CHEM-E7225/2023: Exercise 01

Task 1 (Explicit integration methods).

Consider the Three-Tank System, a benchmark process representative of several typical industrial control applications (e.g., liquid level control in petrochemical plants). The process consists of three cylindrical tanks $(T_i, i = 1, 2, 3)$ connected by two fixed values $(V_i, i = 1, 2)$, with an outflow value V_0 for the last tank. We are interested in controlling the liquid levels $(h_i, i = 1, 2, 3)$ in each tank by manipulating the incoming flow-rates to tanks T_1 and T_3 through the pumps P_1 and P_3 , respectively. The process is shown in Figure 1.

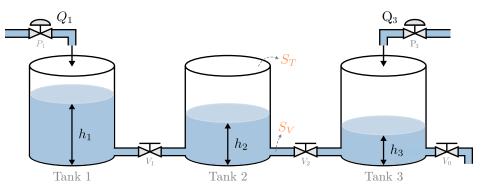


Figure 1: Three-Tank System: Process layout.

Using Torricelli's law to model the flow between tanks, and the **sign** function to indicate its direction¹, the mass balances for the individual components lead to the following nonlinear dynamics

$$\frac{dh_1}{dt} = \frac{1}{S_T} \left[Q_1 - \alpha_V S_V \operatorname{sign}(h_1 - h_2) \sqrt{2g|h_1 - h_2|} \right];$$
(1a)

$$\frac{dh_2}{dt} = \frac{1}{S_T} \left[\alpha_V S_V \operatorname{sign}(h_1 - h_2) \sqrt{2g|h_1 - h_2|} - \alpha_V S_V \operatorname{sign}(h_2 - h_3) \sqrt{2g|h_2 - h_3|} \right];$$
(1b)

$$\frac{dh_3}{dt} = \frac{1}{S_T} \left[Q_3 + \alpha_V S_V \operatorname{sign}(h_2 - h_3) \sqrt{2g|h_2 - h_3|} - \alpha_0 S_V \sqrt{2gh_3} \right];$$
(1c)

The state vector is $x(t) = (h_1(t), h_2(t), h_3(t))$ and the controls are $u(t) = (Q_1(t), Q_3(t))$. The vector of model parameters in nominal operating conditions is $\theta = (S_T, S_V, \alpha_V, \alpha_0, g) = (154, 0.5, 0.56, 0.73, 981)$. The description of each process variable and the constant parameter values are presented in Table 1.

Variable	Description	Value	Units
h_1	Water level of tank 1	$\in [0, 60]$	cm
h_2	Water level of tank 2	$\in [0, 60]$	cm
h_3	Water level of tank 3	$\in [0, 60]$	cm
Q_1	Flow-rate to tank 1	$\in [0, 140]$	ml/s
Q_3	Flow-rate to tank 3	$\in [0, 140]$	ml/s
S_T	Cross-section of tanks T_i $(i = 1, 2, 3)$	154	cm^2
S_V	Cross-section of values V_i $(i = 0, 1, 2)$	0.5	cm^2
$lpha_V$	Flow coefficient of values V_i $(i = 1, 2)$	0.56	_
$lpha_0$	Outflow coefficient of valve V_0	0.73	_
<i>g</i>	Gravitational constant	981	$\mathrm{cm/s^2}$

Table 1: Three-Tank System: Process variables and constant parameters.

¹The function $\operatorname{sign}(h_i - h_j) = 1$ if $h_i - h_j \leq 0$, indicating the flow direction from tank *i* to tank *j*, or $\operatorname{sign}(h_i - h_j) = -1$ if $h_i - h_j < 0$, indicating the opposite direction.

In this assignment, you will implement different integration schemes to simulate the dynamics of this system. Re-write the dynamic model in Eq. (1) using the control notation to get it in the form $\dot{x}(t) = f(x(t), u(t)|\theta_x)$, then adapt the starting code in the archive EO1_code.zip for the following tasks:

- I) Complete the function file threeTank.m to implement the state-equation $\dot{x}(t) = f(x(t), u(t)|\theta_x)$ for the Three-Tank System according to Eq. (1).
- II) Complete the function files eefunc.m (Explicit Euler, EE) and rk4func.m (4th-Order Range-Kutta, RK4) which implement explicit integration methods.
- **III)** Complete the first sections of script E01_main.m to define the simulation and model parameters, initial state, and an input signal. We suggest implementing the signal $u(t) = (u_1(t), u_2(t))$,

$$u_1(t) = \begin{cases} u_Z & \text{for } t \le t_Z \\ 0 & \text{otherwise} \end{cases}, \qquad u_2(t) = \begin{cases} u_Y & \text{for } t \ge t_Y \\ 0 & \text{otherwise} \end{cases}$$

for different values of (u_Z, t_Z, u_Y, t_Y) satisfying $0 \le t_Z, t_Y \le T_f$ and $0 \le u_Z, u_Y \le 140$. Remember to define these signals in their discrete-time forms, $u_1 = (u_{1,1}, \ldots, u_{1,K})$ and $u_2 = (u_{2,1}, \ldots, u_{2,K})$.

Hint: Use concatenations of MATLAB's zeros and ones functions with appropriate sizes, or, more elegantly, use the heaviside step-function applied to time-nodes (t_1, \ldots, t_K) .

IV) Complete the remaining sections of script E01_main.m to simulate the Three-Tank system using the explicit integration methods (EE and RK4), and using CasADi's built-in integrator. Finally, execute the entire script to generate and plot the system responses.

Consider a simulation time T_f of 240 seconds (with K = 300 time-nodes k, or more) and compare the accuracy of the solutions against that obtained using ode15s. Report the simulation plots and interpret the results in terms of the process variables and layout depicted in Figure 1. A valid initial state is x(0) = (0, 0, 0).