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We discussed how to solve an optimal control problem using dynamic programming
® The principle of optimality

® Backward recursion

x(T)
Optimal control trajectory u*(-)
® Transfer from z(0) to z(T)
® Optimal cost J (Zo)
J @) The initial state is fixed, Zg
Co
z(0) =T
0 T

Consider a point t; in between 0 and T, ‘an optimal policy has the property that
whatever the previous state and control, the remaining controls must constitute an
optimal policy with respect to the state resulting from the previous decision’
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2(T) Partial optimal control trajectory

I at)

T(tk) u*(tk ~ T)
J (w(t)) ® Transfer from z(;) to z(T)
® Optimal cost J (z(t))

Another partial control trajectory
u/(tr ~ T) which is admissible
® Transfer from z(t) to z(T)
® Cost J (z(t))

0 ty T

Suppose that J (Zo) is the total optimal cost to transfer the state from z(0) to z(T')
® Then J (z(t;)) must be the optimal cost from z(t;) to z(T)

A control trajectory such that J’ (z(t;)) < J (#(t)) would contradict the assumption

® (Equality may occur if the optimal control is not unique)
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Optimal control with dynamic programming

We consider an arbitrary discrete-time dynamical system, with initial condition zp = Zo
pr1 = f (wg,ux), k=0,...,K

In general, the dynamics could be time-varying

J(xKk-1)

z(T)
J(vK)
Consider the cost to transfer the
state from each z; to zx

J(xk,uk) xK)—i— Z xk,uk

n:O,l,...,Kfl

We are interested in each of the optimal controls u;, by the principle of optimality
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At the terminal stage K, we have the optimal cost to transfer the state from zg to zg

Jk (zx,uk) = E (zx)
Ji (zx) = rLl;l{n (Jk (zx, uk))

= Jk (2K, ux)
= E (zk)

At stage K — 1, the optimal cost to transfer the state from zx_1 to zg

Jr -1 (zx—1,uk—1) = B (zx) + L (K -1, UK —1)

Jg_1(zr—1) = min (Jx—1 (Tx -1, uK-1))
uR 1

= min |L(zx_1,ux—1)+ E (k)
UK —1

T (zK)
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Discrete-time
dynamic At stage K — 2, the optimal cost to transfer the state from zx_o to zg
programming

Jr 2 (xx_2,ux—2) = E(zx) + L(zx—1,urx—1) + L (K —2, ux_2)
Jk—o(TK—2) = 13{11112 (Jr—2 (K —2, UK _2))

= min |L(zx_2,ux—2) + L(zx_1,ux 1) + E (2x)
UK 2 ——r
J (zxc)

JI*<71(ZK71)

The operation is repeated until the initial stage K = 0, to get

J*(20)
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Discrete-time
dynamic
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For an arbitrary stage k, the optimal cost to transfer the state from zy, to zx
Ji (zx) = H&n (Jk—1 (=K, ux))

= nllbin [L (fck, uk) + JI;F+1 (ZIH—I)]

Because z;4+1 = f (zx, ui), we can write the dependence on the control wy
Ji (=) = min [L (2, u) + JTjipq (2p41)]

= H&in (L (zp, up) + Ty (f (zn, wp))]
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Discrete-time In the we consider a directed graph in which the initial node
Jymami . . = L
Sraaramming is connected to the terminal node through several admissible paths consisting of arcs

® Each path is associated to a cost, the sum of the costs of each arc

® ke{0,1,2,3,4,5} denotes the stage
® 1, = z(k) € {+1,0,—1} denotes the state
® u, = u(k) € { 7, —, \} denotes the control action

The shortest, or minimum cost, path from node (k, zx) to the terminal node

J (k,zx)



The shortest path from node (0, 0)
J(0,0) =
min((0+ 1) + J (1,1),
(0+2)+J(1,0),
(043)+J(1,-1))
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(0,0) ~» (1,+1), then continue along the shortest path to the terminal node
041 +J(1,+1)
——
Lo(0,7)
path cost
(0,0) ~» (1,0), then continue along the shortest path to the terminal node
0+2 +J(1,0)
~——
Lo(0,—)
path cost
(0,0) ~» (1, —1), then continue along the shortest path to the terminal node
043 +J(1,-1)
——
Lo (0,)

path cost
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Discrete-time
dynamic
programming

J(1,1) =
min(5 + J (2,+1),
34 J(2,0))

(1,1) ~» (2,41), then continue along the shortest path to the terminal node
0+5 +J(2,+1)
——
L1(1,—)

path cost
(1,1) ~» (2,0), then continue along the shortest path to the terminal node
0+3 +J(2,0)
——
L1(1,N)

path cost
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J(1,0) =
min(2 4+ J (2,+1),
Discrete-time
dynamic 1+ J (27 0) ,
programming
34 J(2,-1))

(1,0) ~» (2,+1), then continue along the shortest path to the terminal node
2
+J(2,4+1)
L1(0,,7)
path cost
(1,0) ~» (2,0), then continue along the shortest path to the terminal node
1
+J(2,0)
L1(0,—)
path cost
(1,0) ~» (2, —1), then continue along the shortest path to the terminal node
3 _
+J(2,-1)
L1(0,)

path cost
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Shortest path from node (1, —1)
J(1,-1) =
min(4 + J (2,0),
54 J(2,-1)

Discrete-time
dynamic
programming

(1,-1) ~ (2,—1), then continue along the shortest path to the terminal node

1 +J(2,0)
Li(-1,7)

path cost
(1,-1) ~ (2,0), then continue along the shortest path to the terminal node

2 4J(2,1)
Li(=1,—)

path cost
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The shortest path problem (cont.)

In general, the following operations are performed
® At each stage k
® For each state
~» Compute the optimal cost
J(k,zp) = min  (Lg (g, ug) + J(k+ 1, f (zg, ug))
N
shortest path from (k+ 1,24 1)

Principle of optimality
The shortest, or minimum cost, path has the property that for any initial part of the

path from the initial node to any node (k, z) € {0,..., K} x{1,..., N}, the remaining
path must be the shortest, or the cheapest, from node (k, z) to the terminal node
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dynamic
programming

‘We know that the cost corresponding to the terminal part of the shortest path is given
J(5,0)=0
We can optimise backwards and recursively compute the previous shortest path-to-go
J(4,41)

J(4,2) = | J(4,0)
J(4,-1)

There is only one way to reach (5,0) from each of the nodes (4, z)
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“+00
0
Discrete-time
dynamic +oo
programming
J(5,z)

(4,41) ~ (5,0), then continue along the shortest path to the terminal node
J(4,1) =min( _2 + J(5,0))
Ls(+1,°) =0
=2
(4,0) ~~ (5,0), then continue along the shortest path to the terminal node
J(4,0) = min(3 + J (5,0))
=0
=3
(4,—1) ~» (5,0), then continue along the shortest path to the terminal node
J (4,1) = min(4 + J (5,0))
=0
=4
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2 +4oo
3 0
Discrete-time
dynamic 4  +oo
programming
J(4~5,)

(3,41) ~ (4,+1)(4,0), then along the shortest path to the terminal node
J(3,1) =min(1+ J (4,1),3+ J (4,0))
=2 =3
=3
(3,0) ~ (4,+1)(4,0)(4, —1), then along the shortest path to the terminal node
J(3,0) =min(3+ J (4,1),4+ J (4,0),2+ J (4,-1))
=2 =3 =4
=5
(3,—1) ~» (4,—-1)(4,0), then along the shortest path to the terminal node
J(3,—1) =min(5+ J (4, —1),1+ J (4,0))
=4 =3
=4



CHEM-ET7225 The shortest path-to-go function

2021-2022
3 2 +H4oo
5 3 0
Discrete-time
dynamic 4 4 Hoo
programming
J(3~5,7)

(2,41) ~ (3,+1)(3,0), then along the shortest path to the terminal node
J(2,1) =min(4+ J (3,1),1+ J (3,0))
=3 =5
=6
(2,0) ~ (3,41)(3,0)(3,—1), then along the shortest path to the terminal node
J(2,0) = min(2 + J (3,1),3 + J (3,0),2 + J (3, —1))
=3 =5 =4
=5
(2,—1) ~» (3,—-1)(3,0), then along the shortest path to the terminal node
J(2,—1) =min(1+ J (3,—1),2+ J (3,0))
=4 =5
=5
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6 3 2 +Hox
5 5 3 0
Discrete-time
dynamic 5 4 4 4o
programming
J(2~~5,z)

(1,41) ~ (2,+1)(2,0), then along the shortest path to the terminal node
J(1,1) = min(5 + J (2,1),3 + J (2,0))
=6 =5
=8
(1,0) ~ (2,+1)(2,0)(2, —1), then along the shortest path to the terminal node
J(1,0) = min(2+ J(2,1),1+ J (2,0),3+ J (2, —1))
=6 =5 =5
=6
(1,—-1) ~» (2,-1)(2,0), then along the shortest path to the terminal node
J(1,—1) = min(4 + J (2, —1),5+ J (2,0))
=5 =5
=9
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The shortest path-to-go function

8 6 3 2 +4oo
5 6 5 5 3 0
9 5 4 4 H4oo
J(1~5,z)

(0,0) ~ (1,41)(1,0)(1,—1), then along the shortest path to the terminal node

J(0,0) = min(1 + J(1,1),2+ J (1,0),3 + J (1, —1))
=8 =6 =9
=38
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The shortest path problem (cont.)

The optimal controls to the shortest path problem

{ui () }i=o

The shortest path-to-go from each node z

J(k,z)

8 6 3 2 4Hoo
& 6 5 5 3 0
9 5 4 4 +Hoo
J(0~5,z)
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Consider the linear and time-invariant dynamical system from zp = 8

Tpy1 = 4xy, — Guy
f (@ ug)

Consider the objective function as performance index for K = 2

1 1
(z2 — 20)? +7Z 2z2 + 4u?
—_—— 2 —_————

E(zk) k=0 L(y,uy)

We are interested in the optimal controls uj and uf



cuemerzzs  Optimal control with dynamic programming (cont.)
2021-2022

We know the terminal optimal cost to transfer the state from zx to zx with K =2

Discrete-time

e Jk (zx,uk) = E (zK)

programming T3 (o) = IE;(H (Jxe (o1, i)

= (22 — 20)?
= E (zx)

Then, we have at stage K — 1, cost to transfer the state from zx — 1 to zx

Jr -1 (zx—1,uk—1) = B (2x) + L (oK -1, uK 1)
Jko1 (@r-1) = mnin (B (zx) + L(zx—1, urx-1))

= ur;(llnl (Jg (zx) + L (zx—1,uK—1))

UK

1
= min ((IK —20)2 + 3 (222 _4 + 4u}2(1)>
—1

2

. L, o 2
= min (dzg_1 —6ux—1) =20 | + = (225 _1 +4uf_,)
UK —1 D e e 2
TK
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We obtain the optimisation

Discrete-time
dynamic

. . 1
programming JI*(—I (IKfl) — J},{linl ((4IK71 _ GUKfl) _ 20)2 + 5 (2‘%}2(_1 + 4’114}2(_1)

Hg_1(zg—1,uK5-1)
By taking the first derivatives, we get the first-order optimality condition

OHg 1 (zx—1,uK—1)
Oug —1

=0

We get, for a still unknown 1, the optimal control action uj _, (zx—1)

. 1221 — 60
U1 = 19

Moreover, we have the optimal cost

7 = (s =) 20"+ 5 o+ a0

2 2
1225 1 — 60 1, 1225 1 — 60
= (4zg_, —6=KZL" 22 o — |2 P [ S e
<zK ! 19 ) to | et 19
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At stage K — 2 = 0, the initial stage, we have

I Jr—2 (2K —2,ux—2) = E (2x) + L (zx -1, ux—1) + L (3K —2, ux—2)
dynamic Jg_o(@g_2) = J;I(HHQ (E(zx) + L(zg—1,ux—1) + L(zx_2, uk—2))

programming

= min (Ji*(—l (zr—1) + L (zK—2, UK_Q))
ug o

1
— . J* _ (2 2 4 2
urlr<un2< (ex—1) + 5 (2o + uK_z)>

12 Tr_1 —60
4 6
T 2 —0ug
= min |4 T 1 —6 K2 K2 —20
UK —2 —— 19
dzg o2 —6ug o
12 zx_1  —60\ >
——
2 dzg _o—6ug o
+ =12 TK -1 +4 0

dog _o—6ug o

By taking the first derivatives, we get the first-order optimality condition

OHg 2 (zx_2,uKx_2)

=0
Ourg —2
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_ ) OHk o (x5 _2,ur—2)  OHo (w0, u0)
Discrete-time =
dynamic Oug _o Oug

programming

We get, for the known initial state zo = To, the optimal control action u (zo),

uy & 4.8

Given zp and the optimal control uj, we can go forward in time and compute z;*
z{ = 4To — 6ug
~ 3.1
We can compute the next optimal control action from state z; = =,
_ 1221 — 60

16
~—1.2

*

Uq

And, finally the terminal state
x5 ~ 19.6
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The Hamilton-Jacobi-Bellman equation

We extend dynamic programming to the optimal control of continuous-time systems

Consider an arbitrary continuous-time system, with initial condition z(0) = Zo

&(t) = f (2(1), u(t))
Consider the cost function, the cost of transferring the state z(t) to z(T') over (¢, T

T
J (z(t), u(t)) = E(z(T)) + /t L(z(7),u(r)) dr
t €0, T]

We are interested in the optimal controls u*(7), for all 7 € [¢, T

® Principle of optimality
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T
I (z(t), u(t)) =E(x(T))+/t L(z(7), u(T))

At the boundary, we know the optimal cost of transferring the state from z(7T') to z(T)

J(2(T), w(T)) = E (2(T))
ST (@(T) = min B (2(T))

=E(=(T))



cuemerzzs  The Hamilton-Jacobi-Bellman equation (cont.)

2021-2022

At any time ¢, we have the optimal cost of transferring the state from z(t) to z(T)

Continuous-time

dynamic J* (z(t)) = II%IH E I(T)) +/ t) u( )) dr

programming

t<r<T
T t+At
— min E(m(T))+/ L(=(t) dT+/ 2(t), u(t)) dr
u(t) t+At
t<r<T
ST L(e(t),u(t))dr
t+At
= min Ez(T)+/ d'r—i—/ z(t), u(t)) dr
u(t) t+AL
t<r<T
J* (z(t+At))

The quantity J* (z(t + At)) is the optimal cost to transfer the state z(t+ At) to z(T)
® The minimum of J (z(t + At), u(t + At)), with respect to u(t + At)
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T t+At
Contimous-time J* (z(t)) = min E(z(T))+/ L (z( dT—l—/ z(t), u(t)) dr
paemich u(t) t+At
programming t<r<T

J* (w(t+AL))

From the principle of optimality, we have for t <7 <t + At

t+A¢
J* (z(t) + At) = l’;l(ltl’)l J* (z(t+ At)) + / L(z(t),u(t)) dr
t<r<t+At ¢

Using the dynamics in integral form, we have

T
z(t + At) = z(t) + /t+Atf (z(7), u(r)) dT

= z(t) + Az(t)
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We can expand the optimal cost J* (z(t + At)) using a Taylor’s series expansion

Continuous-time
dynamic

programming oOJ* (z(t + At
7 (alt + A0) & I (a(a)) + 2L ZUEEA0)

8" (z(t + At))
[ 9 (1)

Second variation

T
At + ] Ax(t)

First variation

Assuming the variation in At to be small, we can neglet higher-order terms to get

* * T
7 @+ AR = 7* (2(t) + 27 <z(8tt+m>> [&] (Zit(:;At))} ()
N——

independent of u(t)
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Continuous-time

dynamic Substituting and factoring out the terms that are independent of u(t), we get

programming

t+At
J*(z(t))= min J*(z(t+ At)) + /t L(z(t),u(t))dr

tg‘rug(:+At
— (o) 4 2T AD) (’“’Sf A1)
, t+At 8% (z(t + at)] "
+ min [ L) dr+ i

t<r<t4+At

Az(t)
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J*(z(t)) = J" (z(¢)) + ot At
T
Continuous-time t+At aJ* (I(t + At))
dynamic 1 -~ > 007
programming + /t L(z(t),u(t)) dr + ENO) Ax(t)
t<7T<t+At

Simplifying J* (z(¢)), dividing by At, and rearranging we get

9J* (z(t + At)) 1 .
— . = T min
ot At u(t)
t<T<t4+At
{BJ* (z(t + At))

9 (1)

. 1

= — min —_—

u(t) At
t<T<t+At

{[N* (z(t + At))

t+AL
/t L(z(t),u(t)) dr

T
Az (t)

t+AL
/z L(z(t),u(t)) dr

N0
At

Ox(t)
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The Hamilton-Jacobi-Bellman equation (cont.)

aJ* (z A e
i N AR
t<r<t+At '

07 (w(t+ At)] " Ax(t)
Oz(t) At

In the limit for At — 0, we get

. 1 [t 87 (z(t + A1) " Azt
(& s [0 0

) 1 t+At
= Jim_ <At/t L(x(t), u(t)) d-r)

L(z(t),u(t))

; 87 (z(t + A1) " Az(t)
A, 92(1) At
aJ* (z(t)] "
{T(t)} o
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The Hamilton-Jacobi-Bellman equation (cont.)

After substituting the obtained quantities, we get

8J* (x(t))

T
RO ] L0

We define the Hamiltonian,

aJ* a7 ’
i <z(t),u(t>,J8(j“”> = Lia(t), u(t)) + Jaz((t()t”] £ (1), u(0)
#0t)

As a result, we get the Hamilton-Jacobi-Bellman equation,
aJ* (z(t)) oJ* (z(t))
= Y = _minH [ z(t), u(t), ———

o min H | 2(t), u(t), —5_
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9J* (z(1))
Jontinuous-time - 7 = mlnH z(t). w(t
gyn;mic ! ot u(t) ( )7 ( )7
programming

aJ* (z(t))
oz

The Hamilton-Jacobi-Bellman requires the minimisation of the Hamiltonian
The optimal control is obtained by solving for the optimality conditions
oJ* (z(t
OH (z‘(t), u(t), (())>

oz
=0

ou

That is, the optimal control

uw*(t) = u* <x(t), &]*;;(t)))
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9J* (x(1))

8J* (z(t))
ot

=i (””(”’ T

The Hamilton-Jacobi-Bellman equation is a nonlinear partial differential equation
The boundary condition is given by the terminal cost
J* (2"(T)) = E (=™(T))

Given J*(z(t)), the optimal control u*(¢) is obtained by the gradient of J*
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