CHEM-E7225/2024: Exercise 01

Task 1 (Explicit integration methods).

Consider the Three-Tank System, a benchmark process representative of several typical industrial control applications (e.g., liquid level control in petrochemical plants). The process consists of three cylindrical tanks $(T_i, i = 1, 2, 3)$ connected by two fixed valves $(V_i, i = 1, 2)$, with an outflow valve V_0 for the last tank. We are interested in controlling the liquid levels $(h_i, i = 1, 2, 3)$ in each tank by manipulating the incoming flow-rates to tanks T_1 and T_3 through the pumps T_1 and T_3 , respectively. The process is shown in Figure 1.

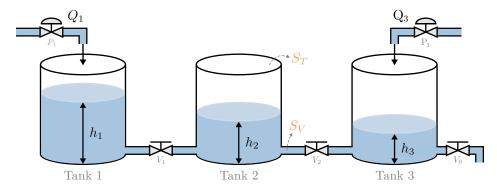


Figure 1: Three-Tank System: Process layout.

Using Torricelli's law to model the flow between tanks, and the tanh function to indicate its direction¹, the mass balances for the individual components lead to the following nonlinear dynamics

$$\frac{dh_1}{dt} = \frac{1}{S_T} \left[Q_1 - \alpha_V S_V \tanh(h_1 - h_2) \sqrt{2g|h_1 - h_2|} \right]; \tag{1a}$$

$$\frac{dh_2}{dt} = \frac{1}{S_T} \left[\alpha_V S_V \tanh(h_1 - h_2) \sqrt{2g|h_1 - h_2|} - \alpha_V S_V \tanh(h_2 - h_3) \sqrt{2g|h_2 - h_3|} \right]; \tag{1b}$$

$$\frac{dh_3}{dt} = \frac{1}{S_T} \left[Q_3 + \alpha_V S_V \tanh(h_2 - h_3) \sqrt{2g|h_2 - h_3|} - \alpha_0 S_V \sqrt{2gh_3} \right]; \tag{1c}$$

The state vector is $x(t) = (h_1(t), h_2(t), h_3(t))$ and the controls are $u(t) = (Q_1(t), Q_3(t))$. The vector of model parameters in nominal operating conditions is $\theta = (S_T, S_V, \alpha_V, \alpha_0, g) = (154, 0.5, 0.47, 0.77, 981)$. The description of each process variable and the constant parameter values are presented in Table 1.

Table 1: Three-Tank System: Process variables and constant parameters.

_Variable	Description	Value	Units
h_1	Water level of tank 1	$\in [0, 60]$	cm
h_2	Water level of tank 2	$\in [0, 60]$	cm
h_3	Water level of tank 3	$\in [0, 60]$	cm
Q_1	Flow-rate to tank 1	$\in [0, 140]$	$\mathrm{ml/s}$
Q_3	Flow-rate to tank 3	$\in [0, 140]$	$\mathrm{ml/s}$
S_T	Cross-section of tanks T_i $(i = 1, 2, 3)$	154	${ m cm}^2$
S_V	Cross-section of valves V_i $(i = 0, 1, 2)$	0.5	${ m cm}^2$
$lpha_V$	Flow coefficient of valves V_i $(i = 1, 2)$	0.47	_
$lpha_0$	Outflow coefficient of valve V_0	0.77	_
g	Gravitational constant	981	cm/s^2

¹The hyperbolic tangent is $\tanh(x) = (e^x - e^{-x})/(e^x + e^{-x})$. This function satisfies $\tanh(h_i - h_j) \approx 1$ if $h_i - h_j \geq 0$, indicating the flow direction from $\tanh i$ to $\tanh j$, and $\tanh(h_i - h_j) \approx -1$ if $h_i - h_j < 0$, indicating the opposite direction. We use it as a smooth alternative to the discontinuous sign function, as our tasks require differentiating the dynamics $f(\cdot)$.

In this assignment, you will implement different integration schemes to simulate the dynamics of this system. Re-write the dynamic model in Eq. (1) using the control notation to get it in the form $\dot{x}(t) = f(x(t), u(t)|\theta_x)$, then adapt the starting code in the archive EO1_code.zip for the following tasks:

- Task 1.1. Complete the function file threeTank.m to implement the state-equation $\dot{x}(t) = f(x(t), u(t)|\theta_x)$ for the Three-Tank System according to Eq. (1). (10 points)
- Task 1.2. Complete the function files eefunc.m (Explicit Euler, EE) and rk4func.m (4th-Order Range-Kutta, RK4) which implement explicit integration methods. (10 points)
- Task 1.3. Complete the function file Linearize.m which linearizes the dynamics $\dot{x}(t) = f(x(t), u(t)|\theta_x)$ around a fixed-point $P := (x_p, u_p)$ through Jacobians $(\partial f/\partial x)|_{(x_p, u_p)}$ and $(\partial f/\partial u)|_{(x_p, u_p)}$, and converts the resulting model to discrete-time. Then, complete the function file fsimfnc.m which implements the analytical forward simulation map of affine time-invariant systems. (30 points)
- **Task 1.4.** Complete the first section of the script E01_main.m to define the simulation and model parameters, the initial state, and an input signal. We suggest implementing the signal $u(t) = (u_1(t), u_2(t))$,

$$u_1(t) = \begin{cases} u_Z & \text{for } t \le t_Z \\ 0 & \text{otherwise} \end{cases}, \qquad u_2(t) = \begin{cases} u_Y & \text{for } t \ge t_Y \\ 0 & \text{otherwise} \end{cases},$$

for different values of (u_Z, t_Z, u_Y, t_Y) satisfying $0 \le t_Z, t_Y \le T_f$ and $0 \le u_Z, u_Y \le 140$. Remember to define these signals in discrete-time form, $u_1 = (u_{1,1}, \dots, u_{1,K})$ and $u_2 = (u_{2,1}, \dots, u_{2,K})$.

Hint: Use concatenations of MATLAB's zeros and ones functions with appropriate sizes, or, more elegantly, use the heaviside step-function applied to time-nodes (t_1, \ldots, t_K) . (20 points)

Task 1.5. Complete the remaining sections of script E01_main.m to simulate the Three-Tank system using the explicit integration methods (EE and RK4), and using CasADi's built-in integrator. Finally, execute the entire script to generate and plot the system responses. (30 points)

Consider a simulation time T_f of 240 seconds (with K = 300 time-nodes k, or more), and a valid initial state x(0) satisfying $x_1(0) \neq x_2(0) \neq x_3(0)$. Report the simulation plots and comment on the results **in terms of the process variables in Table 1 and layout depicted in Figure 1**, i.e., describe what is happening at the "physical plant" as the controls are applied. Moreover, compare the simulation results against those obtained using the affine model: Is the linear approximation valid somewhere during the simulation?