CHEM-E7225/2022: Exercise 02

Task 1 (20 points). Consider the following uni-dimensional unconstrained optimisation problem

$$
\min _{x \in \mathcal{R}} \frac{x^{2}-4 x+9}{x^{2}+2}
$$

1. Plot the objective function $f(x)$ and solve visually for the optimal value x^{*};
2. Derive on paper the gradient $\nabla f(x)$ and the Hessian $\nabla^{2} f(x)$ of the objective function;
3. Can you derive on paper the values x^{*} such that $\nabla f\left(x^{*}\right)=0$? If positive, comment on $\nabla^{2} f\left(x^{*}\right)$;
4. What would the minimiser be, had we included inequality constraints $x \in[-10,-1]$,

$$
\begin{aligned}
\min _{x \in \mathcal{R}} & \frac{x^{2}-4 x+9}{x^{2}+2} \\
\text { subject to } & -10 \leq x \leq-1
\end{aligned}
$$

5. Implement code to formulate both these problems and then solve them for the optimal values x^{*};
6. Comment on the results of the optimisation.

Task 2 (30 points). Consider the following two-dimensional constrained optimisation problem

$$
\begin{aligned}
\min _{x, y \in \mathcal{R}} & \sin (y) e^{(1-\cos (x))^{2}}+\cos (x) e^{(1-\sin (y))^{2}}+(x-y)^{2} \\
\text { subject to } & (x+5)^{2}+(y+5)^{2} \leq 25
\end{aligned}
$$

1. Plot the objective function $f(x, y)$ with the feasible set and solve for the optimal value $\left(x^{*}, y^{*}\right)$;
2. Implement code to formulate this problem and then solve it for the optimal value $\left(x^{*}, y^{*}\right)$. Show graphically and report the results when using 8 arbitrary chosen and different initial solutions. Choose one of results and show graphically the intermediate solutions for each iteration of the solver;
3. Comment on the results of the optimisation.

Task 3 (50 points). Consider the constrained optimisation of the N-dimensional Rosenbrock function

$$
\begin{align*}
\min _{x \in \mathcal{R}^{N+1}} & \sum_{n=1}^{N}\left(100\left(x_{n+1}-x_{n}^{2}\right)^{2}+\left(1-x_{n}\right)^{2}\right) \tag{1}\\
\text { subject to } & \sum_{n=1}^{N+1}\left(x_{n}-1\right)^{2} \leq 2
\end{align*}
$$

1. Implement code to formulate this problem for $N=800$, then solve it from different initial solutions;
2. Comment on the results of the optimisation.

CasADi's Opti Stack tutorial

The Opti Stack ${ }^{1}$ is a collection of helper functions from CasADi that allows us to construct nonlinear optimisation problems using the standard mathematical notation. Consider the optimization problem

$$
\begin{aligned}
\min _{x, y \in \mathcal{R}^{N}} & \left(y-x^{2}\right)^{2} \\
\text { subject to } & x^{2}+y^{2}=1 \\
& x+y \geq 1
\end{aligned}
$$

This problem is constructed and solved through the following script:

```
opti = casadi.Opti(); % Creates an Opti Stack structure
x = opti.variable(); % Creates a scalar decision variable (x)
y = opti.variable(); % Creates a scalar decision variable (y)
opti.minimize( (y - x^2) ^2 ); % Define the objective function to be minimized
opti.subject_to( x^2 + y^2 == 1 ) % Defines an equality constraint
opti.subject_to( x + y >= 1) % Defines an inequality constraint
opti.solver('ipopt') % Chooses a solver (IPOPT, qpOASES, ...)
% Adds callbacks to 'track' the value of (x,y)
x_iter = []; y_iter = [];
opti.callback(@(i) evalin('base',
    'x_iter = [x_iter opti.debug.value(x)]; y_iter = [y_iter opti.debug.value(y)];') )
% -
opti.set_initial([x y], [l-1 1]) % Sets an initial solution (default: 0)
opti.solve() % Executes the solver
x_sol = opti.value(x); % Retrieves the optimal solution of (x)
y_sol = opti.value(y); % Retrieves the optimal solution of (y)
```

The solver obtains the solution $\left(x^{*}, y^{*}\right)=(0.78615,0.61803)$, associated to the optimal value $f\left(x^{*}, y^{*}\right) \approx 0$.

[^0]
[^0]: ${ }^{1}$ Check the documentation in https://web.casadi.org/docs/\#document-opti.

