
CHEM-E7225/2023: Exercise 03

Task 1 (Optimal control for Three-Tank System).
Consider again the benchmark Three-Tank System from Homework 1 (Figure 1): The process consists of
three cylindrical tanks (Ti, i = 1, 2, 3) connected by two fixed valves (Vi, i = 1, 2), with an outflow valve V0
for the last tank. The liquid levels (hi, i = 1, 2, 3) in each tank are controlled by manipulating the incoming
flow-rates to tanks T1 and T3 through the pumps P1 and P3, respectively.
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Figure 1: Three-Tank System: Process layout.

Using Torricelli’s law to model the flow between tanks, and now using the tanh function to indicate its
direction, the mass balances for the individual components lead to the following nonlinear dynamics

dh1

dt
=

1

ST

[
Q1 − αV SV tanh(h1 − h2)

√
2g|h1 − h2|

]
; (1a)

dh2

dt
=

1

ST

[
αV SV tanh(h1 − h2)

√
2g|h1 − h2| − αV SV tanh(h2 − h3)

√
2g|h2 − h3|

]
; (1b)

dh3

dt
=

1

ST

[
Q3 + αV SV tanh(h2 − h3)

√
2g|h2 − h3| − α0SV

√
2gh3

]
; (1c)

The state vector is x(t) = (h1(t), h2(t), h3(t)) and the controls are u(t) =
(
Q1(t), Q3(t)

)
. The vector of

model parameters in nominal operating conditions is θ =
(
ST , SV , αV , α0, g

)
=
(
154, 0.5, 0.56, 0.73, 981

)
.

The description of each process variable and the constant parameter values are presented in Table 1.

Table 1: Three-Tank System: Process variables and constant parameters.

Variable Description Value Units

h1 Water level of tank 1 ∈ [0, 60] cm
h2 Water level of tank 2 ∈ [0, 60] cm
h3 Water level of tank 3 ∈ [0, 60] cm
Q1 Flow-rate to tank 1 ∈ [0, 140] ml/s
Q3 Flow-rate to tank 3 ∈ [0, 140] ml/s
ST Cross-section of tanks Ti (i = 1, 2, 3) 154 cm2

SV Cross-section of valves Vi (i = 0, 1, 2) 0.5 cm2

αV Flow coefficient of valves Vi (i = 1, 2) 0.56 –
α0 Outflow coefficient of valve V0 0.73 –
g Gravitational constant 981 cm/s2
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Adapt the starting code in the archive E3 code.zip to solve this problem.

1. Substitute the function files ThreeTank.m and rk4fnc.m with your solutions from Homework 1, and
then change any sign() function in the model with the smooth tanh() function;

2. Complete the E03A main.m template to implement the following discrete-time optimal control problem
using the simultaneous approach with CasADi/IPOPT,

min
x0, . . . , xK

u0, . . . , uK−1

K−1∑
k=0

[
(xk − xrefk )TQ(xk − xrefk ) + uTkRuk

]
(2a)

subject to xk+1 − F (xk, uk|θx) = 0, k = 0, 1, . . . ,K−1 (2b)

xmin
k ≤ xk ≤ xmax

k , k = 0, 1, . . . ,K (2c)

umin
k ≤ uk ≤ umax

k , k = 0, 1, . . . ,K (2d)

x0 − x̂0 = 0. (2e)

The state-references xrefk = (xref1k , x
ref
2k , x

ref
3k ) are defined by

xref1k = 40 + 10 cos(0.03k∆t), xref2k = 30, and xref3k = 20 + 10 sin(0.03k∆t) (3)

for k = 0, . . . ,K, given the discretisation interval ∆t. The weighting matrices Q � 0 and R � 0 are

Q =

25
10

25

 , and R =

[
0.01

0.01

]
. (4)

The control bounds are umin
k = (0, 0) and umax

k = (140, 140), whereas the states are bounded by
xmin
k = (0, 0, 0) and xmax

k = (60, 60, 60), for all k = 0, . . . ,K. Assume an initial state x̂0 = (10, 20, 30).
Consider a horizon of K = 1500 time-steps with a control discretisation period ∆t = 0.5s.

Hint: Define reference xref using MATLAB’s sin and cos functions over the time-nodes (t0, . . . , tK−1).

3. Consider the linear approximation of dynamics f(x, u|θx) around a fixed-point P = (x(P ), u(P )),

f(x, u|θx) ≈ z +A(x− x(P )) +B(u− u(P )), (5)

with affine term z = f(x(P ), u(P )|θx), and Jacobian matrices A = (∂f/∂x)|P and B = (∂f/∂u)|P
evaluated at P . Using this linearisation, the integrator F (·|θx) in Eq. (2b) is also a linear function and
thus Problem (2) becomes a convex quadratic program (QP): A common class of optimization problems
that can be solved efficiently with proven convergence properties.

Complete the E03B main.m template to solve Problem (2) using the linearized model. First, implement
the linear dynamics Eq. (5) by using CasADi’s jacobian function and fixed-point P = (x(P ), u(P ))
with x(P ) = (40, 30, 20) and u(P ) = (40, 34). Then, include your solution from Task 3.1 (E03A main.m)
to implement and solve the modified optimisation problem.

4. Run the scripts E03A main.m and E03B main.m, and report the results generated by the plotting func-
tions provided in the scripts. Compare both results (objective function, number of iterations, execution
time, etc.) and interpret the optimal state- and control-trajectories (e.g., given weights Eq. (4)).
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