LQR from HJB

CHEM-E7225 (was E7195), 2023

Francesco Corona (ᄀ-ᄀ)
Chemical and Metallurgical Engineering School of Chemical Engineering

The LQR from the HJB

Consider a linear time-varying dynamical system, with initial condition $x\left(t_{0}\right)=\bar{x}_{0}$,

$$
\dot{x}(t)=\underbrace{A(t) x(t)+B(t) u(t)}_{f(x(t), u(t), t)}
$$

The cost to transfer the state $x\left(t_{0}\right)$ to $x(T)$ using control $u(t)$ with $t \in\left[t_{0}, t_{f}\right]$,

$$
\underbrace{\frac{1}{2} x\left(t_{f}\right)^{T} Q_{f} x\left(t_{f}\right)}_{E\left(x\left(t_{f}\right)\right)}+\frac{1}{2} \int_{t_{0}}^{t_{f}} \underbrace{x(t)^{T} Q(t) x(t)+u^{T}(t) R(t) u(t)}_{2 L(x(t), u(t), t)} d t
$$

$\rightsquigarrow Q(t)=Q^{T}(t) \succeq 0$
$\rightsquigarrow R(t)=R^{T}(t) \succ 0$
$\rightsquigarrow Q_{f}=Q_{f}^{T} \succeq 0$
The quadratic cost is very reasonable, since both Q and R are positive (semi)definite matrices, both the size of the state vector and the size of the control vector are penalised

- Matrices Q and R retain their relative relevance

We are interested in the optimal control $u^{*}(t)$, for all $t \in\left[t_{0}, t_{f}\right]$
\rightsquigarrow From the Hamilton-Jacobi-Bellman equation, we have

$$
u^{*}(t)=u^{*}\left(x(t), \frac{\partial J^{*}(x(t))}{\partial x}\right)
$$

The LQR from the HJB (cont.)

We defined the Hamilton-Jacobi-Bellman equation, as the partial differential equation

$$
\frac{\partial J^{*}\left(x^{*}(t)\right)}{\partial t}+\underbrace{H\left(x^{*}(t), u^{*}(t), \frac{\partial J^{*}\left(x^{*}(t)\right)}{\partial x^{*}}\right)}_{\text {Optimal value of the Hamiltonian }}=0
$$

It contains the partial derivatives of the value function with respect to state and time
The HJB PDE is integrated backwards, from the boundary condition

- The terminal stage-cost

$$
J^{*}\left(x^{*}\left(t_{f}\right), t_{f}\right)=E\left(x^{*}\left(t_{f}\right)\right)
$$

The terminal cost does not appear in the HJB PDE itself

Solving the HJB equation analytically is a challenging task, even for simple problems The solution of the HJB equation is the value function,

$$
J^{*}(x(t), t) \quad x(t) \in \mathcal{X} t \in[0, T]
$$

$$
\frac{\partial J^{*}\left(x^{*}(t)\right)}{\partial t}+\underbrace{H\left(x^{*}(t), u^{*}(t), \frac{\partial J^{*}\left(x^{*}(t)\right)}{\partial x^{*}}\right)}_{\text {Optimal value of the Hamiltonian }}=0
$$

In the Hamilton-Jacobi-Bellman equation, we defined the Hamiltonian,

$$
H\left(x(t), u(t), \frac{\partial J^{*}(x(t))}{\partial x}\right)=L(x(t), u(t))+\left[\frac{\partial J^{*}(x(t))}{\partial x(t)}\right]^{T} f(x(t), u(t), t)
$$

For linear time-varying systems in continuous-time and quadratic costs,

$$
\begin{aligned}
H\left(x(t), u(t), \frac{\partial J^{*}(x(t))}{\partial x(t)}\right)= & \underbrace{\frac{1}{2}\left(x^{T}(t) Q(t) x(t)+u^{T}(t) R(t) u(t)\right)}_{L(x(t), u(t), t)} \\
& +\left[\frac{\partial J^{*}(x(t))}{\partial x(t)}\right]^{T} \underbrace{(A(t) x(t)+B(t) u(t))}_{f(x(t), u(t), t)}
\end{aligned}
$$

$$
\begin{aligned}
H\left(x(t), u(t), \frac{\partial J^{*}(x(t))}{\partial x(t)}\right)=\frac{1}{2}\left(x^{T}(t) Q\right. & \left.(t) x(t)+u^{T}(t) R(t) u(t)\right) \\
& +\left[\frac{\partial J^{*}(x(t))}{\partial x(t)}\right]^{T}(A(t) x(t)+B(t) u(t))
\end{aligned}
$$

The optimal value of the Hamiltonian is obtained from first-order optimality conditions,

$$
\frac{\partial H\left(x(t), u(t), \frac{\partial J^{*}(x(t))}{\partial u}\right)}{\partial u}=0
$$

Differentiating the Hamiltonian with respect to $u(t)$, we get

$$
R(t) u(t)+B^{T}(t)\left[\frac{\partial J^{*}(x(t))}{\partial x(t)}\right]^{T}=0
$$

$$
R(t) u(t)+B^{T}(t) \frac{\partial J^{*}(x(t))}{\partial x(t)}=0
$$

The gradient of the Hamiltonian witch respect to $u(\cdot)$ must vanish along the trajectory From the first-order optimality conditions, we solve for the optimal control and get

$$
u^{*}(t)=-R^{-1}(t) B^{T}(t) \frac{\partial J^{*}(x(t))}{\partial x(t)}
$$

- We used the assumption that $R(t)$ is invertible

The LQR from the HJB (cont.)

$$
\begin{aligned}
& H\left(x(t), u(t), \frac{\partial J^{*}(x(t))}{\partial x(t)}\right)=\frac{1}{2}\left(x^{T}(t) Q(t) x(t)+u^{T}(t) R(t) u(t)\right) \\
&+\left[\frac{\partial J^{*}(x(t))}{\partial x(t)}\right]^{T}(A(t) x(t)+B(t) u(t))
\end{aligned}
$$

We get the optimal value of the Hamiltonian, by substituting the optimal control $u^{*}(t)$

$$
u^{*}(t)=-R^{-1}(t) B^{T}(t) \frac{\partial J^{*}(x(t))}{\partial x(t)}
$$

We get,

$$
\begin{aligned}
H\left(x(t), u(t), \frac{\partial J^{*}(x(t))}{\partial x(t)}\right)= & \frac{1}{2} x^{T}(t) Q(t) x(t) \\
& +\frac{1}{2}\left[\frac{\partial J^{*}(x(t))}{\partial x(t)}\right]^{T} B(t) R^{-1}(t) R(t) R^{-1}(t) B^{T}(t) \frac{\partial J^{*}(x(t))}{\partial x(t)} \\
& +\left[\frac{\partial J^{*}(x(t))}{\partial x(t)}\right]^{T} A(t) x(t) \\
& -\left[\frac{\partial J^{*}(x(t))}{\partial x(t)}\right]^{T} B(t) R^{-1} B^{T}(t) \frac{\partial J^{*}(x(t))}{\partial x(t)}
\end{aligned}
$$

After grouping terms and rearranging, we get the optimal value of the Hamiltonian

$$
\begin{aligned}
H(x(t), u(t), & \left.\frac{\partial J^{*}(x(t))}{\partial x(t)}\right)=\frac{1}{2} x^{T}(t) Q(t) x(t) \\
& -\frac{1}{2}\left[\frac{\partial J^{*}(x(t))}{\partial x(t)}\right]^{T} B(t) R^{-1} B^{T}(t) \frac{\partial J^{*}(x(t))}{+} \partial x(t) \\
& +\left[\frac{\partial J^{*}(x(t))}{\partial x(t)}\right]^{T} A(t) x(t)
\end{aligned}
$$

$$
\frac{\partial J^{*}\left(x^{*}(t)\right)}{\partial t}+\underbrace{H\left(x^{*}(t), u^{*}(t), \frac{\partial J^{*}\left(x^{*}(t)\right)}{\partial x^{*}}\right)}_{\text {Optimal value of the Hamiltonian }}=0
$$

Given the optimal value of the Hamiltonian, we can re-write the HJB equation

$$
\begin{array}{rl}
\frac{\partial J^{*}\left(x^{*}(t)\right)}{\partial t}=-\frac{1}{2} x^{T}(t) Q(t) x(t)+\frac{1}{2}\left[\frac{\partial J^{*}(x(t))}{\partial x(t)}\right]^{T} & B(t) R^{-1} B^{T}(t) \frac{\partial J^{*}(x(t))}{\partial x(t)} \\
& -\left[\frac{\partial J^{*}(x(t))}{\partial x(t)}\right]^{T} A(t) x(t)
\end{array}
$$

The boundary condition is given by the terminal stage-cost,

$$
J^{*}\left(x^{*}\left(t_{f}\right), t_{f}\right)=\frac{1}{2} x^{T}\left(t_{f}\right) Q_{f} x^{*}\left(t_{f}\right)
$$

The LQR from the HJB (cont.)

Assume that the Hamilton-Jacobi-Bellman has a quadratic solution in the state,

$$
J^{*}(x(t), t)=\frac{1}{2} x^{T}(t) P(t) x(t)
$$

The candidate solution mimics the quadratic form of the boundary condition,

$$
J^{*}\left(x^{*}\left(t_{f}\right), t_{f}\right)=\frac{1}{2} x^{T}\left(t_{f}\right) Q_{f} x^{*}\left(t_{f}\right)
$$

- $P(t)=P^{T}(t) \succeq 0$, as the cost must be non-negative

By taking the partial derivative of the candidate solution with respect to time, we get

$$
\frac{\partial J^{*}(x(t))}{\partial t}=\frac{1}{2} x(t) \dot{P} x(t)
$$

Similarly, by taking the partial derivative with respect to the state we get

$$
\frac{\partial J^{*}(x(t))}{\partial x}=P(t) x(t)
$$

After substituting the partial derivatives in the Hamilton-Jacobi-Bellman equation,

$$
\begin{aligned}
\frac{1}{2} \underbrace{x^{T}(t) \dot{P} x(t)}_{\text {quadratic in } x(t)}+ & \frac{1}{2} \underbrace{x^{T}(t) Q(t) x(t)}_{\text {quadratic in } x(t)} \\
& -\frac{1}{2} \underbrace{x^{T}(t) P(t) B(t) R^{-1}(t) B^{T}(t) P(t) x(t)}_{\text {quadratic in } x(t)} \\
& +\underbrace{x^{T}(t) P(t) A(t) x(t)}_{\text {quadratic in } x(t)}=0
\end{aligned}
$$

- $\dot{P}(t)$ is symmetric
- $Q(t)$ is symmetric
- $P(t) B(t) R^{-1}(t) B^{T}(t) P(t)$ is symmetric
- Matrix $P(t) A(t)$ is not necessarily symmetric

The LQR from the HJB (cont.)

For any (not necessarily symmetric) state matrix A, we have

$$
A=\underbrace{A_{1}}_{\text {symmetric }}+\underbrace{A_{2}}_{\text {skew-symmetric }}
$$

Then, we can write

$$
\begin{aligned}
& A_{1}=\frac{A+A^{T}}{2} \\
& A_{2}=\frac{A-A^{T}}{2}
\end{aligned}
$$

We re-write $P(t) A(t)$ in $x^{T}(t) P(t) A(t) x(t)$

$$
P(t) A(t)=\frac{1}{2} \underbrace{\left(P(t) A(t)+(P(t) A(t))^{T}\right)}_{\text {symmetric }}+\frac{1}{2} \underbrace{\left(P(t) A(t)-(P(t) A(t))^{T}\right)}_{\text {skew-symmetric }}
$$

In the quadratic form, the skew-symmetric part will vanish

After substituting $P(t) A(t)$ with $\frac{1}{2}\left(P(t) A(t)+(P(t) A(t))^{T}\right)$ in the HJB, we get

$$
\begin{aligned}
& \frac{1}{2} x^{T}(t) \dot{P}(t) x(t)+\frac{1}{2} x^{T}(t) Q(t) x(t)-\frac{1}{2} x^{T}(t) P(t) B(t) R^{-1}(t) B^{T}(t) P(t) x(t) \\
&+\frac{1}{2} x^{T}(t) P(t) A(t) x(t)+\frac{1}{2} x^{T}(t) A^{T}(t) P(t) x(t)=0
\end{aligned}
$$

That is, we have

$$
\begin{array}{r}
\frac{1}{2} x^{T}(t)\left(\dot{P}(t)+Q(t)-P(t) B(t) R^{-1}(t) B^{T}(t) P(t)+P(t) A(t)+A^{T}(t) P(t)\right) x(t) \\
=0
\end{array}
$$

As a result, for any $x(t)$ we get the matrix ordinary differential equation for $P(t)$

$$
\dot{P}(t)+Q(t)-P(t) B(t) R^{-1}(t) B^{T}(t) P(t) A(t)+P(t) A(t)+A^{T}(t) P(t)
$$

The LQR from the HJB (cont.)

The matrix differential equation is the matrix differential Riccati equation

$$
\dot{P}(t)=-P(t) A(t)-A^{T}(t) P(t)+P(t) B(t) R^{-1}(t) B^{T}(t) P(t)-Q(t)
$$

The boundary condition $P\left(t_{f}\right)$ is the terminal state weight-matrix Q_{f}

Once matrix $P(t)$ is determined along the trajectory, we get the optimal control

$$
\begin{aligned}
u(t) & =-R^{-1}(t) B^{T}(t) J^{*}(x(t), t) \\
& =-R^{-1}(t) B^{T}(t) P(t) x(t) \\
& =-K(t) x(t)
\end{aligned}
$$

The optimal control is given in linear state feedback form

- The time-varying feedback gain,

$$
K(t)=R^{-1}(t) B^{T}(t) P(t)
$$

- (Also for LTI systems)

A remarkable conclusion, though we did not prove the global optimality of the control

