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Consider a linear time-varying dynamical system, with initial condition z (%) = Zo,

z(t) = A(t)z(t) + B(t)u(t)
F((t),u(t),t)
The cost to transfer the state z(to) to z(7T') using control u(t) with ¢ € [to, tf],

1 1 [t
5200 Qra(ty) +2/t x( ()z(t) + uT () R(t)u(t) dt
W 0 2L(a(t),u(t),t)

= Q) =QT(t) =0
~ R(t)=RT(t) =0
7 Qf = QfT =0
The quadratic cost is very reasonable, since both @ and R are positive (semi)definite

matrices, both the size of the state vector and the size of the control vector are penalised
® Matrices @ and R retain their relative relevance

We are interested in the optimal control u*(t), for all ¢t € [to, tf]
~+ From the Hamilton-Jacobi-Bellman equation, we have

u”(t) = u” <z(t)7 aj*gz(t))>
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We defined the Hamilton-Jacobi-Bellman equation, as the partial differential equation

J* (z*(t)) . wry O (@ (1)
T+H <x (t),u (t)’ax*> =0

Optimal value of the Hamiltonian
It contains the partial derivatives of the value function with respect to state and time

The HJB PDE is integrated backwards, from the boundary condition

® The terminal stage-cost
T (27 (t) 1) = E (27 (1))

The terminal cost does not appear in the HJB PDE itself

Solving the HJB equation analytically is a challenging task, even for simple problems
The solution of the HJB equation is the value function,

J*(x(t),t)  z(t) €X t €0, T]
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aJ* (z*(t)) . wry 07 (@ (1)) _
———tH <ac (1), u (t),ax*> =0

Optimal value of the Hamiltonian

In the Hamilton-Jacobi-Bellman equation, we defined the Hamiltonian,

*(z *(z ’
a";“”) W} (0, u(t), 0

= L(z(t),u(t)) + oz (t)

H <x(t), u(t)

For linear time-varying systems in continuous-time and quadratic costs,

8J* (x(t))

ox(t) > - %(”CT(UQWU)+uT(t)R(t>u<t))

H (I(t)m(t),
L(z(t),u(t),t)

* T T
N {w((f))} (A(t)z(t) + B(t)u(t))

ox(t
®) fz(t),u(t),t)
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The LQR from the HJB (cont.)

H (m(t),u(t), w) - %(zT(t)Q(t)z(t) + uT(t)R(t)u(t)>

a7 ()] "
+ {az(ﬂ} (A(®)z(t) + B(t)u(t))

The optimal value of the Hamiltonian is obtained from first-order optimality conditions,

aJ* @(t)))
0

ou

OH <z(t), u(t),

ou

Differentiating the Hamiltonian with respect to u(t), we get

07" (z(t»] "

R(t)u(t) + BT (t) { FO)
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R(t)u(t) + BT(t)%é()t)) =0

The gradient of the Hamiltonian witch respect to u(-) must vanish along the trajectory
From the first-order optimality conditions, we solve for the optimal control and get

8J* (z(t))

W)= R OB ()=

® We used the assumption that R(t) is invertible
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i (zm,u(t), a"égffff”) = L (+T @MW) + uT (W AW
a7 ()] "
{ — } (ADa() + Bou(t)

We get the optimal value of the Hamiltonian, by substituting the optimal control u*(¢)

o 8J* (x(t))
W) = —R 0BT (0=

8J* (z(1))
oz (t)

B()R™H()R(HR™ (1) BT (1)
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The LQR from the HJB

After grouping terms and rearranging, we get the optimal value of the Hamiltonian

= LTWQe()

H (E(t)7u(t)7(mx(m> 5

9z(t)
T *
Byr-187 (12 W)

1[07% (z(t))
2| az(t)

[mx(t» " de)

9z (t)
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aJ* (z*(1))
ot

+H (:v*(t), u*(t), W)

Optimal value of the Hamiltonian

Given the optimal value of the Hamiltonian, we can re-write the HIB equation

1

aJ* (z*(1) 1
= TR0 + 5

ot

8" (z(t)] "
0z (t)

aJ* ((t))

B(t)R™'BT (1) 520

o7 (z(t)] "
- [%(t)] A(t)z(t)

The boundary condition is given by the terminal stage-cost,

T @) = T Qe (1)
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Assume that the Hamilton-Jacobi-Bellman has a quadratic solution in the state,
* 1 T
JH(a(t), 1) = o7 () P(t)(t)
The candidate solution mimics the quadratic form of the boundary condition,

I (2 (), ) = %IT(tf)sz*(tf)

e P(t) = PT(t) = 0, as the cost must be non-negative

By taking the partial derivative of the candidate solution with respect to time, we get

8J* (z(t))

_Lnp
oL = Ez(t) z(t)

Similarly, by taking the partial derivative with respect to the state we get

aJ* (z(t))

5 = P()a(t)
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After substituting the partial derivatives in the Hamilton-Jacobi-Bellman equation,

T (t)Pa(t) +%wT(t)Q(t)z(t)

quadratic in z(t) quadratic in z(t)

~ 52T WPOBWA ()BT () PWa(t)

quadratic in z(t)
+ 2T (t)P(t)A(t)z(t) =0
—_—

quadratic in z(t)

® P(t) is symmetric
® Q(t) is symmetric
® P(t)B(t)R~'(t)BT(t)P(t) is symmetric

® Matrix P(t)A(t) is not necessarily symmetric
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For any (not necessarily symmetric) state matrix A, we have

A= Ay + Az
N

symmetric  skew-symmetric

Then, we can write

A+ AT

A = ATAT
2

4 A—AT
277

We re-write P(t)A(t) in T (¢t)P(t)A(t)z(t)

PWA®) = 5 (POAW) + (POAW)T) +3 (PWAD) ~ (P(1AW)T)

symmetric skew-symmetric

In the quadratic form, the skew-symmetric part will vanish
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The LQR from the HJB (cont.)
After substituting P(£)A(t) with %(P(t)A(t) + (P(t)A(t))T) in the HIB, we get

TP+ 2" (0QWa(D) — " (VPWBOR™ (BT ()PD()

+ %mT(t)P(t)A(t)z(t) + %zT(t)AT(t)P(t)a;(t) =0
That is, we have

5270 (P + @) — POBOR BT (PW) + PU)A®) + AT () P(D) (1)

As a result, for any z(t) we get the matrix ordinary differential equation for P(t)

P(t)+ Q(t) — P(t)B(t) R (t) BT (t) P(t)A(t) + P(t)A(t) + AT () P(¢)
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The LQR from the HJB (cont.)

The matrix differential equation is the matrix differential Riccati equation
P(t) = =P(1)A(t) — AT (1) P(t) + P()B() R~ (1) BT (1) P(t) — Q(t)

The boundary condition P(t;) is the terminal state weight-matrix Qy

Once matrix P(t) is determined along the trajectory, we get the optimal control

u(t)

—R™Y ()BT (8)J* ((t), 1)
—R™N ()BT (1) P(t)x(t)
= —K(t)x(t)

The optimal control is given in linear state feedback form

® The time-varying feedback gain,
K(t) =R ()BT (t)P(1)
® (Also for LTI systems)

A remarkable conclusion, though we did not prove the global optimality of the control



