## CHEM-E7225/2024: Exercise 02

Task 1 (20 points). Consider the following uni-dimensional unconstrained optimisation problem

$$
\min _{x \in \mathcal{R}} \frac{2 x^{2}-4 x+11}{x^{2}+2}
$$

1. Plot the objective function $f(x)$ and check visually what is the optimal value $x^{*}$;
2. Derive on paper the gradient $\nabla f(x)$ and the Hessian $\nabla^{2} f(x)$ of the objective function. What are the values $x^{*}$ for which $\nabla f\left(x^{*}\right)=0$ ? For each value, comment on $\nabla^{2} f\left(x^{*}\right)$;
3. What would the minimiser be, had we included inequality constraints $x \in[-20,-2]$,

$$
\begin{aligned}
\min _{x \in \mathcal{R}} & \frac{2 x^{2}-4 x+11}{x^{2}+2} \\
\text { subject to } & -20 \leq x \leq-2
\end{aligned}
$$

4. Implement code to formulate both these problems and solve them for the optimal values $x^{*}$. In addition, try solving the problems using $x=-1$ as initial solution. Comment on the results of the optimisation; Hint: Use the code in the appendix as a template for solving these problems using CasADi's Opti Stack.

Task 2 (20 points). Consider the following two-dimensional constrained optimisation problem

$$
\begin{aligned}
\min _{x, y \in \mathcal{R}} & \sin (y) e^{(1-\cos (x))^{2}}+\cos (x) e^{(1-\sin (y))^{2}}+(x-y)^{2} \\
\text { subject to } & (x+5)^{2}+(y+5)^{2} \leq 25
\end{aligned}
$$

1. Plot the objective function $f(x, y)$ over the feasible set and solve for the optimal value $\left(x^{*}, y^{*}\right)$;
2. Implement code to formulate this problem and solve it for the optimal value ( $x^{*}, y^{*}$ ). Show graphically and report the results when using 5 arbitrarily chosen and different initial solutions. Finally, choose two of these results and show graphically their intermediate solutions from each iteration of the solver; Hint: Use the matrices (x_iter, y_iter), as shown in the appendix, to plot the intermediate solutions.
3. Comment on the results of the optimisation.

Task 3 (30 points). Consider the constrained optimisation of the $N$-dimensional Rosenbrock function

$$
\begin{align*}
\min _{x \in \mathcal{R}^{N+1}} & \sum_{n=1}^{N}\left(100\left(x_{n+1}-x_{n}^{2}\right)^{2}+\left(1-x_{n}\right)^{2}\right) \\
\text { subject to } & \sum_{n=1}^{N+1}\left(x_{n}-1\right)^{2} \leq 2 \tag{1}
\end{align*}
$$

1. Implement code to formulate this problem for $N=800$, then solve it from different initial solutions;
2. Comment on the results of the optimisation.

Task 4 (30 points). Consider the Three-Tank System from Homework 1 (Figure 1). As before, the process consists of three cylindrical tanks $\left(T_{i}, i=1,2,3\right)$ connected by two fixed valves ( $V_{i}, i=1,2$ ), with an outflow valve $V_{0}$ for the last tank. The liquid levels $\left(h_{i}, i=1,2,3\right)$ in each tank are controlled by manipulating the incoming flow-rates to tanks $T_{1}$ and $T_{3}$ through the pumps $P_{1}$ and $P_{3}$, respectively. Here, the system is further equipped with a sensor arrangement measuring the levels of tanks $T_{1}$ and $T_{3}$, in real-time.


Figure 1: Three-Tank System: Process layout.
The process dynamics and measurement process are represented by the state-space model

$$
\begin{align*}
\dot{x}(t) & =f\left(x(t), u(t) \mid \theta_{x}\right)  \tag{2a}\\
y(t) & =g\left(x(t) \mid \theta_{y}\right) \tag{2b}
\end{align*}
$$

with state $x(t)=\left(h_{1}(t), h_{2}(t), h_{3}(t)\right)$, controls $u(t)=\left(Q_{1}(t), Q_{3}(t)\right)$ and measurements $y(t)=\left(x_{1}(t), x_{3}(t)\right)$. The state-dynamics are given by Eqs. (1a-1c) from Homework 1 with parameters $\theta_{x}=\left(S_{T}, S_{V}, \alpha_{V}, \alpha_{0}, g\right)$, and the measurement function is simply the map $g\left(x(t) \mid \theta_{y}\right)=\left(x_{1}(t), x_{3}(t)\right)$.

In this assignment we assume that the values of the flow coefficients ( $\alpha_{V}, \alpha_{0}$ ) are not known, and thus have to be determined through parameter fitting. For this task, you will solve the optimisation

$$
\begin{array}{rll}
\min _{\theta_{x} \in \mathcal{R}^{2}} & \sum_{k=1}^{K}\left(y_{k}-y_{k}^{\text {data }}\right)^{T}\left(y_{k}-y_{k}^{\text {data }}\right) \\
\text { subject to } & \theta_{x} \geq 0, \\
\text { where } & x_{k+1}=F\left(x_{k}, u_{k}^{\text {data }} \mid \theta_{x}\right), \quad x_{1}=(2,8,32), & k=1, \ldots, K-1 \\
& y_{k}=g\left(x_{k} \mid \theta_{y}\right), & k=1, \ldots, K \tag{3~d}
\end{array}
$$

with $\left(u^{\text {data }}, y^{\text {data }}\right)$ being some experimental input-output data obtained from the physical system: It consists on $K=300$ measurements obtained with sampling period $\Delta t=0.8$ s. The transition function $F\left(\cdot \mid \theta_{x}\right)$ is defined from some integration scheme (e.g., Range-Kutta $4^{\text {th }}$ order). The expressions in Eqs. (3c)-(3d) describe how the vectors $\left(x_{k}, y_{k}\right)$, for $k=1, \ldots, K$, are computed based on the decision variable $\theta_{x} \in \mathcal{R}_{+}^{2}$ (thus, the simulated outputs $\left(y_{1}, \ldots, y_{K}\right)$ are all functions of parameters $\left.\theta_{x}\right)$.

Adapt the starting code in the folder codes/for the following tasks:

1. Substitute the function files ThreeTank.m and rk4fnc.m with your solutions from Homework 1;
2. Complete the starter code E02_main.m to define the simulation and model parameters, and to build the objective function for the optimisation problem Eq. (3).
3. Execute the script to solve the problem and generate a simulation of the system using the fitted parameters. Report the simulation plots and comment on the results of the optimisation.

## CasADi's Opti Stack tutorial

The Opti Stack ${ }^{1}$ is a collection of helper functions from CasADi that allows us to construct nonlinear optimisation problems using the standard mathematical notation. Consider the optimization problem

$$
\begin{aligned}
\min _{x, y \in \mathcal{R}^{N}} & \left(y-x^{2}\right)^{2} \\
\text { subject to } & x^{2}+y^{2}=1 \\
& x+y \geq 1
\end{aligned}
$$

This problem is constructed and solved through the following script:

```
opti = casadi.Opti(); % Creates an Opti Stack structure
x = opti.variable(); % Creates a scalar decision variable (x)
y = opti.variable(); % Creates a scalar decision variable (y)
opti.minimize( (y - x^2) ^2 ); % Define the objective function to be minimized
opti.subject_to( x^2 + y^2 == 1 ) % Defines an equality constraint
opti.subject_to( x + y >= 1) % Defines an inequality constraint
opti.solver('ipopt') % Chooses a solver (IPOPT, qpOASES, ...)
% Task 2: Callbacks to save the value of (x,y) at each iteration
x_iter = []; y_iter = [];
opti.callback(@(i) evalin('base',
    'x_iter = [x_iter opti.debug.value(x)];
        y_iter = [y_iter opti.debug.value(y)];' ))
% --
opti.set_initial([x y], [-1 1]) % Sets an initial solution (default: 0)
opti.solve() % Executes the solver
x_sol = opti.value(x); % Retrieves the optimal solution of (x)
y_sol = opti.value(y)
% Retrieves the optimal solution of (y)
```

The solver obtains the solution $\left(x^{*}, y^{*}\right)=(0.78615,0.61803)$, associated with the optimal value $f\left(x^{*}, y^{*}\right) \approx 0$.

[^0]
[^0]:    ${ }^{1}$ Check the documentation in https://web.casadi.org/docs/\#document-opti.

