CHEM-E7225/2024: Exercise 03

Task 1 (Optimal control for Three-Tank System).
Consider again the benchmark Three-Tank System from Homework 1 (Figure 1): The process consists of three cylindrical tanks $\left(T_{i}, i=1,2,3\right)$ connected by two fixed valves $\left(V_{i}, i=1,2\right)$, with an outflow valve V_{0} for the last tank. The liquid levels $\left(h_{i}, i=1,2,3\right)$ in each tank are controlled by manipulating the incoming flow-rates to tanks T_{1} and T_{3} through the pumps P_{1} and P_{3}, respectively.

Figure 1: Three-Tank System: Process layout.
Using Torricelli's law to model the flow between tanks, and the tanh function to indicate its direction, the mass balances for the individual components lead to the following nonlinear dynamics

$$
\begin{align*}
\frac{d h_{1}}{d t} & =\frac{1}{S_{T}}\left[Q_{1}-\alpha_{V} S_{V} \tanh \left(h_{1}-h_{2}\right) \sqrt{2 g\left|h_{1}-h_{2}\right|}\right] \tag{1a}\\
\frac{d h_{2}}{d t} & =\frac{1}{S_{T}}\left[\alpha_{V} S_{V} \tanh \left(h_{1}-h_{2}\right) \sqrt{2 g\left|h_{1}-h_{2}\right|}-\alpha_{V} S_{V} \tanh \left(h_{2}-h_{3}\right) \sqrt{2 g\left|h_{2}-h_{3}\right|}\right] \tag{1b}\\
\frac{d h_{3}}{d t} & =\frac{1}{S_{T}}\left[Q_{3}+\alpha_{V} S_{V} \tanh \left(h_{2}-h_{3}\right) \sqrt{2 g\left|h_{2}-h_{3}\right|}-\alpha_{0} S_{V} \sqrt{2 g h_{3}}\right] \tag{1c}
\end{align*}
$$

The state vector is $x(t)=\left(h_{1}(t), h_{2}(t), h_{3}(t)\right)$ and the controls are $u(t)=\left(Q_{1}(t), Q_{3}(t)\right)$. The vector of model parameters in nominal operating conditions is $\theta=\left(S_{T}, S_{V}, \alpha_{V}, \alpha_{0}, g\right)=(154,0.5,0.47,0.77,981)$. The description of each process variable and the constant parameter values are presented in Table 1.

Table 1: Three-Tank System: Process variables and constant parameters.

Variable	Description	Value	Units
h_{1}	Water level of tank 1	$\in[0,60]$	cm
h_{2}	Water level of tank 2	$\in[0,60]$	cm
h_{3}	Water level of tank 3	$\in[0,60]$	cm
Q_{1}	Flow-rate to tank 1	$\in[0,140]$	ml / s
Q_{3}	Flow-rate to tank 3	$\in[0,140]$	ml / s
S_{T}	Cross-section of tanks $T_{i}(i=1,2,3)$	154	$\mathrm{~cm}^{2}$
S_{V}	Cross-section of valves $V_{i}(i=0,1,2)$	0.5	$\mathrm{~cm}^{2}$
α_{V}	Flow coefficient of valves $V_{i}(i=1,2)$	0.47	-
α_{0}	Outflow coefficient of valve V_{0}	0.77	-
g	Gravitational constant	981	$\mathrm{~cm} / \mathrm{s}^{2}$

Adapt the starting code in the archive E7225-E03.zip to solve this problem.
Task 3.1. Substitute the files ThreeTank.m and rk4fnc.m with your solutions from Homework 1. (5 points)
Task 3.2. Complete the E03A_main.m template to implement the following discrete-time optimal control problem using the simultaneous approach with CasADi/IPOPT,

$$
\begin{array}{rll}
\underset{\substack{x_{0}, \ldots, x_{K} \\
u_{0}, \ldots, u_{K-1}}}{\operatorname{minimize}} & \sum_{k=0}^{K-1}\left[\left(x_{k}-x_{k}^{r e f}\right)^{T} Q\left(x_{k}-x_{k}^{r e f}\right)+u_{k}^{T} R u_{k}\right] \\
\text { subject to } & x_{k+1}-F\left(x_{k}, u_{k} \mid \theta_{x}\right)=0, & k=0,1, \ldots, K-1 \\
& x_{k}^{\min } \leq x_{k} \leq x_{k}^{\max }, & k=0,1, \ldots, K \\
& u_{k}^{\min } \leq u_{k} \leq u_{k}^{\max }, & k=0,1, \ldots, K \\
& x_{0}-\hat{x}_{0}=0, & \tag{2e}
\end{array}
$$

The state-references $x_{k}^{r e f}=\left(x_{1 k}^{r e f}, x_{2 k}^{r e f}, x_{3 k}^{r e f}\right)$ are obtained from the continuous-time signals

$$
\begin{equation*}
x_{1}^{r e f}(t)=40+10 \cos (0.03 t), \quad x_{2}^{r e f}(t)=30, \quad \text { and } \quad x_{3}^{r e f}(t)=20+10 \sin (0.03 t) \tag{3}
\end{equation*}
$$

The weighting matrices $Q \succeq 0$ and $R \succ 0$ are

$$
Q=\left[\begin{array}{ccc}
25 & & \tag{4}\\
& 10 & \\
& & 25
\end{array}\right], \quad \text { and } \quad R=\left[\begin{array}{cc}
0.01 & \\
& 0.01
\end{array}\right]
$$

The function $F\left(\cdot \mid \theta_{x}\right)$ is an integrator for the dynamics $f\left(\cdot \mid \theta_{x}\right)$: We consider the RK4 method with a step-size of Δt (which is equal to the control rate). The control bounds are $u_{k}^{\min }=(0,0)$ and $u_{k}^{\max }=(140,140)$, whereas the states bounds are $x_{k}^{\min }=(0,0,0)$ and $x_{k}^{\max }=(60,60,60)$, for all $k=0, \ldots, K$. Assume the initial state $\hat{x}_{0}=(10,20,30)$. Finally, consider a horizon of $K=1200$ time-steps and a control rate of $\Delta t=0.5 \mathrm{~s}$. (60 points)
Hint: Define $x^{\text {ref }}$ using MATLAB's sin and cos functions over the time-nodes $\left(t_{0}, \ldots, t_{K-1}\right)$.
Task 3.3. Consider the linear approximation of dynamics $f\left(\cdot \mid \theta_{x}\right)$ around some fixed-point $P:=\left(x_{p}, u_{p}\right)$,

$$
\begin{equation*}
\dot{x}(t) \approx \underbrace{f\left(x(t), u(t) \mid \theta_{x}\right)}_{\widetilde{c}}+\underbrace{\left.\frac{\partial f}{\partial x}\right|_{P}}_{\widetilde{A}}\left(x(t)-x_{p}\right)+\underbrace{\left.\frac{\partial f}{\partial u}\right|_{P}}_{\widetilde{B}}\left(u(t)-u_{p}\right) \tag{5}
\end{equation*}
$$

which can be discretised and converted into a time-invariant affine model $x_{k+1}=c+A x_{k}+B u_{k}$, as done in Homework 1. In this case, the transition function $F\left(\cdot \mid \theta_{x}\right)$ corresponds to the right-hand side of this model and Problem (2) becomes a (constrained) linear-quadratic regulator (LQR): A class of convex optimization problems with well-understood properties and efficient solution.
In this task, you will solve Problem (2) using this affine model: First, substitute the function file Linearize.m with your solution from Homework 1. Then, complete the template E03B_main.m exactly as in Task 3.2, but using $F\left(\cdot \mid \theta_{x}\right)=c+A x_{k}+B u_{k}$ for the dynamic constraints Eq. (2b). For the linearisation, use the fixed-point $x_{p}=(40,30,20)$ and $u_{p}=(0,0)$. (35 points)

Execute E03A_main.m and E03B_main.m, and report the results. Compare the optimisations (objective value, execution time, etc.) and interpret the optimal state- and control-trajectories in terms of the physical system (Figure 1), given the controller tuning (i.e., the weights Eq. (4)). Finally, change the linearisation point to $x_{p}=(0,30,60)$ and $u_{p}=(0,0)$ and re-run E03B_main.m: Does the performance of the LQR change? Why?

