$\begin{array}{c} \text{CHEM-E7225} \\ 2024 \end{array}$

...

Convex

Nonlinear optimisation, fundamentals (A) CHEM-E7225 (was E7195), 2024

Francesco Corona (\neg_\neg)

Chemical and Metallurgical Engineering School of Chemical Engineering

Overview

Classification

Convex optimisation

Overview

Nonlinear optimisation

Overview

Overview

C1---:6:--+:--

optimisatio

An optimisation problem consist of the following three components

- An objective function f(x)
- The decision variables x
- Constraints h(x) and g(x)

Consider the optimisation (minimisation) problem in standard form,

$$\min_{x \in \mathcal{R}^N} \quad f(x) \qquad \text{(Objective function)}$$
 subject to
$$g(x) = 0 \qquad \text{(Equality constraints)}$$

$$h(x) \ge 0 \qquad \text{(Inequality constraints)}$$

Overview (cont.)

Overview

Convex

subject to
$$g(x) = 0$$

 $h(x) \ge 0$

All functions are (twice) continuously differentiable functions of the decision variable \boldsymbol{x}

$$f(x) = \underbrace{f(x_1, x_2, \dots, x_N)}_{f:\mathcal{R}^N \to \mathcal{R}}$$

$$g(x) = \underbrace{\begin{bmatrix} g_1(x_1, x_2, \dots, x_N) \\ g_2(x_1, x_2, \dots, x_N) \\ \vdots \\ g_{N_g}(x_1, x_2, \dots, x_N) \end{bmatrix}}_{g:\mathcal{R}^N \to \mathcal{R}^{N_g}}$$

$$h(x) = \underbrace{\begin{bmatrix} h_1(x_1, x_2, \dots, x_N) \\ h_2(x_1, x_2, \dots, x_N) \\ \vdots \\ h_{N_h}(x_1, x_2, \dots, x_N) \end{bmatrix}}_{h:\mathcal{R}^N \to \mathcal{R}^{N_h}}$$

Overview

Classification

Convex optimisation

$$\min_{x \in \mathcal{R}^{N}} \quad f(x)$$
subject to
$$g(x) = 0$$

$$h(x) \ge 0$$

We define the feasible set Ω to be the set of points x that satisfy all of the constraints

$$\Omega := \left\{ x \in \mathcal{R}^{N} : g\left(x\right) = 0, h\left(x\right) \geq 0 \right\}$$

The feasible set defines the space in which we can search for solutions to the problem

Overview

Example

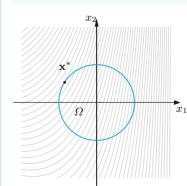
Consider the minimisation of some function f(x) under some equality constraint g(x)

Let $f: \mathcal{R}^2 \to \mathcal{R}$

$$f(x) = \frac{3}{5}x_1^2 + \frac{1}{2}x_1x_2 - x_2 + 3x_1$$

Let $g: \mathbb{R}^2 \to \mathbb{R}$

$$g(x) = x_1^2 + x_2^2 - 1$$



$$\min_{x \in \mathcal{R}^2} f(x)$$

subject to $g(x) = 0$

Determine minimiser x^* constrained to set $\Omega \in \mathbb{R}^2$

- In grey, contour lines of the objective f(x)
- In cyan, the feasible set $\Omega \in \mathbb{R}^2$

Example

Overview

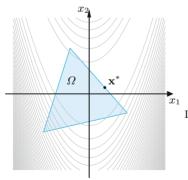
C1---:6:---

Convex

Minimise function $f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$, under inequality constraints h(x)

$$\begin{bmatrix}
h_1(x) \\
h_2(x) \\
h_3(x)
\end{bmatrix} = \begin{bmatrix}
-34x_1 - 30x_2 + 19 \\
+10x_1 - 05x_2 + 11 \\
+03x_1 + 22x_2 + 08
\end{bmatrix}$$

$$h: \mathcal{R}^2 \to \mathcal{R}^3$$



$$\min_{x \in \mathcal{R}^2} \quad f(x)$$
 subject to $h(x) \ge 0$

Determine minimiser x^* constrained to set $\Omega \in \mathcal{R}^2$

- In grey, contour lines of the objective f(x)
- In cyan, the feasible set $\Omega \in \mathbb{R}^2$

Overview

Classification

optimisati

Example

$$\min_{x \in \mathcal{R}^2} \quad x_1^2 + x_2^2 \qquad \qquad \text{(Objective function)}$$
 subject to $\quad x_1 - 1 = 0 \qquad \qquad \text{(Equality constraints)}$

$$x_2 - 1 - x_1^2 \ge 0$$
 (Inequality constraints)

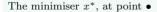
$$\rightarrow f: \mathbb{R}^2 \to \mathbb{R}, \text{ with } f \in \mathcal{C}^2(\mathbb{R}^2)$$

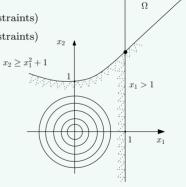
$$\rightarrow g: \mathbb{R}^2 \to \mathbb{R}, \text{ with } g \in \mathbb{C}^2(\mathbb{R}^2)$$

$$\rightarrow h: \mathcal{R}^2 \to \mathcal{R}, \text{ with } h \in \mathcal{C}^2(\mathcal{R}^2)$$

The feasible set, the set of feasible decisions

$$\Omega = \{x \in \mathcal{R}^2 | h(x) \ge 0, g(x) = 0\}$$





Overview

C11 .C. ..

Convex optimisation

$$\min_{w \in \mathcal{R}^N} \quad f(w)$$
subject to
$$g(w) = 0$$

$$h(w) \le 0$$

We define the level set L to be the set of points w such that f(w) = c, in which $c \in \mathcal{R}$

$$\{w \in \mathcal{R}^N : f(w) = c\}$$

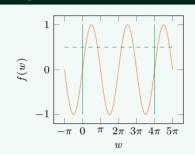
We define the sublevel set L to be the set of points w such that $f(w) \leq c$, with $c \in \mathcal{R}$

$$\{w \in \mathcal{R}^N : f(w) \le c\}$$

Overview

Convex

Example



Consider the optimisation problem

$$\min_{w \in \mathcal{R}} \sin(w)$$
subject to $w \ge 0$

$$4\pi - w \ge 0$$

Level set for c = 0.5

$$\{w \in \mathcal{R} : f(w) = 0.5\}$$

Sublevel set for c = 0.5

$$\{w \in \mathcal{R} : f(w) \le 0.5\}$$

Overview (cont.)

Overview

Classification

optimisatio

$$\min_{w \in \mathcal{R}^{N}} \quad f(w)$$
 subject to
$$g(w) = 0$$

$$h(w) \ge 0$$

A point $w \in \mathcal{R}^N$ is said to be the global minimiser of the objective function f, given the constraint functions g and h, if and only if the following conditions hold true

$$w^* \in \Omega$$

 $f(w) \ge f(w^*)$, for all $w \in \Omega$

- \bullet The global minimiser is the point for which the constrained objective is the smallest
- Note that the global minimiser is not necessarily unique

The global minimum is the value $f\left(w^{*}\right)$ of the objective at the global minimiser w^{*}

• The global minimum is unique (the equal sign)

Overview (cont.)

Overview

Classification

optimisatio

$$\min_{w \in \mathcal{R}^{N}} \quad f(w)$$
 subject to
$$g(w) = 0$$

$$h(w) \ge 0$$

Existence of a global minimiser (Weierstrass)

Let the set $\Omega = \{w \in \mathcal{R}^N \, \middle| \, h\left(w\right) \geq 0, g\left(w\right) = 0\}$ be non-empty, bounded and closed

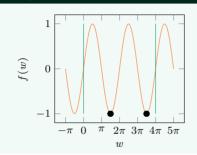
- \longrightarrow As always, we assume that $f:\Omega\to\mathcal{R}$ is at least \mathcal{C}^1 $(\Omega\subseteq\mathcal{R}^N)$
- → Then, there exists at least one global minimiser

Knowing that there is a global minimiser does not suggest an algorithm to find it

- Importantly, the objective function must be defined over a compact set
- (Weierstrass does not provide guarantees for unconstrained problems)

Overview

Classification



Consider the optimisation problem

$$\min_{w \in \mathcal{R}} \quad \sin(w)$$
 subject to
$$w \geq 0$$

$$4\pi - w \geq 0$$

There are two global minimisers

One global minimum

When the global minimiser is unique, then it is called the strict global minimiser

$$w^* \in \Omega$$

 $f(w) > f(w^*)$, for all $w \in \Omega \setminus \{w^*\}$

Overview

CO 10 11

optimisation

$$\begin{aligned} & \min_{w \in \mathcal{R}^N} & f\left(w\right) \\ & \text{subject to} & g\left(w\right) = 0 \\ & & h\left(w\right) \geq 0 \end{aligned}$$

A point $w \in \mathbb{R}^N$ is said to be the local minimiser of the objective function f, given the constraint functions g and h, if and only if the following conditions hold true

$$w^* \in \Omega$$

and there exists an open ball $\mathcal{N}(w^*)$ about w^* such that

$$f(w) \ge f(w^*)$$
 for all $w \in \mathcal{N}(w) \cap \Omega$

• The value $f(w^*)$ is the local minimum

When the local minimiser is unique in $\mathcal{N}(w^*)$, then it is a strict local minimiser

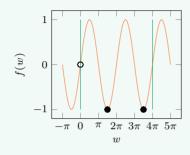
$$f(w) > f(w^*)$$
, for all $w \in \mathcal{N}(w) \cap \Omega \setminus \{w^*\}$

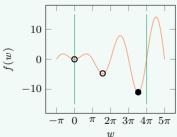
Example

Overview

Classification

optimisati





Consider the optimisation problem

$$\min_{w \in \mathcal{R}} \quad \sin(w)$$
subject to
$$w \geq 0$$

$$4\pi - w > 0$$

There are three local minimisers

• Two global minimisers

Consider the optimisation problem

$$\min_{w \in \mathcal{R}} \quad w \sin(w)$$
subject to
$$w \geq 0$$

$$4\pi - w > 0$$

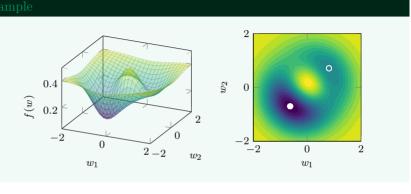
There are three local minimisers

One global minimiser

Overview

Classification

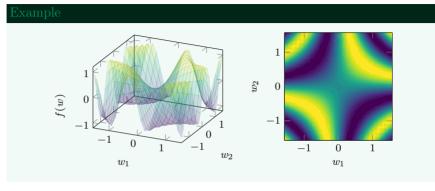
Convex



Overview

C1 .C. ..

Convex



$$\min_{w \in \mathcal{R}^2} \quad \sin(\pi w_1 w_2) + 1$$

$$w_1 + 3/2 \ge 0$$

$$w_1 - 3/2 \le 0$$

$$w_2 + 3/2 \ge 0$$

$$w_2 - 3/2 \le 0$$

Overview

C11---: 6: -- +: --

optimisatio

$$\min_{w \in \mathcal{R}^N} \quad f(w)$$
subject to
$$g(w) = 0$$

$$h(w) \le 0$$

From the given definitions, we understand that to be able to determine the state (global or local) of minimiser w^* , we need to describe the feasibility set in its neighbourhood

$$h(w) = \begin{bmatrix} h_1(w) \\ h_2(w) \\ \vdots \\ h_{N_h}(w) \end{bmatrix}$$

An inequality constraint $h_{n_h}(w) \leq 0$ is said to be an active inequality constraint at $w^* \in \Omega$ if and only if $h_{n_h}(w) = 0$, otherwise it is an inactive inequality constraint

- The index set of active inequality constraints is $\mathcal{A}\left(w^{*}\right)\subset\left\{ 1,2,\ldots,N_{h}\right\}$
- The index set $A(w^*)$ is denoted as the active set
- The cardinality of the active set, $N_{\mathcal{A}} = |\mathcal{A}(w^*)|$

 $\begin{array}{c} \mathrm{CHEM}\text{-}\mathrm{E}7225 \\ 2024 \end{array}$

Overview

Classification

Convex optimisation

Classification

Nonlinear optimisation

Classification

Overvie

Classification

Convex optimisation

Nonlinear programs (NLPs, smooth functions)

$$\min_{w \in \mathcal{R}^{N}} \quad f(w)$$
subject to
$$g(w) = 0$$

$$h(w) \ge 0$$

Functions f, g, and g are continuously differentiable at least once, often twice or more

The problem data

$$ightharpoonup f: \mathcal{R}^N o \mathcal{R}$$
, with $f \in \mathcal{C}^1\left(\mathcal{R}^N\right)$ or more $ightharpoonup g: \mathcal{R}^N o \mathcal{R}^{N_g}$, with $g \in \mathcal{C}^1\left(\mathcal{R}^N\right)$ or more $ightharpoonup h: \mathcal{R}^N o \mathcal{R}^{N_h}$, with $h \in \mathcal{C}^1\left(\mathcal{R}^N\right)$ or more

Differentiability of all problem functions allow to use algorithms based on derivatives

- We consider the nonlinear program as the more general formulation
- No explicit structure to exploit in the general formulation

Overview

Classification

optimisati

Classification | Linear programs

Linear programs (LPs, affine functions)

$$\min_{w \in \mathcal{R}^{N}} \quad \underbrace{c^{T} w}_{f(w) \quad (c_{0})}$$
subject to
$$\underbrace{Aw - b}_{g(w)} = 0$$

$$\underbrace{Cw - d}_{h(w)} \ge 0$$

Functions f, g, and g are all affine, in the decision variables

There exist efficient solvers (active set/interior point)

The problem data

- $c \in \mathcal{R}^N \ (c_0 \in \mathcal{R}^N)$
- $A \in \mathcal{R}^{N_g \times N}$ and $b \in \mathcal{R}^{N_g}$
- $C \in \mathcal{R}^{N_h \times N}$ and $d \in \mathcal{R}^{N_h}$

 $Commonly\ used\ software\ packages\ for\ LPs:\ CPLEX,\ SOPLEX,\ lp_solve,\ lingo,\ linprog$

Classification | Linear programs (cont.)

Overview

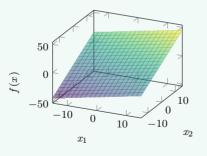
Classification

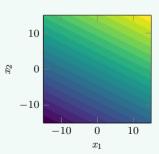
Convex optimisation

Example

A linear program

$$\min_{w \in \mathcal{R}^2} \quad \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
subject to
$$-10 \le w_1 \le 10$$
$$-10 \le w_2 \le 10$$





optimisatio

$$\min_{w \in \mathcal{R}^2} \quad \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
subject to
$$-10 \le w_1 \le 10$$
$$-10 \le w_2 \le 10$$

Equivalently, we have

$$\begin{aligned} \min_{w \in \mathcal{R}^2} & \underbrace{w_1 + 2w_2}_{f(w)} \\ \text{subject to} & \underbrace{w_1 + 10}_{h_1(w)} \geq 0 \\ & \underbrace{-w_1 + 10}_{h_2(w)} \geq 0 \\ & \underbrace{w_2 + 10}_{h_3(w)} \geq 0 \\ & \underbrace{-w_2 + 10}_{h_4(w)} \geq 0 \end{aligned}$$

- $f: \mathcal{R}^2 \to \mathcal{R}$
- $\bullet \ h: \mathcal{R}^2 \to \mathcal{R}^4$

Classification | Quadratic programs

Quadratic programs (QPs, linear-quadratic objective + affine constraints)

$$\min_{w \in \mathcal{R}^N} \quad \underbrace{c^T w + \frac{1}{2} w^T B w}_{f(w) \quad (c_0)}$$
subject to
$$\underbrace{Aw - b}_{g(w)} = 0$$

$$\underbrace{Cw - d}_{h(w)} \ge 0$$

Function f is linear-quadratic and functions g and h are affine, in the decision variables

The problem data

- $c \in \mathbb{R}^N$
- $\rightarrow B \in \mathbb{R}^{N \times N}$, symmetric
- $A \in \mathbb{R}^{N_g \times N}$ and $b \in \mathbb{R}^{N_g}$
- $C \in \mathbb{R}^{N_h \times N}$ and $d \in \mathbb{R}^{N_h}$

Commonly used packages for QPs: CPLEX, MOSEK, qpOASES, OOQP, quadprog

Classification | Quadratic programs (cont.)

Overview

Classification

optimisati

Example

$$\min_{w \in \mathcal{R}^2} \quad \underbrace{\begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}^T \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}}_{c_1 w_1 + c_2 w_2 + \frac{1}{2} (b_{11} w_1^2 + (b_{12} + b_{21}) w_1 w_2 + b_{22} w_2^2) }$$
 subject to
$$\underbrace{\begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} - \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}}_{q(w)} = 0$$

$$\underbrace{\begin{bmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \\ d_{31} & d_{32} \\ d_{41} & d_{d2} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} - \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \end{bmatrix}}_{h(w)} \geq 0$$

- $f: \mathbb{R}^2 \to \mathbb{R}$
- $q: \mathbb{R}^2 \to \mathbb{R}^3$
- $h: \mathbb{R}^2 \to \mathbb{R}^4$

Classification | Quadratic programs (cont.)

Overview

Classification

optimisati

$$\underbrace{c^T w + \frac{1}{2} w^T B w}_{f(w)}$$

If matrix B is positive semi-definite $(z^T B z \ge 0$, for all $z \in \mathcal{R}^N$), then the QP is convex

• If B is positive definite $(z^T B z > 0$, for all $z \in \mathbb{R}^N$), the QP is strictly convex

The positive- and semi-positive definiteness of matrix B is checked from its eigenvalues

Generalised inequalities for symmetric matrices

 \rightarrow Positive semi-definite matrix, $B \succeq 0$

$$\lambda_{\min}(B) \geq 0$$

 \rightarrow Positive definite matrix, $B \succ 0$

$$\lambda_{\min}(B) > 0$$

Example

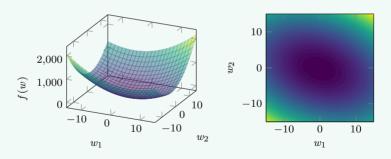
Overview

Classification

Convex

A convex quadratic program

$$\min_{w \in \mathcal{R}^2} \quad \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}^T \begin{bmatrix} 5 & 2 \\ 2 & 10 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
subject to
$$-10 \le w_1 \le 10$$
$$-10 \le w_2 \le 10$$

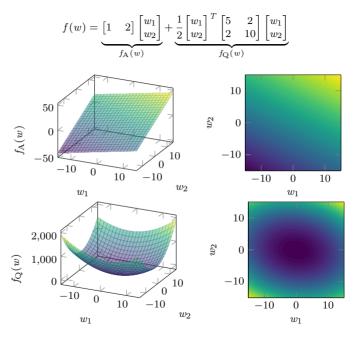


Convex quadratic problems are easy to solve (the local minimum is a global minimum)

Overview

Classification

Convex optimisation



Example

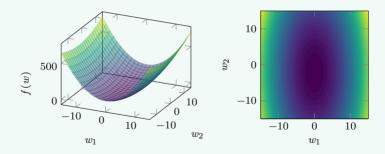
Overview

Classification

Convex optimisat:

A strictly-convex quadratic program

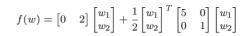
$$\min_{w \in \mathcal{R}^2} \quad \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}^T \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
subject to
$$-10 \le w_1 \le 10$$
$$-10 \le w_2 \le 10$$

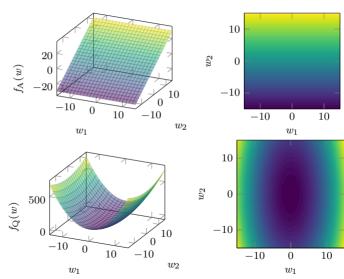


Strictly-convex quadratic programs are the easiest to solve (a unique global minimiser)

C1 .C. ..

Convex optimisation





Example

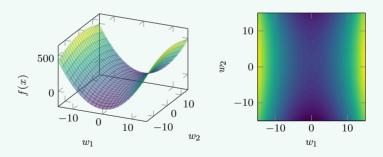
Overwien

Classification

Convex optimisati

A non-convex quadratic program

$$\min_{w \in \mathcal{R}^2} \quad \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}^T \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
subject to
$$-10 \le w_1 \le 10$$
$$-10 \le w_2 \le 10$$

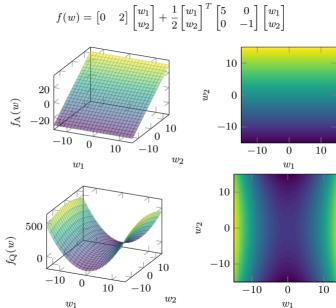


Non-convex quadratic programs can be difficult to solve (for a global minimiser)

Overview

C1---:6:--+:--

Convex optimisation



Classification | Convex programs

Overview

Classification

optimisati

Linear and convex quadratic programs are part of an important class of problems

Convex programs

$$\min_{x \in \mathcal{R}^{N}} \quad f(x)$$
subject to
$$g(x) = 0$$

$$h(x) \le 0$$

The feasible set $\Omega = \{x \in \mathbb{R}^N : h(x) \ge 0, g(x) = 0\}$ and function f is also convex

There exists a wide availability of packages that can be used for convex problems

• YAMILP (based on SDP3 and SeDuMi) and CVX (originally, Matlab-based)

Classification | Mixed-integer programs

Overvie

Classification

optimisati

Mixed-integer nonlinear programs (MINLPs, real and integer decision variables)

$$\begin{aligned} \min_{\substack{w \in \mathcal{R}^N \\ v \in \mathcal{Z}^M}} & f(w,v) \\ \text{subject to} & g(w,v) = 0 \\ & h(w,v) \geq 0 \end{aligned}$$

Mixed-integer nonlinear programs, smooth functions with full or partial relaxations

 \bullet Relaxation, by letting variables z to be real vectors

$$\begin{aligned} & \min_{\substack{w \in \mathcal{R}^N \\ v \in \mathcal{R}^M}} & f(w,v) \\ & \text{subject to} & g(w,v) = 0 \\ & & h(w,v) \geq 0 \end{aligned}$$

Convexification, with branch-and-bound techniques

 $\begin{array}{c} \text{CHEM-E7225} \\ 2024 \end{array}$

Overview

Classification

Convex optimisation

Convex optimisation

Nonlinear optimisation

Convex optimisation

Overview

Classification

 $\begin{array}{c} {\rm Convex} \\ {\rm optimisation} \end{array}$

Linear programs and convex quadratic programs are convex optimisation problems

- An important subclass of continuous optimisation problems
- \leadsto Objective function must be a convex function
- \rightarrow The feasible set must be a convex set

For this class of problems, any local minimiser is a global minimiser (given w/o proof)

Overvie

Classification

Convex optimisatio

Convex optimisation | Convex sets

Convex sets

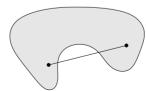
Consider set $\Omega \subset \mathcal{R}^N$

Set Ω is convex if and only if, for all pairs $(w, w') \in \Omega$ and scalars $\lambda \in [0, 1]$, we have

$$w + \lambda(w' - w) \in \Omega$$

- $w + \lambda(w' w)$ are points on the line segment bounded by w and w'
- When $\lambda = 0$ we get point w, when $\lambda = 1$ we get point w'

Equivalently, set Ω is convex if and only if 'all connecting segments lie in the set'



Convex

Convex optimisation | Convex functions

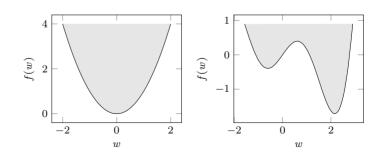
Convex functions

Consider some function $f: \Omega \to \mathcal{R}$

Function f is convex if and only if, set Ω is convex set and for all the pairs $(w, w') \in \Omega$ and scalars $\lambda \in [0, 1]$, we have

$$f\left(w + \lambda(w' - w)\right) \le f\left(w\right) + \lambda(f\left(w'\right) - f\left(w\right))$$

- $f(w) + \lambda(f(w') f(w))$ are points on the segment bounded by f(w) and f(w')
- $f(w + \lambda(w' w))$ are function values at points in the segment $w + \lambda(w' w)$

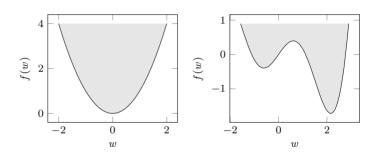


Convex optimisation | Convex functions (cont.)

Classification

Convex optimisati

Equivalently, function f is convex if and only if 'all secants are above the graph of f'



Similarly, we can say that 'the epigraph of function f is a convex set'

$$\operatorname{epi}(f) = \{(w, s) \in \mathcal{R}^{N} \times \mathcal{R} : x \in \Omega, s \ge f(w)\}\$$

This theorem combines convexity of sets and functions

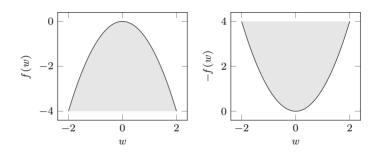
Overview

Convex optimisati

Convex optimisation | Convex functions (cont.)

Concave functions

A function $f: \Omega \to \mathcal{R}$ is a concave function if function (-f) is convex



The domain of definition Ω' of the function (-f) must be a convex set

The Hessian matrix of a concave function is negative semi-definite

$$\nabla^2 f(w) \le 0$$

O-----i----

Convex

Convex optimisation | Properties

Convex programs

$$\min_{x \in \mathcal{R}^{N}} \quad f(x)$$
subject to
$$g(x) = 0$$

$$h(x) \le 0$$

The feasible set $\Omega = \{x \in \mathbb{R}^N : h(x) \ge 0, g(x) = 0\}$ and function f are both convex

For convex programs, we have that local optimality implies global optimality (important!)

- That is, every local minimiser is also a global minimiser
- Global optimality is retrieved from local information

Let $w^* \in \Omega$ be a local minimiser of function f

To be global minimiser, we must have

$$f(w') \ge f(w^*)$$
, for all $w' \in \Omega$

Convex optimisation | Properties (cont.)

Overview

Classification

Convex

$$f(w') \ge f(w^*)$$
, for all $w' \in \Omega$

If w^* is a local minimiser then, for all $\overline{w} \in \mathcal{N}(w^*) \cap \Omega$, we have that $f(\overline{w}) \geq f(w^*)$

• By convexity of Ω , the segment

$$w^* + \lambda(w' - w^*) \in \Omega$$

• Point \overline{w} is in the segment, thus

$$f(w^*) \le f(\overline{w})$$

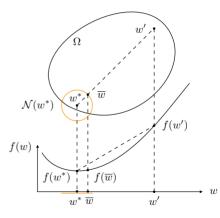
$$\le f(w^* + \lambda(w' - w^*))$$

• By convexity of f, we have

$$f(w^*) \le f(\overline{w})$$

$$\le f(w^* + \lambda(w' - w^*))$$

$$\le f(w^*) + \lambda(f(w') - f(w^*))$$



Subtract $f\left(w^{*}\right)$ from both sides, divide by $\lambda \neq 0$ (\overline{w} is not w^{*}), and then rearrange

Convex optimisation | Convex sets and functions

Overvie

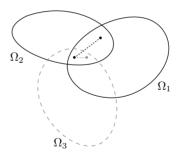
Classification

 $\begin{array}{c} {\rm Convex} \\ {\rm optimisation} \end{array}$

Convexity-preserving operations for sets

Intersections

The intersection of (finitely or infinitely many) convex sets is also a convex set



Overview

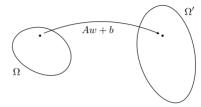
C1 10 11

Convex optimisation

• Affine images

Affine transformations $\Omega' = A\Omega + b$ of a convex set Ω are also convex sets

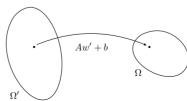
$$\Omega' = \{ w' \in \mathcal{R}^M : \exists w \in \Omega : w' = Aw + b, A \in \mathcal{R}^{M \times N}, b \in \mathcal{R}^M \}$$



Affine pre-images

If set Ω is convex, then there exists a convex set Ω' such that $\Omega = A\Omega' + b$

$$\Omega' = \{ w' \in \mathcal{R}^M : w = Aw' + b, A \in \mathcal{R}^{N \times M}, b \in \mathcal{R}^N \}$$



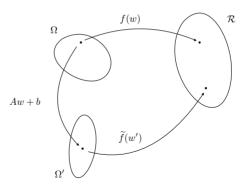
Overview

Convex optimisation

Convex optimisation | Convex sets and functions (cont.)

Convexity-preserving operations for functions

- The (point-wise) sum of two (or more) convex functions is also a convex function
- Positively weighted sums of two (or more) convex functions is a convex function
- Affine transformations Aw + b of the independent variable $w \in \Omega$ of a convex function $f: \Omega \to \mathcal{R}$ lead to convex functions $\tilde{f}: \Omega' \to \mathcal{R}$ from the set $\Omega' = \{w' \in \mathcal{R}^M | w' = Aw + b, w \in \Omega, A \in \mathcal{R}^{M \times N}, b \in \mathcal{R}^M \}$ such that $\tilde{f}(w) = f(Aw + b)$



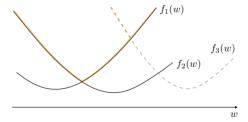
Convex optimisation | Convex sets and functions (cont.)

Overview

Classification

Convex optimisati

• The supremum $f(w) = \sup_{1,...,N_h} f_{n_h}(w)$ over a set of convex functions $\{f_{n_h}\}_{n_h=1}^{N_h}$ is a convex function, because its epigraph is the intersection of convex epigraphs



O-----i----

Classification
Convex

Convex optimisation | Convex sets and functions (cont.)

Convexity of C^1 functions

Let $\Omega \in \mathcal{R}^N$ be a convex set and let $f: \Omega \to \mathcal{R}$ be a continuously differentiable function

Function $f \in \mathcal{C}^1(\mathbb{R}^N)$ is convex if and only if for all pairs of points $(w, w') \in \Omega$,

$$f(w) + \nabla f(w)^{T}(w' - w)$$

$$f(w') \ge \underbrace{f(w) + \nabla f(w)^{T}(w' - w)}_{\text{Taylor's expansion at } w}$$

$$f(w) = \underbrace{f(w) + \nabla f(w)^{T}(w' - w)}_{\text{Taylor's expansion at } w}$$

- ullet Equivalently, was can say that 'all tangent lines lies below the graph of f'
- (Remember that by convexity 'all secant lines lies above the graph')

This theorem provides a possibility to check for convexity, by testing all pairs (w, w')

Convex optimisation | Convex sets and functions (cont.)

Overview

Classification

Convex optimisation

$$f\left(w'\right) \geq \underbrace{f\left(w\right) + \nabla f\left(w\right)^{T}\left(w' - w\right)}_{\text{Taylor's expansion at }w}$$

Suppose that f is a convex function over the convex set Ω

From the definition of the convexity of f, we can write

$$f(w + \lambda(w' - w)) \le f(w) + \lambda(f(w') - f(w))$$

Rearranging terms, we get,

$$f\left(w + \lambda(w' - w)\right) - f\left(w\right) \le \lambda(f\left(w'\right) - f\left(w\right))$$

Using the definition of (directional) derivative, we have

$$\nabla f(w)^{T}(w - w') = \lim_{\lambda \to 0} \frac{f(w + \lambda(w - w')) - f(w)}{\lambda}$$
$$\leq f(w') - f(w)$$

Convex optimisation | Convex sets and functions (cont.)

Overview

Classification

Convex optimisation

Convexity of C^2 functions

Let $\Omega \in \mathcal{R}^N$ be a convex set and let $f: \Omega \to \mathcal{R}$ be twice continuously differentiable

Function $f \in C^2(\mathbb{R}^N)$ is convex if, for any point $w \in \Omega$, we have

$$\nabla^2 f(w) \succeq 0$$

• The Hessian matrix must positive semi-definite

$$\lambda_{\min}(\nabla^2 f(w)) \ge 0$$

This theorem provides a possibility to check for convexity, by testing single values w

.

Convex

Convex optimisation | Convex sets and functions (cont.)

$$\nabla^2 f\left(w\right) \succeq 0$$

We consider the second-order Taylor's expansion of function f along (w - w'), at w

$$f(w + \lambda(w' - w)) = f(w) + \lambda \nabla f(w)^{T} (w' - w) + \frac{1}{2} \lambda^{2} (w' - w)^{T} \nabla^{2} f(w) (w' - w) + \mathcal{O}(\lambda^{2} (w' - w)^{2})$$

From the convexity of function f, we have $f\left(w'\right) \geq f\left(w\right) + \nabla f\left(w\right)^{T}\left(w'-w\right)$

$$f\left(w'\right) - f\left(w\right) - \nabla f\left(w\right)^{T} \left(w' - w\right) \ge 0$$

For positiveness, $\nabla^2 f(w)$ need be positive semi-definite, as other quantities are squared

$$f(w + \lambda(w - w')) - f(w) - \lambda \nabla f(w)^{T}(w - w') = \frac{1}{2} \lambda^{2} (w - w')^{T} \underbrace{\nabla^{2} f(w)}_{\succeq 0} (w - w') + \mathcal{O}(\lambda^{2} (w - w')^{2})$$

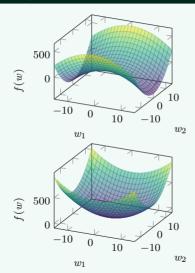
Convex optimisation | Convex sets and functions (cont.)

Overview

Classification

Convex optimisati

Example



Convex optimisation | Convex sets and functions (cont.)

Overvie

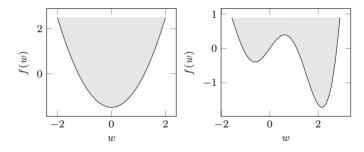
Classificatio

Convex optimisation

Convexity of level-sets

Consider the level set $\{w \in \Omega : f(w) \leq c, c \in \mathcal{R}\}\$ of any convex function $f: \Omega \to \mathcal{R}$

• For any constant c, the level-set is a convex set



The theorem suggests that convex sets can be created from functions with inequalities

Overview

Classificatio

Example

Consider a collection of convex functions $\{f_{n_h}: \mathcal{R}^N \to \mathcal{R}\}_{n_h=1}^{N_h}$

Consider the intersection of their sub-level sets (convex sets)

$$\Omega = \{ w \in \mathcal{R}^N : \{ f_{n_h}(w) \le 0 \}_{n_h=1}^{N_h} \}$$

Their intersection Ω is a convex set

Level sets Ω_{n_h} of convex functions are convex sets

→ Their intersection is also a convex set

$$\Omega = \bigcap_{n_h=1}^{N_h} \Omega_{n_h}$$

Overview

Classification

Convex optimisation

Convex optimisation | Formulation

Consider the general form of a nonlinear optimisation problem

$$\min_{w \in \mathcal{R}^{N}} \quad f(w)$$
subject to
$$g(w) = 0$$

$$h(w) \ge 0$$

We defined the feasible set Ω to be the set of points w that satisfy all the constraints

$$\Omega = \{ w \in \mathcal{R}^N | g(w) = 0, h(w) \ge 0 \}$$

In order to have a feasible set Ω which is convex, the equality constraints must be affine functions and the (positive defined) inequality constraints must be concave functions

If f is convex and the above holds, then the problem is convex (a sufficient condition)

$$\min_{w \in \mathcal{R}^N} \quad f(w) \qquad \qquad \text{(Objective function, convex)}$$
 subject to
$$\underbrace{Aw - b}_{g(w)} = 0 \qquad \qquad \text{(Equality constraints, affine (convex))}$$

$$\widetilde{h}(w) \leq 0 \qquad \qquad \text{(Inequality constraints, convex)}$$

Convex optimisation | Formulation (cont.)

Classification

$$\begin{split} \min_{w \in \mathcal{R}^N} \quad & f\left(w\right) & \text{(Objective function, convex)} \\ \text{subject to} \quad & \underbrace{Aw-b}_{g\left(w\right)} = 0 & \text{(Equality constraints, affine (convex))} \\ & \qquad \qquad & \widetilde{h}\left(w\right) \leq 0 & \text{(Inequality constraints, convex)} \end{split}$$

The inequality constraint functions $\widetilde{h}_1,\widetilde{h}_2,\ldots,\widetilde{h}_{N_h}$ must be convex functions

• We know that their intersection is a convex set

The equality constraint functions $g_1, g_2, \ldots, g_{N_h}$ must be affine functions

• They are affine pre-images to a convex set, point 0

The intersection of a convex set with a convex set is a convex set

 \rightsquigarrow The feasible set Ω is convex

Convex optimisation | Optimality

Overview

Classificatio

Convex optimisation

First-order optimality conditions for convex problems (constrained)

Consider a convex problem with feasibility set $\Omega = \{w \in \mathbb{R}^N : g(w) = 0, h(w) \leq 0\}$

$$\begin{array}{ll} \min\limits_{w\in\mathcal{R}^N} & f\left(w\right) & \text{(Objective function, convex and differentiable)} \\ \text{subject to} & Aw+b=0 & \text{(Equality constraints, affine)} \\ & & h\left(w\right)\leq 0 & \text{(Inequality constraints, convex)} \end{array}$$

For convex optimisation problems, a local minimiser is also a global minimiser

Points $w^* \in \Omega$ is a global minimiser if and only if, for all $w \in \Omega$, we have

$$\nabla f(w^*)^T(w-w^*) \ge 0$$

Convex optimisation | Optimality (cont.)

Overview

Classification

$$\nabla f\left(w^{*}\right)^{T}\left(w-w^{*}\right) \geq 0$$

If the condition holds, by the convexity characterisation of \mathcal{C}^1 functions, we would have

$$f(w') \ge f(w^*) + \underbrace{\nabla f(w^*)^T (w' - w^*)}_{\ge 0} \quad \text{(for all } w' \in \Omega)$$
$$\ge f(w^*)$$

We may also assume the existence of $w' \in \Omega$ such that $\nabla f(w^*)(w' - w^*) < 0$

Then, by a first-order Taylor's expansion of f at the minimiser w^*

$$f\left(w^* + \lambda(w' - w^*)\right) \approx f\left(w^*\right) + \lambda \underbrace{\nabla f\left(w^*\right)^T (w' - w^*)}_{\leq 0}$$

For some small λ , this yields the contradiction for a minimiser

$$f(w^* + \lambda(w' - w^*)) < f(w^*)$$

Convex optimisation | Optimality (cont.)

Overview

Classification

 $\begin{array}{c} {\rm Convex} \\ {\rm optimisation} \end{array}$

First-order optimality conditions for convex problems (unconstrained)

Consider the convex optimisation problem with feasibility set $\Omega = \mathcal{R}^N$

$$\min_{w \in \mathcal{R}^{N}} f(w) \quad \text{(Convex and differentiable)}$$

A point $w^* \in \Omega$ is a global minimiser if and only if the following holds

$$\nabla f\left(w^*\right)^T = 0$$

Consider the strictly convex quadratic problem

$$\min_{w \in \mathcal{R}^N} \quad \underbrace{\left(c^T w + \frac{1}{2} \underbrace{w^T B w}_{>0}\right)}_{f(w)}$$

For the gradient vector evaluated at the minimiser, we have

$$\nabla f\left(w^*\right) = c + Bw^*$$
$$= 0$$

By solving the system of linear equations, we get

$$w^* = -B^{-1}c$$

By substitution, we get the optimal function value

$$f(w^*) = -\frac{1}{2}c^T B^{-1} c$$

Convex