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The LQR from the HJB

Consider a linear time-varying dynamical system, with initial condition x(t0) = x0,

ẋ(t) = A(t)x(t) + B(t)u(t)︸ ︷︷ ︸
f (x(t),u(t),t)

The cost to transfer the state x(t0) to x(T ) using control u(t) with t ∈ [t0, tf ],

1

2
x(tf )

TQf x(tf )︸ ︷︷ ︸
E(x(tf ))

+
1

2

∫ tf

t0

x(t)TQ(t)x(t) + uT (t)R(t)u(t)︸ ︷︷ ︸
2L(x(t),u(t),t)

dt

⇝ Q(t) = QT (t) ⪰ 0

⇝ R(t) = RT (t) ≻ 0

⇝ Qf = QT
f ⪰ 0

The quadratic cost is very reasonable, since both Q and R are positive (semi)definite
matrices, both the size of the state vector and the size of the control vector are penalised

• Matrices Q and R retain their relative relevance

We are interested in the optimal control u∗(t), for all t ∈ [t0, tf ]

⇝ From the Hamilton-Jacobi-Bellman equation, we have

u∗(t) = u∗

(
x(t),

∂J∗ (x(t))

∂x

)
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The LQR from the HJB (cont.)

We defined the Hamilton-Jacobi-Bellman equation, as the partial differential equation

∂J∗ (x∗(t))

∂t
+H

(
x∗(t), u∗(t),

∂J∗ (x∗(t))

∂x∗

)
︸ ︷︷ ︸
Optimal value of the Hamiltonian

= 0

It contains the partial derivatives of the value function with respect to state and time

The HJB PDE is integrated backwards, from the boundary condition

• The terminal stage-cost

J∗ (x∗(tf ), tf
)
= E

(
x∗(tf )

)
The terminal cost does not appear in the HJB PDE itself

Solving the HJB equation analytically is a challenging task, even for simple problems

The solution of the HJB equation is the value function,

J∗ (x(t), t) x(t) ∈ X t ∈ [0,T ]
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The LQR from the HJB (cont.)

∂J∗ (x∗(t))

∂t
+H

(
x∗(t), u∗(t),

∂J∗ (x∗(t))

∂x∗

)
︸ ︷︷ ︸
Optimal value of the Hamiltonian

= 0

In the Hamilton-Jacobi-Bellman equation, we defined the Hamiltonian,

H

(
x(t), u(t),

∂J∗ (x(t))

∂x

)
= L (x(t), u(t)) +

[
∂J∗ (x(t))

∂x(t)

]T
f (x(t), u(t), t)

For linear time-varying systems in continuous-time and quadratic costs,

H

(
x(t), u(t),

∂J∗ (x(t))

∂x(t)

)
=

1

2

(
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

)
︸ ︷︷ ︸

L(x(t),u(t),t)

+

[
∂J∗ (x(t))

∂x(t)

]T
(A(t)x(t) + B(t)u(t))︸ ︷︷ ︸

f (x(t),u(t),t)
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The LQR from the HJB (cont.)

H

(
x(t), u(t),

∂J∗ (x(t))

∂x(t)

)
=

1

2

(
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

)

+

[
∂J∗ (x(t))

∂x(t)

]T
(A(t)x(t) + B(t)u(t))

The optimal value of the Hamiltonian is obtained from first-order optimality conditions,

∂H

(
x(t), u(t),

∂J∗ (x(t))

∂u

)
∂u

= 0

Differentiating the Hamiltonian with respect to u(t), we get

R(t)u(t) + BT (t)

[
∂J∗ (x(t))

∂x(t)

]T
= 0
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The LQR from the HJB (cont.)

R(t)u(t) + BT (t)
∂J∗ (x(t))

∂x(t)
= 0

The gradient of the Hamiltonian witch respect to u(·) must vanish along the trajectory

From the first-order optimality conditions, we solve for the optimal control and get

u∗(t) = −R−1(t)BT (t)
∂J∗ (x(t))

∂x(t)

• We used the assumption that R(t) is invertible
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The LQR from the HJB (cont.)

H

(
x(t), u(t),

∂J∗ (x(t))

∂x(t)

)
=

1

2

(
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

)

+

[
∂J∗ (x(t))

∂x(t)

]T
(A(t)x(t) + B(t)u(t))

We get the optimal value of the Hamiltonian, by substituting the optimal control u∗(t)

u∗(t) = −R−1(t)BT (t)
∂J∗ (x(t))

∂x(t)

We get,

H (x(t), u(t),
∂J∗ (x(t))

∂x(t)
) =

1

2
xT (t)Q(t)x(t)

+
1

2

[
∂J∗ (x(t))

∂x(t)

]T
B(t)R−1(t)R(t)R−1(t)BT (t)

∂J∗ (x(t))

∂x(t)

+

[
∂J∗ (x(t))

∂x(t)

]
A(t)x(t)

−
[
∂J∗ (x(t))

∂x(t)

]T
B(t)R−1BT (t)

∂J∗ (x(t))

∂x(t)
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The LQR from the HJB

After grouping terms and rearranging, we get the optimal value of the Hamiltonian

H

(
x(t), u(t),

∂J∗ (x(t))

∂x(t)

)
=

1

2
xT (t)Q(t)x(t)

−
1

2

[
∂J∗ (x(t))

∂x(t)

]T
B(t)R−1BT (t)

∂J∗ (x(t))

+
∂x(t)

+

[
∂J∗ (x(t))

∂x(t)

]T
A(t)x(t)
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The LQR from the HJB (cont.)

∂J∗ (x∗(t))

∂t
+H

(
x∗(t), u∗(t),

∂J∗ (x∗(t))

∂x∗

)
︸ ︷︷ ︸
Optimal value of the Hamiltonian

= 0

Given the optimal value of the Hamiltonian, we can re-write the HJB equation

∂J∗ (x∗(t))

∂t
= −

1

2
xT (t)Q(t)x(t) +

1

2

[
∂J∗ (x(t))

∂x(t)

]T
B(t)R−1BT (t)

∂J∗ (x(t))

∂x(t)

−
[
∂J∗ (x(t))

∂x(t)

]T
A(t)x(t)

The boundary condition is given by the terminal stage-cost,

J∗ (x∗(tf ), tf
)
=

1

2
xT (tf )Qf x

∗(tf )
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The LQR from the HJB (cont.)

Assume that the Hamilton-Jacobi-Bellman has a quadratic solution in the state,

J∗ (x(t), t) =
1

2
xT (t)P(t)x(t)

The candidate solution mimics the quadratic form of the boundary condition,

J∗ (x∗(tf ), tf
)
=

1

2
xT (tf )Qf x

∗(tf )

• P(t) = PT (t) ⪰ 0, as the cost must be non-negative

By taking the partial derivative of the candidate solution with respect to time, we get

∂J∗ (x(t))

∂t
=

1

2
x(t)Ṗx(t)

Similarly, by taking the partial derivative with respect to the state we get

∂J∗ (x(t))

∂x
= P(t)x(t)
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The LQR from the HJB (cont.)

After substituting the partial derivatives in the Hamilton-Jacobi-Bellman equation,

1

2
xT (t)Ṗx(t)︸ ︷︷ ︸

quadratic in x(t)

+
1

2
xT (t)Q(t)x(t)︸ ︷︷ ︸
quadratic in x(t)

−
1

2
xT (t)P(t)B(t)R−1(t)BT (t)P(t)x(t)︸ ︷︷ ︸

quadratic in x(t)

+ xT (t)P(t)A(t)x(t)︸ ︷︷ ︸
quadratic in x(t)

= 0

• Ṗ(t) is symmetric

• Q(t) is symmetric

• P(t)B(t)R−1(t)BT (t)P(t) is symmetric

• Matrix P(t)A(t) is not necessarily symmetric
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The LQR from the HJB (cont.)

For any (not necessarily symmetric) state matrix A, we have

A = A1︸︷︷︸
symmetric

+ A2︸︷︷︸
skew-symmetric

Then, we can write

A1 =
A+AT

2

A2 =
A−AT

2

We re-write P(t)A(t) in xT (t)P(t)A(t)x(t)

P(t)A(t) =
1

2

(
P(t)A(t) + (P(t)A(t))T

)
︸ ︷︷ ︸

symmetric

+
1

2

(
P(t)A(t)− (P(t)A(t))T

)
︸ ︷︷ ︸

skew-symmetric

In the quadratic form, the skew-symmetric part will vanish
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The LQR from the HJB (cont.)

After substituting P(t)A(t) with
1

2

(
P(t)A(t) + (P(t)A(t))T

)
in the HJB, we get

1

2
xT (t)Ṗ(t)x(t) +

1

2
xT (t)Q(t)x(t)−

1

2
xT (t)P(t)B(t)R−1(t)BT (t)P(t)x(t)

+
1

2
xT (t)P(t)A(t)x(t) +

1

2
xT (t)AT (t)P(t)x(t) = 0

That is, we have

1

2
xT (t)

(
Ṗ(t) +Q(t)− P(t)B(t)R−1(t)BT (t)P(t) + P(t)A(t) +AT (t)P(t)

)
x(t)

= 0

As a result, for any x(t) we get the matrix ordinary differential equation for P(t)

Ṗ(t) +Q(t)− P(t)B(t)R−1(t)BT (t)P(t)A(t) + P(t)A(t) +AT (t)P(t)

= 0
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The LQR from the HJB (cont.)

The matrix differential equation is the matrix differential Riccati equation

Ṗ(t) = −P(t)A(t)−AT (t)P(t) + P(t)B(t)R−1(t)BT (t)P(t)−Q(t)

The boundary condition P(tf ) is the terminal state weight-matrix Qf

Once matrix P(t) is determined along the trajectory, we get the optimal control

u(t) = −R−1(t)BT (t)J∗ (x(t), t)

= −R−1(t)BT (t)P(t)x(t)

= −K (t)x(t)

The optimal control is given in linear state feedback form

• The time-varying feedback gain,

K (t) = R−1(t)BT (t)P(t)

• (Also for LTI systems)

A remarkable conclusion, though we did not prove the global optimality of the control


