CHEM-E7225/2023: Exercise 03

Task 1 (Optimal control for Three-Tank System).

Consider again the benchmark Three-Tank System from Homework 1 (Figure 1): The process consists of three cylindrical tanks (T_i , i = 1, 2, 3) connected by two fixed values (V_i , i = 1, 2), with an outflow value V_0 for the last tank. The liquid levels (h_i , i = 1, 2, 3) in each tank are controlled by manipulating the incoming flow-rates to tanks T_1 and T_3 through the pumps P_1 and P_3 , respectively.

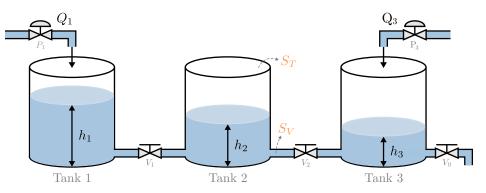


Figure 1: Three-Tank System: Process layout.

Using Torricelli's law to model the flow between tanks, and now using the tanh function to indicate its direction, the mass balances for the individual components lead to the following nonlinear dynamics

$$\frac{dh_1}{dt} = \frac{1}{S_T} \left[Q_1 - \alpha_V S_V \tanh(h_1 - h_2) \sqrt{2g|h_1 - h_2|} \right]; \tag{1a}$$

$$\frac{dh_2}{dt} = \frac{1}{S_T} \left[\alpha_V S_V \tanh(h_1 - h_2) \sqrt{2g|h_1 - h_2|} - \alpha_V S_V \tanh(h_2 - h_3) \sqrt{2g|h_2 - h_3|} \right];$$
(1b)

$$\frac{dh_3}{dt} = \frac{1}{S_T} \left[Q_3 + \alpha_V S_V \tanh(h_2 - h_3) \sqrt{2g|h_2 - h_3|} - \alpha_0 S_V \sqrt{2gh_3} \right];$$
(1c)

The state vector is $x(t) = (h_1(t), h_2(t), h_3(t))$ and the controls are $u(t) = (Q_1(t), Q_3(t))$. The vector of model parameters in nominal operating conditions is $\theta = (S_T, S_V, \alpha_V, \alpha_0, g) = (154, 0.5, 0.56, 0.73, 981)$. The description of each process variable and the constant parameter values are presented in Table 1.

Variable	Description	Value	Units
h_1	Water level of tank 1	$\in [0, 60]$	cm
h_2	Water level of tank 2	$\in [0, 60]$	cm
h_3	Water level of tank 3	$\in [0, 60]$	cm
Q_1	Flow-rate to tank 1	$\in [0, 140]$	$\mathrm{ml/s}$
Q_3	Flow-rate to tank 3	$\in [0, 140]$	$\mathrm{ml/s}$
S_T	Cross-section of tanks T_i $(i = 1, 2, 3)$	154	cm^2
S_V	Cross-section of values V_i $(i = 0, 1, 2)$	0.5	cm^2
$lpha_V$	Flow coefficient of values V_i $(i = 1, 2)$	0.56	_
$lpha_0$	Outflow coefficient of valve V_0	0.73	_
<i>g</i>	Gravitational constant	981	cm/s^2

Table 1: Three-Tank System: Process variables and constant parameters.

Adapt the starting code in the archive E3_code.zip to solve this problem.

- 1. Substitute the function files ThreeTank.m and rk4fnc.m with your solutions from Homework 1, and then change any sign() function in the model with the smooth tanh() function;
- 2. Complete the EO3A_main.m template to implement the following discrete-time optimal control problem using the simultaneous approach with CasADi/IPOPT,

$$\min_{\substack{x_0, \dots, x_K\\u_0, \dots, u_{K-1}}} \sum_{k=0}^{K-1} \left[(x_k - x_k^{ref})^T Q(x_k - x_k^{ref}) + u_k^T R u_k \right]$$
(2a)

subject to
$$x_{k+1} - F(x_k, u_k | \theta_x) = 0,$$
 $k = 0, 1, \dots, K-1$ (2b)

 $x_k^{\min} \le x_k \le x_k^{\max}, \qquad k = 0, 1, \dots, K \tag{2c}$

$$u_k^{\min} \le u_k \le u_k^{\max}, \qquad k = 0, 1, \dots, K$$
(2d)

$$x_0 - \hat{x}_0 = 0.$$
 (2e)

The state-references $x_k^{ref} = (x_{1k}^{ref}, x_{2k}^{ref}, x_{3k}^{ref})$ are defined by

$$x_{1k}^{ref} = 40 + 10\cos(0.03k\Delta t), \qquad x_{2k}^{ref} = 30, \quad \text{and} \quad x_{3k}^{ref} = 20 + 10\sin(0.03k\Delta t)$$
(3)

for $k = 0, \ldots, K$, given the discretisation interval Δt . The weighting matrices $Q \succeq 0$ and $R \succ 0$ are

$$Q = \begin{bmatrix} 25 \\ 10 \\ 25 \end{bmatrix}, \quad \text{and} \quad R = \begin{bmatrix} 0.01 \\ 0.01 \end{bmatrix}.$$
(4)

The control bounds are $u_k^{\min} = (0,0)$ and $u_k^{\max} = (140,140)$, whereas the states are bounded by $x_k^{\min} = (0,0,0)$ and $x_k^{\max} = (60,60,60)$, for all $k = 0, \ldots, K$. Assume an initial state $\hat{x}_0 = (10,20,30)$. Consider a horizon of K = 1500 time-steps with a control discretisation period $\Delta t = 0.5$ s.

Hint: Define reference x^{ref} using MATLAB's sin and cos functions over the time-nodes (t_0, \ldots, t_{K-1}) .

3. Consider the linear approximation of dynamics $f(x, u | \theta_x)$ around a fixed-point $P = (x^{(P)}, u^{(P)})$,

$$f(x, u|\theta_x) \approx z + A(x - x^{(P)}) + B(u - u^{(P)}),$$
 (5)

with affine term $z = f(x^{(P)}, u^{(P)}|\theta_x)$, and Jacobian matrices $A = (\partial f/\partial x)|_P$ and $B = (\partial f/\partial u)|_P$ evaluated at P. Using this linearisation, the integrator $F(\cdot|\theta_x)$ in Eq. (2b) is also a linear function and thus Problem (2) becomes a *convex quadratic program* (QP): A common class of optimization problems that can be solved efficiently with proven convergence properties.

Complete the E03B_main.m template to solve Problem (2) using the linearized model. First, implement the linear dynamics Eq. (5) by using CasADi's jacobian function and fixed-point $P = (x^{(P)}, u^{(P)})$ with $x^{(P)} = (40, 30, 20)$ and $u^{(P)} = (40, 34)$. Then, include your solution from Task 3.1 (E03A_main.m) to implement and solve the modified optimisation problem.

4. Run the scripts EO3A_main.m and EO3B_main.m, and report the results generated by the plotting functions provided in the scripts. Compare both results (*objective function, number of iterations, execution time, etc.*) and interpret the optimal state- and control-trajectories (e.g., given weights Eq. (4)).