CHEM-E7225/2023: Exercise 03

Task 1 (Optimal control for Three-Tank System).
Consider again the benchmark Three-Tank System from Homework 1 (Figure 1): The process consists of three cylindrical tanks $\left(T_{i}, i=1,2,3\right)$ connected by two fixed valves $\left(V_{i}, i=1,2\right)$, with an outflow valve V_{0} for the last tank. The liquid levels $\left(h_{i}, i=1,2,3\right)$ in each tank are controlled by manipulating the incoming flow-rates to tanks T_{1} and T_{3} through the pumps P_{1} and P_{3}, respectively.

Figure 1: Three-Tank System: Process layout.
Using Torricelli's law to model the flow between tanks, and now using the tanh function to indicate its direction, the mass balances for the individual components lead to the following nonlinear dynamics

$$
\begin{align*}
\frac{d h_{1}}{d t} & =\frac{1}{S_{T}}\left[Q_{1}-\alpha_{V} S_{V} \tanh \left(h_{1}-h_{2}\right) \sqrt{2 g\left|h_{1}-h_{2}\right|}\right] \tag{1a}\\
\frac{d h_{2}}{d t} & =\frac{1}{S_{T}}\left[\alpha_{V} S_{V} \tanh \left(h_{1}-h_{2}\right) \sqrt{2 g\left|h_{1}-h_{2}\right|}-\alpha_{V} S_{V} \tanh \left(h_{2}-h_{3}\right) \sqrt{2 g\left|h_{2}-h_{3}\right|}\right] \tag{1b}\\
\frac{d h_{3}}{d t} & =\frac{1}{S_{T}}\left[Q_{3}+\alpha_{V} S_{V} \tanh \left(h_{2}-h_{3}\right) \sqrt{2 g\left|h_{2}-h_{3}\right|}-\alpha_{0} S_{V} \sqrt{2 g h_{3}}\right] \tag{1c}
\end{align*}
$$

The state vector is $x(t)=\left(h_{1}(t), h_{2}(t), h_{3}(t)\right)$ and the controls are $u(t)=\left(Q_{1}(t), Q_{3}(t)\right)$. The vector of model parameters in nominal operating conditions is $\theta=\left(S_{T}, S_{V}, \alpha_{V}, \alpha_{0}, g\right)=(154,0.5,0.56,0.73,981)$. The description of each process variable and the constant parameter values are presented in Table 1.

Table 1: Three-Tank System: Process variables and constant parameters.

Variable	Description	Value	Units
h_{1}	Water level of tank 1	$\in[0,60]$	cm
h_{2}	Water level of tank 2	$\in[0,60]$	cm
h_{3}	Water level of tank 3	$\in[0,60]$	cm
Q_{1}	Flow-rate to tank 1	$\in[0,140]$	ml / s
Q_{3}	Flow-rate to tank 3	$\in[0,140]$	ml / s
S_{T}	Cross-section of tanks $T_{i}(i=1,2,3)$	154	$\mathrm{~cm}^{2}$
S_{V}	Cross-section of valves $V_{i}(i=0,1,2)$	0.5	$\mathrm{~cm}^{2}$
α_{V}	Flow coefficient of valves $V_{i}(i=1,2)$	0.56	-
α_{0}	Outflow coefficient of valve V_{0}	0.73	-
g	Gravitational constant	981	$\mathrm{~cm} / \mathrm{s}^{2}$

Adapt the starting code in the archive E3_code.zip to solve this problem.

1. Substitute the function files ThreeTank.m and rk4fnc.m with your solutions from Homework 1, and then change any sign() function in the model with the smooth $\tanh ()$ function;
2. Complete the E03A_main.m template to implement the following discrete-time optimal control problem using the simultaneous approach with CasADi/IPOPT,

$$
\begin{array}{rlr}
\min _{\substack{x_{0}, \ldots, x_{K} \\
u_{0}, \ldots, u_{K-1}}} & \sum_{k=0}^{K-1}\left[\left(x_{k}-x_{k}^{r e f}\right)^{T} Q\left(x_{k}-x_{k}^{r e f}\right)+u_{k}^{T} R u_{k}\right] \\
\text { subject to } & x_{k+1}-F\left(x_{k}, u_{k} \mid \theta_{x}\right)=0, & k=0,1, \ldots, K-1 \\
& x_{k}^{\min } \leq x_{k} \leq x_{k}^{\max }, & k=0,1, \ldots, K \\
& u_{k}^{\min } \leq u_{k} \leq u_{k}^{\max }, & k=0,1, \ldots, K \\
& x_{0}-\hat{x}_{0}=0 . & \tag{2e}
\end{array}
$$

The state-references $x_{k}^{r e f}=\left(x_{1 k}^{r e f}, x_{2 k}^{r e f}, x_{3 k}^{r e f}\right)$ are defined by

$$
\begin{equation*}
x_{1 k}^{r e f}=40+10 \cos (0.03 k \Delta t), \quad x_{2 k}^{r e f}=30, \quad \text { and } \quad x_{3 k}^{r e f}=20+10 \sin (0.03 k \Delta t) \tag{3}
\end{equation*}
$$

for $k=0, \ldots, K$, given the discretisation interval Δt. The weighting matrices $Q \succeq 0$ and $R \succ 0$ are

$$
Q=\left[\begin{array}{ccc}
25 & & \tag{4}\\
& 10 & \\
& & 25
\end{array}\right], \quad \text { and } \quad R=\left[\begin{array}{cc}
0.01 & \\
& 0.01
\end{array}\right]
$$

The control bounds are $u_{k}^{\min }=(0,0)$ and $u_{k}^{\max }=(140,140)$, whereas the states are bounded by $x_{k}^{\min }=(0,0,0)$ and $x_{k}^{\max }=(60,60,60)$, for all $k=0, \ldots, K$. Assume an initial state $\hat{x}_{0}=(10,20,30)$. Consider a horizon of $K=1500$ time-steps with a control discretisation period $\Delta t=0.5 \mathrm{~s}$.
Hint: Define reference $x^{\text {ref }}$ using MATLAB's sin and cos functions over the time-nodes $\left(t_{0}, \ldots, t_{K-1}\right)$.
3. Consider the linear approximation of dynamics $f\left(x, u \mid \theta_{x}\right)$ around a fixed-point $P=\left(x^{(P)}, u^{(P)}\right)$,

$$
\begin{equation*}
f\left(x, u \mid \theta_{x}\right) \approx z+A\left(x-x^{(P)}\right)+B\left(u-u^{(P)}\right) \tag{5}
\end{equation*}
$$

with affine term $z=f\left(x^{(P)}, u^{(P)} \mid \theta_{x}\right)$, and Jacobian matrices $A=\left.(\partial f / \partial x)\right|_{P}$ and $B=\left.(\partial f / \partial u)\right|_{P}$ evaluated at P. Using this linearisation, the integrator $F\left(\cdot \mid \theta_{x}\right)$ in Eq. (2b) is also a linear function and thus Problem (2) becomes a convex quadratic program (QP): A common class of optimization problems that can be solved efficiently with proven convergence properties.
Complete the E03B_main.m template to solve Problem (2) using the linearized model. First, implement the linear dynamics Eq. (5) by using CasADi's jacobian function and fixed-point $P=\left(x^{(P)}, u^{(P)}\right)$ with $x^{(P)}=(40,30,20)$ and $u^{(P)}=(40,34)$. Then, include your solution from Task 3.1 (E03A main.m) to implement and solve the modified optimisation problem.
4. Run the scripts E03A_main.m and E03B_main.m, and report the results generated by the plotting functions provided in the scripts. Compare both results (objective function, number of iterations, execution time, etc.) and interpret the optimal state- and control-trajectories (e.g., given weights Eq. (4)).

