evolution describes the state at {t;}
z(ter1) = fae (2(t), url0s) (k=0,1,...K)
When we discuss general dynamical system, we will often refer to discrete-time systems

® The transition function fa; may be only available implicitly

® (Often, we will define it as a computer routine/function)
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Continuous-time models (cont.)

For linear and time-invariant dynamical systems &(t) = Az(t)+ Bu(t) with £(0) = @inis
and constant input uconst, the solution map z(¢|@ini, tini, 0z) is explicitly known

t
At A(t—
(] ini, Uini, 0z) = e Iini-i-/ e =) Buconst dr
0

t
eAt-Tini + (/ CA(tiT) dT) Buconst
0

The corresponding discrete-time system with sampling time At is linear time-invariant

z(tk+1):AAtT(tk)+BAtuk7 (kZO,l,...,K—l)
—_
Far(z(ty),ur|0z)

~ App = et and Bay = (fOAt eA(Atff)d7-> B

Since At is fixed, also Aa; and Bay are fixed (their elements are not function of time)
® LTI continuous-time system (A, B) maps to LTI discrete-time system (Aa¢, BAt)
a
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2024

ClertfrEr e We describe a controlled dynamical system in discrete-time with a difference equation

Discrete-time

Tpop1 = fi (@, u0s), k€ Nowr—1

~ K + 1 state vectors, z9, 1, ..., T, ...,k € RNV
~ K input vectors, ug, Ui, ..., Uy, .., ux—1 € RVu
~» Some time-horizon of length K

~ Parameter vector 0, € RNos

~ (Time-varying dynamics)

Given the initial state xp and all the controls ug, u1, ..., ux_1, we could recursively call
the functions fi, (zx, uk|6z) and sequentially obtain all the other states z1, z2, ..., Tk

® This recursion is known as forward simulation of the system dynamics
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The forward simulation of the system dynamics is formally defined as a function
® The argument are zp and the collection ug, ui, ..., ux_1
® The image is the collection zg, x1, ..., T
That is, we have
Fuim : RVaHEXND) ) R(KF1)N,

s (20, w0, u1, . .-, ug—1) = (20,21, . ., T)

Function fs;, is defined by the recursive solution of the problem

Tpoy1 = fio (@, ui|0z) (for all k € Nowr—1)
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o - K RNz
TO, Tlyv-s T yoe o, TK €
Linear time-invariant systems, LTI ® UG, UL,y .y Uy e, UK —1 € RNu
Continuous-time e Ac RNIXNZ
Discrete-time Tpy1 = Az + Bug, k€ NOM,Kfl

e B c RNaxXNu
{A, B} =0, € R(NIXNI)+(NI><NH)

The forward simulation map of linear time-invariant systems with horizon of length K

20
x1
X
fsim(mﬂyuf)va“K—l): 2
LTK
_ -
Azo + Bug

A21:0 + ABug + Buj

_AK[EQ + ZkK:_Ol AK_I_kBuk
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) o
Continuous-time 1 A]}() + Buo
Discrete-time 2o o AQIEO + AB’LL(] + Bup

TK AKJ;O + Z{:;OI AKﬁl*kBuk

fsim (20,40, ug —1)

Consider the terminal value zg after K steps from xp and subjected to ug ~ ux_1,

uo
ul

zg = ARz + [AK-1B  AK-2p ... B]
cx uRg_1

Matrix Cx is the discrete-time controllability matrix of the linear time-invariant system

® The discrete-time version, because based on the pair (A, B)
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Affine time-varying systems are an important generalisation of the plain LTI model

Continuous-time

Discrete-time

N,
® 10, Ty Ty, T € RV
Affine time-varying systems ® UY, ULy e vy Uy, UK 1 € RNu
® Ag,A1,...,Ak,..., Ak € RNe XNz

Ty1 = Apzi + Brug + ¢k, k€ Nowk—1

Bo,Bi1,...,Bg,...,Bg € RNz xNu
{Ag, Bi} = 0, € RWzxNe)+(NaxNu)

Affine time-varying systems arise from trajectory linearisations of nonlinear models

zh+1 = fio (2K, uk|0a)
® Linearisation of nonlinear (and time-varying) dynamics around point (T, uy)
® We assume the that point (Ty,uy) is a term in a trajectory {(zx, uk)}

® (For example, {Zo,T1,...,Zx } and {Uo,W1,..., Ux—1})
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&(t) = fr (x(t), u(t)[62)

In continuous-time, we would approximate (nonlinear and time-varying) dynamics f*
with a first-order Taylor’s expansion around the point (Z(t), u(t)) along the trajectory
Continuous-time

Discrete-time

After defining the deviation variables z’(¢) = z(t) — Z(¢) and v/ (t) = u(¢) — u(t),

af aff o/ af!
zq (t) Oz oz, z] (t) duy Quy,, uq (t)
. = X . + . X .
af, () af';‘\‘ a/';\ @y, (1) a‘r’:’\ 3,/'-1.‘ ujy, (1)
\ , . Nz - , Nz L.
21 (1) Oxy oxp, @), a(1) 2/ (1) duq Quy,, @), 7(1) u! (t)
I
/
+ .
Ix

o @ (1),1(1))
N ———

ct

® A'is the Jacobian of f! with respect to z, at (z(t),u(t))
® B! is the Jacobian of f! with respect to u, at (z(t),u(t))
e clis ft evaluated at (Z(t),u(t))
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(D‘tt‘ The affine continuous-time approximation expressed in terms of deviation variables,
et
/ l . t / t . t /
(1) ay 1 ay N, (1) bi 1 bi N, u (1)
= ) : + . :
/ t t / t t /
zy, (1) ay,1 o ay, w, | LEN, (0 by, o by ow ] Luw, (9
———
2 (1) (N x Ny) (Nzx1) (N x Ny,) (Nyx1)
t
a
)
+ | .
t
cn,

Nz x1
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Tpt1 = fio (T, we|0)

Continuous-time

Similarly, we can approximate nonlinear and time-varying dynamics in discrete-time

Discrete-time

We have the affine time-varying system,

T4l — Tht1 = fio (Tp, U) — Thop1
—_————

zlf:+1
of _ of _ _ _
~ = (me—me)+ | (ue =) + i (T, Uk) — Thg
Oz (Tp,Tp) et OUN (T, W) N el e
~— z] — uf, cp €ERNe X1

Ay €RNe X Nz B, €RNz X Nu

The forward simulation map of affine time-varying systems, for a horizon of length K

K—-1 K—-1
ok = (Ax—1--A)z0+ > | [ 4 ) Bew + )
k=0 \j=k+1



Numerical simulations

Dynamical models and numerical simulations
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Numerical simulations

The design/deployment of optimal controllers depends on the availability of efficient/
accurate numerical simulation tools that build discretisations of continuous dynamics

We know that the IVP &(t) = f (z(t), u(¢)|0z) with z(0) = 2o has a unique solution
when f is Lipschitz continuous with respect to z(t) and continuous with respect to t

~» A solution exists on the interval [0, T'], even if time T > 0 is arbitrary small

Numerical simulation methods compute approximate solutions to some well-posed IVP

® (Well-posedness is in the sense of the existence/uniqueness theorem)

For practical reasons, numerical simulation methods can be categorised in two groups

® Single-step methods and multi-step methods

Typically, each group is then divided into two main subgroups

® Explicit methods and implicit methods
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The idea of a numerical simulation method is to compute an approximation to a solu-
tion map z(t|Tini, Uconst; Oz ) for t € [0, T'], the computation is known as an integrator

~ Remember, the function from pair (Zini, tconst) to process {x(t)}g

Continuous-time

Discrete-time

Numerical An intuitive way to compute an approximation for z(t|Zinit, Uconst; =) when t € [0, T
simulations

® Perform a linear extrapolation, based on the time derivative of z(t)

® From the initial point zj,iy, under constant controls uconst

® (The time-derivative is the ©(t) = f (z(t), u(¢)|0z))
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Continuous-time

Discrete-time

Numerical The approach is an explicit Euler integration step, a good approximation if 7 is tiny

simulations
m(tlxinity Uconst; 91) ~ $(0|$init7 Uconst s 01) +f (Iinita uconstloz) (t - O) te [07 T}

Tini tf (Zinit > Uconst |0z )

= /-i(t|-73ini7 Uconst; 91)

The error of the explicit Euler integration step is of order T2, it grows as T2 grows
® Or informally, the approximation error is small if T is very small

® The error is directly related to the truncation in the expansion
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Numerical simulations | Explicit Euler (cont.)

The practical implementation of the explicit explicit Euler integration method

We consider a now longer interval with ¢ € [0, T'] and we divide it in K subintervals

(I T T PR (k=1) k- (k+1)-- (K-1)---K
At

® We denote the K time points {¢;} as nodes in the time grid

Starting from Zp = Zinit, we then perform K sequential linear extrapolation steps

EkJrl :Ek +f(/z\k’uconst|0z)At7 kZO,l,...,K—l

For notational simplicity, we set the indexing for k to start from zero

® This allows us to start the sequence with Ty = zjn;
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Numerical simulations | Explict Euler (cont.)

Sequentially, the individual integration steps

s

k=0
k=1
k=K-1

?El = )I\O +f (}7\07 ’U'const|0:n) At

/x\2 = /11?1 +f (/1:\1, uconstlez) At

T =Tx 1+ [ (Tk—1, Uconst|0z) At
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Numerical simulations | Explicit Euler (cont.)

Explicit Euler (f and At)

Zini, Ucont Z13\1c+1 = + f (/'T\k:v 'Ufconst‘ex) At 3:\( T)
k=0,1,..., K -1

To compute the approximation Z;41 at node k + 1, an explicit Euler integration only
requires information related to node k, specifically the numerical approximation Ty

® (The method is presented assuming that the dynamics are time-invariant)

The local (at k) approximation error gets smaller with the ‘length’ of the subintervals

® Using smaller (more) subintervals would lead to more accurate approximations
The Euler method is stable as the propagation of local errors is bounded by a constant

HZE(T‘:Einity Uconst » 01) - "E(Tlminit: Uconst Hz)H

Accumulated approximation error
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. . . 2 T .
The consistency error of each subinterval is of order (At)< and there are At subintervals
Continuous-time
Discrete-time ® The global, accumulated, error at the final time has order (At)QE = TAt
Numerical
simulations ‘ Explicit Euler
10— \
O“.
‘6.
107 e ]
o,
] e,
g .
5107k © 3
8 -
o SN
o
107 “o.. ]
o,
5,
10 ‘ ‘ ‘
10° 10' ¥ 10° 10°

Number of steps

The error function is linear in the number of function evaluations, slope equal to one
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Continuous-time

Discrete-time

Numerical
simulations

This would suggest running integration procedures with many small-sized subintervals
~+ The scheme requires the evaluation of function f (Zini, Uconst|0z) at each step
~~ Good approximations with many steps require many function evaluations

(Other methods can achieve the desired accuracy levels with lower computational cost)

|
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The order-4 Runge-Kutta integration method, RK4 generates a sequence of values Ty, by
evaluating (and storing) function f four times for each node k, from Zp = zinit

Continuous-time From approximation Z; and with constant input uconst, at each node k we have

Discrete-time

Numerical k1 =1Ff (’i]ﬁ uconst|9z)

simulations

=N At
R2 = f T + 7/{17 uconstlgz
. At
R3 = f Tk + 7’427 uconstlezc
K4 = f (/x\k + Atﬁ?n Uconst|ez)

Each function evaluation is explicit and performed around the approximation point Ty

® The evaluations are stored as k; € RV, ¢ € {1,2,3,4}

The evaluations are then combined to construct the next approximation ;1 point

h
Zv\k+1=/x\k+6(1€1+2/$2+2ﬁ3+ﬁ4), k=0,1,..., K —1
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Numerical simulations | Explicit Runge-Kutta (cont.)

The solution map obtained by using an explicit Runge-Kutta method of order-4, RK4

Explicit Runge-Kutta (f and At)

—_— e —

h ~
Zini, Ucont fk+1 = ft\k —+ 8(51 + 2k9 + 2K3 + .%4) :L’(T)

k=0,1,..., K —1

It can be understood as a continuous and differentiable nonlinear function

® The maximum order of differentiability depends on function f



P Numerical simulations | Explicit Runge-Kutta (cont.)

2024
One step of the RK4 method is as expensive as four Euler steps, though more accurate
Continuous-time ® The accumulated approximation error has order T(At)*
Discrete-time
Numerical
simulations . Explicit Euler vs Runge-Kutta 4
10 : :
[cE -
i B« O--.
© I B o
- o-- g
10° .. O----¢
“o..
o
5107 .. 1
8 o
© 6.
O---- 0O~ o
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10
Number of steps
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Numerical simulations | Explicit Runge-Kutta (cont.)
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Numerical simulations (cont.)

Summarising, consider a numerical simulation scheme over some time interval [to, tf]
® The subintervals have a length At = (to — t;)/K

to -ty --tp-e-e- tpe1 gt t—1---ti
At

® The nodes are indexed as k =0,1,..., K

® The position of the nodes
tp == to + kAt, k=0,1,..., K
The solution is approximated at nodes t; by the values
T, ~ z(tk|z(t0), tconst; Oz) (k=0,1,...,K)
Convergence
We define the order-p convergence of a method as worst-case local approximation error

(max (13— a(t)]] = O (A7)

As K — oo, we expect that Ty, gets closer to z ()
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