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Overview

An optimisation problem consist of the following three components
® An objective function f(z)
® The decision variables x

® Constraints h(z) and g(z)
Consider the optimisation (minimisation) problem in standard form,

min  f(z) (Objective function)
zeRN
subject to g (z) =0 (Equality constraints)

h(z) >0 (Inequality constraints)
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min T

min f (2)
Overview subject to g (z) =0
h(z)>0

All functions are (twice) continuously differentiable functions of the decision variable
x

f(z)=f(z1,22,...,2n)
—_—

fFRVNSR
[ g1 (w1, 22,...,2N) ]
g2 (x1,22,...,2N)
g(z)=
Lgn, (21,22, .., 2N)]
g:’RN%RNg
[ hi(21,22,...,25) ]
ha (z1, %2, ..., TN)
h(z) =
Lhn, (21,22, .., 2N) ]

h:RN s RNL
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Overview (cont.)

min  f ()

z€RN
subject to g (z) =0
h(z) >0

We define the feasible set €2 to be the set of points z that satisfy all of the constraints

Q:={zeRY :g(z)=0,h(z) >0}

The feasible set defines the space in which we can search for solutions to the problem
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Consider the minimisation of some function f (z) under some equality constraint g (z)

Overview Let f : R2 5 R

3 1
f(z) = gwlz +omm et 3z1

Let g: R? - R
g(z) =z +23 -1

3
min  f (z)
zER?
x* subject to g(z) =0
0 g

Determine minimiser z* constrained to set Q € R?
® In grey, contour lines of the objective f(z)
® In cyan, the feasible set Q € R?2
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Minimise function f (z) = 100(z2 — 22)? + (1 — 1)?, under inequality constraints & (z)

Overview

hi (:E) —34x; — 3022 + 19

ho (z)| = |+10z1 — 0522 + 11

hs3 (CE) +03z1 + 2222 + 08

hR2—5R3
T3
min  f (z)
zER2
subject to  h(z) >0
N x*

»
»

x1

Determine minimiser z* constrained to set Q € R?
® In grey, contour lines of the objective f(z)
® In cyan, the feasible set Q € R2
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min 2 + 22 (Objective function)
TER?
subject to z1 —1=0 (Equality constraints)

3 —1—22 >0 (Inequality constraints) o

1221?+1
= 7R, vita €02 () I
s g:R2—>R, Withg602 (R2) G 1 x>
~ h:R%Z =R, with h € C? (R?) /N
7\ I
w “i 1 it

The feasible set, the set of feasible decisions &

Q={z €R?*h(z)>0,9(z)=0}

The minimiser z*, at point e
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Overview (cont.)

min  f (w)
weRN

subject to g (w) =0
h(w) <0

We define the level set L to be the set of points w such that f(w) = ¢, in which ¢ € R
{weRYN : f(w)=c}

We define the sublevel set L to be the set of points w such that f(w) < ¢, with c € R

{fweRY: f(w)<c}
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T T T T T I
11 -
S U A L Consider the optimisation problem
& o - min sin (w)
g wWER
subject to w >0
1l | i Adr—w >0

Level set for ¢ = 0.5

{weR:f(w)=0.5}

Sublevel set for ¢ = 0.5
{weR:f(w) <0.5}
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min w
Jmin, [ (w)
subject to g (w) =0

h(w) >0

A point w € RY is said to be the global minimiser of the objective function f, given
the constraint functions g and h, if and only if the following conditions hold true

w* €
f(w) > f(w*), forallw € Q

® The global minimiser is the point for which the constrained objective is the smallest

® Note that the global minimiser is not necessarily unique

The global minimum is the value f (w*) of the objective at the global minimiser w*

® The global minimum is unique (the equal sign)
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Overview
min  f (w)
weRN
subject to g (w) =0

h(w)>0

Existence of a global minimiser (Weierstrass)

Let the set Q = {w € RY|h (w) > 0, ¢ (w) = 0} be non-empty, bounded and closed

~ As always, we assume that f : Q — R is at least C1 (Q - RN)

~~ Then, there exists at least one global minimiser

Knowing that there is a global minimiser does not suggest an algorithm to find it
® Importantly, the objective function must be defined over a compact set

® (Weierstrass does not provide guarantees for unconstrained problems)
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1 n Consider the optimisation problem
min sin (w)
— wER
3 = . .
= subject to w >0
Adr—w >0
—1F ® - There are two global minimisers
—m 0 T 27 37 47 57 ® One global minimum

When the global minimiser is unique, then it is called the
w* e
f(w) > f(w*), for all w € Q\{w*}
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Overview (cont.)

min_ f(w)
weRN

subject to g (w) =0
h(w) >0

A point w € RY is said to be the local minimiser of the objective function f, given the
constraint functions ¢g and h, if and only if the following conditions hold true

w* e
and there exists an open ball N (w*) about w* such that

f(w) > f(w*) for all w e N (w)NQ

® The value f (w*) is the local minimum

When the local minimiser is unique in N (w*), then it is a strict local minimiser

f(w) > f(w*), forall w e N (w) NQ\{w*}
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3 0

o
—1
10
2 0

s
—10

L %%
—m 0 T 27 3w 47 57w
w
T

o
L " |
Lo

—m 0 T 27 37 4m 5w
w

Consider the optimisation problem

min sin (w)
wER
subject to w >0
AT —w >0

There are three local minimisers

® Two global minimisers

Consider the optimisation problem

min  wsin (w)
weER
subject to w >0
a7 — w >0

There are three local minimisers

® One global minimiser
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2 1 5.
min - — — (5w? + 5w? + 3wiwe — w1 — 2w e’(“’l +w3)
w5 10( 7 +5ws + 3wiwz — wn 2)

w; +22>0
w; —2<0
wy +22>0
wg —2<0
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min  sin (rwiw2) + 1
wER?

w1 +3/2>0
w; —3/2<0
ws +3/2>0
wy —3/2<0
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min w
Jnin, f(w)
subject to g (w) =0

h(w) <0

From the given definitions, we understand that to be able to determine the state (global
or local) of minimiser w*, we need to describe the feasibility set in its neighbourhood

hy, (w)

An inequality constraint kg, (w) < 0 is said to be an active inequality constraint at
w* € Q if and only if hy, (w) = 0, otherwise it is an inactive inequality constraint

® The index set of active inequality constraints is A (w*) C {1,2,..., Ny}
® The index set A (w*) is denoted as the active set
® The cardinality of the active set, Ng = | A (w™) |
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Classification

Nonlinear programs (NLPs, smooth functions)

min w
weRN f( )
subject to g (w) =0

h(w) >0
Functions f, g, and ¢ are continuously differentiable at least once, often twice or more

The problem data
~ [ RN 5 R, with f € ¢! (RN) or more
~ g : RN - RNs | with g € Ct (RN) or more
~ h RN — RNV with h e Ct (RN) or more
Differentiability of all problem functions allow to use algorithms based on derivatives

® We consider the nonlinear program as the more general formulation

® No explicit structure to exploit in the general formulation
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Linear programs (LPs, affine functions)

min cTw

Classification
weRN S~~~
f(w)  (co)

subject to Aw —b=0
N——
g(w)
Cw—d>0
——
h(w)
Functions f, g, and g are all affine, in the decision variables

There exist efficient solvers (active set/interior point)

The problem data
® ccRY (co €RY)
® AcRNo*N and b e RNs
° CeRNMXN and d € RNn

Commonly used software packages for LPs: CPLEX, SOPLEX, Ip_solve, lingo, linprog
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Classification A linear program
min  [1 2] |
wER? w2
subject to —10 < w; <10
—10< wy < 10

[ 777
i
i
e
=7 777772777

f(=)
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min [1 2] |:'u)1]

wER? w2

subject to —10<w; <10
—10<we <10

Classification

Equivalently, we have
min w1 + 2ws

weER?
f(w)
subject to  w; +10 >0
——
by (w)

—w +10>0
N———
ha (w)
wy + 10 > 0
N——
ha (w)
—wy +10>0
N———
°*f:R2Z SR ha(w)
* h:R2 R
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Quadratic programs (QPs, linear-quadratic objective + affine constraints)

1
Classification min cTw+ —w” Bw
weRN 2
f(w)  (co)
subject to Aw —b=0
——
g(w)
Cw—d>0
~——
h(w)

Function f is linear-quadratic and functions g and h are affine, in the decision variables

The problem data
° cc RV
~ B € RN*N symmetric
® AcRNoxN and b € RNs
o C e RNMXN and d € RNr

Commonly used packages for QPs: CPLEX, MOSEK, qpOASES, OOQP, quadprog
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wi]” [bur
w2 b1

Classification .
min
weER?2

subject to

e f:RZ R
° g:R? 3 R3
* h:RZ— R

[01 62} {Zﬂ +%

bi2| (w1
bz | | w2

61wl+C2'w2+§(1711w12+(b12+521)1171W2+b22'w22)

c11 c12 1
c21  C22 {Zj — |b2[ =0
Lca1  c32 b3
q(w)

[d11  di2 d1
do1  doa| |w1 do

— >0
d31  d32 {wz} d3| =
|da1 da2 da
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Classification | Quadratic programs (cont.)

1
cTw+ -wTBw
2
f(w)

If matrix B is positive semi-definite (27 Bz > 0, for all z € RY), then the QP is convex
e If B is positive definite (27 Bz > 0, for all z € RYN), the QP is strictly convex

The positive- and semi-positive definiteness of matrix B is checked from its eigenvalues
Generalised inequalities for symmetric matrices
~~ Positive semi-definite matrix, B > 0
Amin(B) = 0

~~ Positive definite matrix, B > 0
Amin(B) >0
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A convex quadratic program

Classification . w1 1 [wn Trs o w1
s, 2 [wa} T3 [wz} [2 10] {m]

subject to —10 < w; <10

—10 < wp £10

Convex quadratic problems are easy to solve (the local minimum is a global minimum)
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fa(w)

Classification

fa(w)
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A strictly-convex quadratic program

lassificati 1 5 0
Classification . w1 wy w1
st Al B
subject to —10 < w; <10
—10< we <10

Strictly-convex quadratic programs are the easiest to solve (a unique global minimiser)
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"~'-"~'~'.'.~.-,~,~,.,.,.~.~
LRI,

g .:..
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A non-convex quadratic program

Classification .
min
wER?

subject to

N

N

QNN
& 53
S <z

1 15 o

w1 w1 w
o an)+alnl b 5[]
—10<w €10

—10< we <10

Non-convex quadratic programs can be difficult to solve (for a global minimiser)
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optimisation

fa(w)
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N SR
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Classification | Convex programs

Linear and convex quadratic programs are part of an important class of problems
Convex programs

min  f ()

zeRN
subject to g (z) =0
h(z)<0

The feasible set Q = {z € RN : h(z) >0, g (z) = 0} and function f is also convex

There exists a wide availability of packages that can be used for convex problems
® YAMILP (based on SDP3 and SeDuMi) and CVX (originally, Matlab-based)
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Mixed-integer nonlinear programs (MINLPs, real and integer decision variables)
Classification
min  f(w,v)
weRN
vezM
subject to g(w,v) =0
h(w,v) >0
Mixed-integer nonlinear programs, smooth functions with full or partial relaxations
® Relaxation, by letting variables z to be real vectors
min  f(w,v)
weRN
verRM
subject to g(w,v) =0
h(w,v) >0

® Convexification, with branch-and-bound techniques
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Nonlinear optimisation
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Convex
optimisation
Linear programs and convex quadratic programs are convex optimisation problems
® An important subclass of continuous optimisation problems
~~ Objective function must be a convex function

~~ The feasible set must be a convex set

For this class of problems, any local minimiser is a global minimiser (given w/o proof)
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Convex sets

Consider set @ ¢ RY

Set 2 is convex if and only if, for all pairs (w,w’) €  and scalars A € [0, 1], we have

Convex
optimisation

w4+ AMw' —w) € Q

® w+ A(w’ — w) are points on the line segment bounded by w and w’

® When A\ = 0 we get point w, when A = 1 we get point w’

Equivalently, set €2 is convex if and only if ‘all connecting segments lie in the set’

L
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Convex
optimisation

Convex optimisation | Convex functions
Convex functions
Consider some function f : @ - R

Function f is convex if and only if, set 2 is convex set and for all the pairs (w, w’) €
and scalars A € [0, 1], we have

Fw+Aw —w) < f(w) +A(f (w') = f (w))

® f(w)+ A(f (w') — f (w)) are points on the segment bounded by f (w) and f (w’)
® f(w+ A(w’ — w)) are function values at points in the segment w + A(w’ — w)

47\ ] 1 -]
— — 07 n
S 2p 1 2
= =

1l |

o, ! L ! !

—2 0 2 -2 0 2
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Equivalently, function f is convex if and only if ‘all secants are above the graph of f’

Convex ‘
optimisation 4| | 1 —
— —~ Or N
2 2p 1 2
= =
1l |
oL, ! L ! !
-2 0 2 —2 0 2

Similarly, we can say that ‘the epigraph of function f is a convex set’
epi(f) = {(w,s) ERN xR :z€Q,5> f(w)}

This theorem combines convexity of sets and functions
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Concave functions

A function f : @ — R is a concave function if function (—f) is convex

Convex
optimisation T T
0 j 4l
= B
3 —2 — — 2
= T
—4L ! L] 0L, \
-2 0 2 -2 0

The domain of definition 2 of the function (—f) must be a convex set
The Hessian matrix of a concave function is negative semi-definite

V2f (w) <0
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Convex
optimisation

Convex optimisation | Properties
Convex programs

min  f (z)
zeRN

subject to g (z) =0
h(z) <0

The feasible set Q = {z € RN : h(z) >0, g (z) = 0} and function f are both convex

For convex programs, we have that local optimality implies global optimality (important!)
® That is, every local minimiser is also a global minimiser
® Global optimality is retrieved from local information

Let w* € Q be a local minimiser of function f

To be global minimiser, we must have

f(w') > f(w*), foralw eq
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f(w')>f(w*), forallw €Q

Comves If w* is a local minimiser then, for all w € N (w*) N Q, we have that f (w) > f (w*)

optimisation

® By convexity of 2, the segment
w* + XMw' —w*) €Q
® Point w is in the segment, thus
f(w™) < f ()
<f (w* + Mw' — w*)) N(w)
® By convexity of f, we have
f(w*) < f(w)
< f (w* 4+ Aw' — w*)) F) T f(w)
<) FA (') = f () "

1

1

1

1

1

1

1

1

.

w* w ’LU/

Subtract f (w*) from both sides, divide by A # 0 (W is not w*), and then rearrange
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Convex
optimisation

Convex optimisation | Convex sets and functions

Convexity-preserving operations for sets

® Intersections

The intersection of (finitely or infinitely many) convex sets is also a convex set
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CHEM-ET225 Affine images
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Affine transformations 2’ = AQ + b of a convex set €2 are also convex sets

V={w eRM:FJweQ:w =Aw+bAc RN pcRM}
Q

Convex

optimisation Aw+b

2

® Affine pre-images
If set 2 is convex, then there exists a convex set Q’ such that Q = AQ’ + b

O ={w eRM:w=Aw +b,AecRVM p c RN}

Aw' +b
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Convexity-preserving operations for functions
® The (point-wise) sum of two (or more) convex functions is also a convex function
® Positively weighted sums of two (or more) convex functions is a convex function

Convex

optimisation ¢ Affine transformations Aw + b of the independent variable w € Q of a convex
function f : @ — R lead to convex functions f : ' — R from the set Q' = {w’ €
RM|w' = Aw + b,w € Q, A € RM*N b € RM} such that f (w) = f (Aw + b)

Aw+b




P Convex optimisation | Convex sets and functions (cont.)
2024

N,
. . . . . . . . nh:l
is a convex function, because its epigraph is the intersection of convex epigraphs

Convex ° — :
o o The supremum f(w) = supy, .y, fn, (w) over a set of convex functions {fp,

w
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Convexity of C! functions
Let © € RY be a convex set and let f : Q — R be a continuously differentiable function

Convex Function f € C! (RN) is convex if and only if for all pairs of points (w, w’) € Q,

optimisation

Fw) + V() (w - w)

f(w)
F(w) 2 f(w) + V()" (v —w)

Taylor’s expansion at w

fw)

N

7
i
I
|
|
1
1
|
1
1
1
|
1

.
w w’

® Equivalently, was can say that ‘all tangent lines lies below the graph of f’

® (Remember that by convexity ‘all secant lines lies above the graph’)

This theorem provides a possibility to check for convexity, by testing all pairs (w, w’)
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f @) = f(w)+ Vf(w)" (v —w)

Taylor’s expansion at w

Convex
optimisation

Suppose that f is a convex function over the convex set 2

From the definition of the convexity of f, we can write

F(w+ X" —w)) < f(w) +A(f (w) = f(w))

Rearranging terms, we get,

f(w+ X" —w) = f(w) <A (w) = f(w))

Using the definition of (directional) derivative, we have

o o Mw = w) — f (w)
Vf (w)" (w = w') = Jim X

<f(w')—f(w)
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Convex Convexity of C? functions

optimisation

Let © € RY be a convex set and let f : Q — R be twice continuously differentiable

Function f € C? (RN ) is convex if, for any point w € €2, we have
V2 (w) = 0

® The Hessian matrix must positive semi-definite
>\min(v2f (w)) Z 0

This theorem provides a possibility to check for convexity, by testing single values w
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V2f (w) =0
We consider the second-order Taylor’s expansion of function f along (w — w’), at w
oA ) =
() 4 AVF (@) ('~ w) + 22— )TV ()0’ ~ w)
+ O (' — w)?)

From the convexity of function f, we have f (w’) > f (w) + Vf (w) T (v’ — w)
F (') = (w) = Vf (w)" (w' —w) >0
For positiveness, V2f(w) need be positive semi-definite, as other quantities are squared
fw+Mw—w)) = f(w) = AVf (w) T (w —w') =

V(= w)T P (w)(w — w) + OO (w — w')?)
——

=0
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Convex
optimisation

=32 5 %) 4]

s V2f (w) < 0

s=32]" 5 [

s V2f (w) =0

f(w)
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Convexity of level-sets

Convex Consider the level set {w € Q: f (w) < ¢, ¢ € R} of any convex function f : Q - R
optimisation

® For any constant c, the level-set is a convex set

T 1 |
2+ |
— ~ 0F a
2 2
= oL =
1 n
| | | | |
-2 0 2 -2 0 2
w w

The theorem suggests that convex sets can be created from functions with inequalities
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Convex _

. : ; N,
Consider a collection of convex functions {fy, : R — 'R}n}h_l
, =

optimisation

Consider the intersection of their sub-level sets (convex sets)

Q={weRN: {fu, (w) <0} "

np=1

Their intersection 2 is a convex set

Level sets €y, of convex functions are convex sets

~ Their intersection is also a convex set
Ny,

Q=) Q,
np=1
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Consider the general form of a nonlinear optimisation problem

min  f (w)
weRN
o subject to g (w) =0

optimisation h(w) >0

We defined the feasible set Q to be the set of points w that satisfy all the constraints
Q={weRY|g(w)=0,h(w) >0}

In order to have a feasible set €2 which is convex, the equality constraints must be affine
functions and the (positive defined) inequality constraints must be concave functions

If f is convex and the above holds, then the problem is convex (a sufficient condition)

min  f (w) (Objective function, convex)
weRN
subject to Aw —b=0 (Equality constraints, affine (convex))
—_—

g(w)

h(w) <0 (Inequality constraints, convex)
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min  f (w) (Objective function, convex)
Convex weRN
optimisation subject to Aw—b=0 (Equality constraints, affine (convex))
—_——
g(w)
h (w) <0 (Inequality constraints, convex)
The inequality constraint functions ﬁl,ﬁg, . ,ﬁNh must be convex functions

® We know that their intersection is a convex set

The equality constraint functions g1, g2, ..., gn, must be affine functions

® They are affine pre-images to a convex set, point 0

The intersection of a convex set with a convex set is a convex set

~~ The feasible set 2 is convex
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Convex
optimisation

Convex optimisation | Optimality

First-order optimality conditions for convex problems (constrained)

Consider a convex problem with feasibility set Q = {w € RY : g (w) =0, h (w) < 0}

minN f(w) (Objective function, convex and differentiable)

wER

subject to Aw+b =0 (Equality constraints, affine)
h(w) <0 (Inequality constraints, convex)

For convex optimisation problems, a local minimiser is also a global minimiser
Points w* €  is a global minimiser if and only if, for all w € Q, we have
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Convex
optimisation

Convex optimisation | Optimality (cont.)

Vf (w*) " (w—w*) >0

If the condition holds, by the convexity characterisation of C! functions, we would have

f(w") > f(w*)+ Vf (w*)T(w — w*) (for all w’ € Q)
N— —
>0

2 f(w")
We may also assume the existence of w’ € Q such that Vf (w*)(w’ — w*) <0
Then, by a first-order Taylor’s expansion of f at the minimiser w*
f(w* + A(w' —w*)) = f(w*) +AVf (w*) T (w' — w*)
—_—
<0

For some small A, this yields the contradiction for a minimiser

f(w™ + x(w" —w?)) < f(w7)
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Convex
optimisation

Convex optimisation | Optimality (cont.)

First-order optimality conditions for convex problems (unconstrained)
Consider the convex optimisation problem with feasibility set & = RN

min  f(w) (Convex and differentiable)
weRN

A point w* € Q is a global minimiser if and only if the following holds

vi(w9T =0
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Convex
optimisation

Consider the strictly convex quadratic problem

: T 17
min ctw+ —w' Bw
weRN 2N—>~—
>0
f(w)

For the gradient vector evaluated at the minimiser, we have
Vf(w*) = c+ Buw”
=0
By solving the system of linear equations, we get
w* =—-B"t¢

By substitution, we get the optimal function value

1
f(w*) = —ECTBflc
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