$\begin{array}{c} \text{CHEM-E7225} \\ 2022 \end{array}$

The Lagrangia function

conditions

Constrained

problems

Nonlinear optimisation, fundamentals (B) CHEM-E7225 (was E7195), 2022

Francesco Corona (\neg_\neg)

Chemical and Metallurgical Engineering School of Chemical Engineering

The Lagrangian function

Optimality

Equality constraints

Constraine

The Lagrangian function

Nonlinear optimisation

The Lagrangian

Optimality conditions

Equality constraints

Constrained problems

The Lagrangian function

Consider the nonlinear optimisation problem in the standard form

$$\min_{w \in \mathcal{R}^N} \quad f(w)$$
subject to
$$g(w) = 0$$

$$h(w) \ge 0$$

→ Objective function

$$h\left(w
ight)\geq0$$

$$f:\mathcal{R}^{N}\to\mathcal{R}, ext{ with } f\in\mathcal{C}^{2}\left(\mathcal{R}^{N}
ight)$$

→ Equality constraint function

$$g: \mathcal{R}^N o \mathcal{R}^{N_g}, \text{ with } g \in \mathcal{C}^2\left(\mathcal{R}^N\right)$$

→ Inequality constraint function

$$h: \mathcal{R}^N \to \mathcal{R}^{N_h}$$
, with $h \in \mathcal{C}^2\left(\mathcal{R}^N\right)$

We denote a problem in this form as primal optimisation problem

The Lagrangian function (cont.)

The Lagrangian function

Optimality

Equality constraints

$$\min_{w \in \mathcal{R}^{N}} f(w)$$
subject to $g(w) = 0$

$$h(w) \ge 0$$

The globally optimal value of the objective function subjected to the constraints

$$p^* = \left(\min_{w \in \mathcal{R}^N} f(w), \text{ s.t. } g(w) = 0, h(w) \ge 0\right)$$

Remember that there can be a multiplicity of points $w^* \in \Omega$ such that $f\left(w^*\right) = p^*$

- \rightarrow The globally optimal value p^* of the objective function is unique
- → The globally optimal value is called the **primal optimal value**

We are interested in a lower-bound on the optimal value p^*

Overview (cont.)

The Lagrangian

$$\min_{x \in \mathcal{R}^2} \quad x_1^2 + x_2^2 \qquad \qquad \text{(Objective function)}$$
 subject to $\quad x_1 - 1 = 0 \qquad \qquad \text{(Equality constraints)}$

$$x_2$$
 :

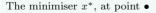
$$\rightarrow f: \mathbb{R}^2 \to \mathbb{R}, \text{ with } f \in \mathbb{C}^2(\mathbb{R}^2)$$

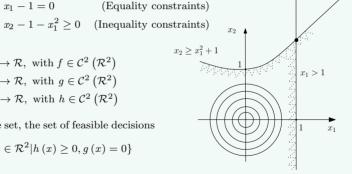
$$\rightarrow g: \mathbb{R}^2 \to \mathbb{R}, \text{ with } g \in \mathbb{C}^2(\mathbb{R}^2)$$

$$\rightarrow h: \mathcal{R}^2 \to \mathcal{R}, \text{ with } h \in \mathcal{C}^2(\mathcal{R}^2)$$

The feasible set, the set of feasible decisions

$$\Omega = \{x \in \mathcal{R}^2 | h(x) \ge 0, g(x) = 0\}$$





Ω

The Lagrangian function

Optimality conditions

Equality constraints Constrained

The Lagrangian function (cont.)

$$\min_{w \in \mathcal{R}^N} \quad f(w)$$
subject to
$$g(w) = 0$$

$$h(w) \ge 0$$

We can define an auxiliary function denoted as the Lagrangian function

$$\mathcal{L}\left(w,\lambda,\mu\right) = f\left(w\right) - \lambda^{T}g\left(w\right) - \mu^{T}h\left(w\right)$$

The Lagrangian function depends on w and two sets of auxiliary variables

- The Lagrangian multipliers, or dual variables
- The inequality multipliers, $\mu \in \mathcal{R}^{N_h}$
- The equality multipliers, $\lambda \in \mathcal{R}^{N_g}$

$$\mathcal{L}\left(w,\lambda,\mu\right) = f\left(w\right) - \sum_{n_{k}=1}^{N_{h}} \lambda_{n_{h}} h_{n_{h}}\left(w\right) - \sum_{n_{k}=1}^{N_{g}} \mu_{n_{g}} g_{n_{g}}\left(w\right)$$

The Lagrangian function,

$$\mathcal{L}: \mathcal{R}^N \times \mathcal{R}_q^N \times \mathcal{R}^{N_h} \to \mathcal{R}$$

The Lagrangian function

Optimality

Equality constraints

Constrained problems

The Lagrangian function (cont.)

$$\min_{w \in \mathcal{R}^N} \quad f(w)$$
subject to
$$g(w) = 0$$

$$h(w) \ge 0$$

In expanded form, we have

Expanded form, we have
$$\mathcal{L}(w,\lambda,\mu) = f(w) - \lambda^{T} g(w) - \mu^{T} h(w)$$

$$= f(w) - \begin{bmatrix} \lambda_{1} & \cdots & \lambda_{N_{g}} \end{bmatrix} \begin{bmatrix} g_{1}(w) \\ \vdots \\ g_{N_{g}}(w) \end{bmatrix} - \begin{bmatrix} \mu_{1} & \cdots & \mu_{N_{h}} \end{bmatrix} \begin{bmatrix} h_{1}(w) \\ \vdots \\ h_{N_{h}}(w) \end{bmatrix}$$

The number of multipliers must match the number of constraints

$$\rightarrow$$
 (For the products $\lambda^T g(w)$ and $\mu^T h(w)$ to be defined)

We require the inequality multipliers to be positive $(\mu \geq 0)$

$$\mu \ge 0 = \begin{bmatrix} \mu_1 \ge 0 \\ \vdots \\ \mu_{N_b} \ge 0 \end{bmatrix}$$

Overview (cont.)

The Lagrangian function

Optimality conditions

Equality constraints Constrained

Example

$$\min_{x \in \mathcal{R}^2} \quad x_1^2 + x_2^2$$
 (Objective function) subject to $x_1 - 1 = 0$ (Equality constraints)

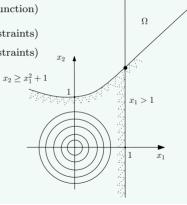
$$x_2 - 1 - x_1^2 \ge 0$$
 (Inequality constraints)

The feasible set, the set of feasible decisions

$$\Omega = \{x \in \mathcal{R}^2 | h(x) \ge 0, g(x) = 0\}$$

For point $\widetilde{x} \in \Omega$, the Lagrangian function

$$\mathcal{L}\left(\widetilde{x}, \lambda, \mu\right) = f\left(\widetilde{x}\right) - \lambda^{T} q\left(\widetilde{x}\right) - \mu^{T} h\left(\widetilde{x}\right)$$



The Lagrangian function (cont.)

The Lagrangian function

Optimality

Equality constraints

problems

$$\min_{x \in \mathcal{R}^2} \quad \underbrace{x_1^2 + x_2^2}_{f(x)} \qquad \text{(Objective function)}$$
 subject to
$$\underbrace{x_1 - 1}_{g(x)} = 0 \qquad \text{(Equality constraints)}$$

$$\underbrace{x_2 - 1 - x_1^2}_{h(x)} \geq 0 \qquad \text{(Inequality constraints)}$$

The Lagrangian function in expanded form, for any $\widetilde{x}=(\widetilde{x_1},\widetilde{x_2})\in\Omega$

$$\mathcal{L}\left(\widetilde{x},\lambda,\mu\right) = f\left(\widetilde{x}\right) - \lambda^{T}g\left(\widetilde{x}\right) - \mu^{T}h\left(\widetilde{x}\right)$$

$$= f\left(\widetilde{x}\right) - \left[\lambda_{1}\right]\left[g_{1}\left(\widetilde{x}\right)\right] - \left[\mu_{1}\right]\left[h_{1}\left(\widetilde{x}\right)\right]$$

$$= \widetilde{x}_{1}^{2} + \widetilde{x}_{2}^{2} - \lambda_{1}\left(\widetilde{x}_{1} - 1\right) - \mu_{1}\left(\widetilde{x}_{2} - 1 - \widetilde{x}_{1}^{2}\right)$$

The Lagrangian function

Optimality

Equality constraints Constrained

The Lagrangian function (cont.)

Lower-bound property of the Lagrangian function

For any feasible point $\widetilde{w} \in \Omega$, for any λ and for any $\mu \geq 0$, we have the lower-bound

$$\begin{split} \mathcal{L}\left(\widetilde{w},\lambda,\mu\right) &= f\left(\widetilde{w}\right) \underbrace{-\lambda^{T}\underbrace{g\left(\widetilde{w}\right)}_{=0} - \underbrace{\mu^{T}\underbrace{h\left(\widetilde{w}\right)}_{\geq 0}}_{\leq 0}}_{\leq 0} \\ &\leq f(\widetilde{w}) \end{split}$$

Clearly, we also have that

$$\mathcal{L}\left(w^*, \lambda, \mu\right) \leq f(w^*)$$

For w in the feasible set, the objective function is larger than the Lagrangian function

• (That is, if \widetilde{w} is a primal minimiser, then the lower-bound will be retained)

The Lagrangian function

Optimality conditions

Equality constraints Constrained

Example

$$\min_{x \in \mathcal{R}^2} \quad x_1^2 + x_2^2 \qquad \text{(Objective function)}$$
subject to $x_1 - 1 = 0$ (Equality constraints)
$$x_2 - 1 - x_1^2 \ge 0 \quad \text{(Inequality constraints)}$$

The feasible set

$$\Omega = \{x \in \mathcal{R}^2 | h(x) \ge 0, g(x) = 0\}$$

The Lagrangian function

$$\mathcal{L}\left(\widetilde{x},\lambda,\mu\right) = \widetilde{x}_1^2 + \widetilde{x}_2^2 - \lambda_1\left(\widetilde{x}_1 - 1\right) - \mu_1\left(\widetilde{x}_2 - 1 - \widetilde{x}_1^2\right)$$

 $x_2 \ge x_1^2 + 1$ $x_1 > 1$ $-\widetilde{x}_1^2$

Ω

For any point $\widetilde{x} \in \Omega$ and for any λ and any $\mu \geq 0$, we have the lower-bound property

$$\mathcal{L}\left(\widetilde{x},\lambda,\mu\right) \leq f(\widetilde{x})$$

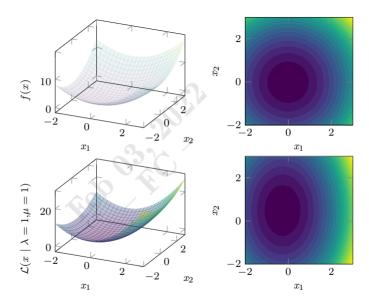
CHEM-E7225 2022

The Lagrangian function

Optimality conditions

Equality constraints

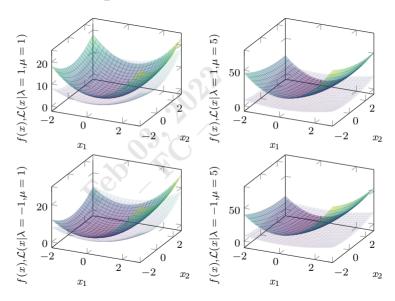
Constrained problems



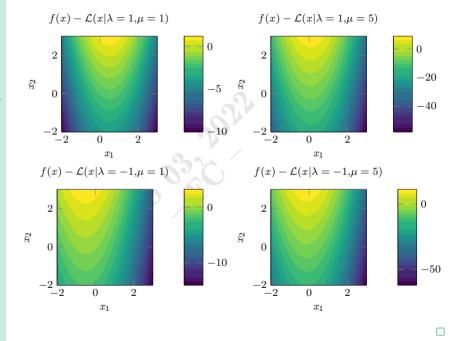
For different pairs $(\lambda, \mu_{\geq 0})$ and for any $\tilde{x} \in \Omega$, we always have that $\mathcal{L}(\tilde{x}, \lambda, \mu) \leq f(\tilde{x})$

Optimality conditions

Equality constrains Constrained problems



The Lagrangian



The Lagrangian function | Duality

The Lagrangian function

Optimality conditions

Equality constraints
Constrained

Consider some fixed multipliers $\bar{\lambda}$ and $\bar{\mu} \geq 0$, we define the Lagrange dual function as

$$q(\bar{\lambda}, \bar{\mu}) = \inf_{w \in \mathcal{R}^N} \mathcal{L}(w|\lambda = \bar{\lambda}, \mu = \bar{\mu})$$

Thus, the Lagrange dual function is a scalar function

$$q:\mathcal{R}^{N_g} imes\mathcal{R}^{N_h}_{\geq 0} o\mathcal{R}$$

Let w^* be the unconstrained minimiser of the Lagrangian function $\mathcal{L}\left(w|\bar{\lambda},\bar{\mu}\right)$

$$w^* = w^* \left(\bar{\lambda}, \bar{\mu} \right)$$

Because we minimised out w, the infimum is $\mathcal{L}\left(w^*(\bar{\lambda}, \bar{\mu})|\bar{\lambda}, \bar{\mu}\right) = q\left(\bar{\lambda}, \bar{\mu}\right)$

• At any other feasible point \widetilde{w} and with fixed (λ, μ) , we have

$$\mathcal{L}\left(\widetilde{\boldsymbol{w}}|\bar{\lambda},\bar{\mu}\right) \geq \mathcal{L}\left(\boldsymbol{w}^*(\bar{\lambda},\bar{\mu})|\bar{\lambda},\bar{\mu}\right) = q\left(\bar{\lambda},\bar{\mu}\right)$$

2022

The Lagrangian

The Lagrangian function | Duality (cont.)

Lower-bound property of the Lagrange dual function

For any multipliers λ and $\mu \geq 0$, we have that for any feasible point \widetilde{w}

$$\mathcal{L}\left(\widetilde{w},\lambda,\mu\right)\leq f\left(\widetilde{w}\right)$$

Moreover, at that feasible point \widetilde{w}

$$q(\lambda, \mu) \leq \mathcal{L}(\widetilde{w}, \lambda, \mu)$$

Thus, we have the following

$$q(\lambda, \mu) \le \mathcal{L}(\widetilde{w}, \lambda, \mu) \le f(\widetilde{w})$$

Because $p^* \leq f(\widetilde{w})$, we have $q(\lambda, \mu) \leq p^*$

$$q(\lambda,\mu) \leq p^{\gamma}$$

Lagrange dual functions $q(\lambda, \mu)$ provide a lower-bound to primal optimal values p^*

At the global minimiser $\tilde{w} = w^*$, clearly a feasible point, we have

$$q(\lambda, \mu) \le f(w^*)$$
$$= p^*$$

The Lagrangian

Optimality

Equality constraints

The Lagrangian function | Duality

The Lagrange dual function $q(\lambda, \mu)$ does not depend on primal decision variables w

• Sometimes it is possible to compute the Lagrange dual function explicitly

Concavity of the Lagrange dual function

The Lagrange dual function is always a concave function, also for non-convex problems $\,$

• Therefore, we have that $-q(\lambda, \mu)$ is a convex function

The Lagrangian function

Optimality conditions

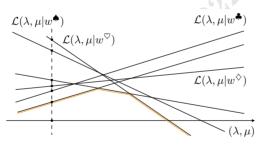
Equality constraint Constrained problems

The Lagrangian function | Duality

For any fixed w, the Lagrangian function $\mathcal{L}(\lambda,\mu|w)$ is an affine function of λ and μ

$$\mathcal{L}(\lambda, \mu | w) = f(w) - \lambda^{T} g(w) - \mu^{T} h(w)$$

Visually, consider a set of points $\{w\}$ and associated Lagrangian functions $\{\mathcal{L}(\lambda,\mu|w)\}$



For fixed λ, μ , the dual function

$$q(\lambda, \mu) = \inf_{w \in \mathcal{R}^N} \quad \mathcal{L}(w|\lambda, \mu)$$

Or, equivalently

$$-q(\lambda, \mu) = \sup_{w \in \mathcal{R}^N} -\mathcal{L}(w|\lambda, \mu)$$

- $-q\left(\lambda,\mu\right)$ is the supremum of affine, thus convex, functions in the dual variables (λ,μ)
 - The supremum over a set of convex functions is a convex function
 - (The epigraph is the intersection of convex sets)

The Lagrangian function

Optimality conditions

Constrained problems

The Lagrangian function | Duality (cont.)

The Lagrange dual function provides an understimate of the primal global minimiser

- ullet The value of the dual function that is closest is achieved when q is maximised
- It is interesting to understand how close to p^* does $q(\lambda, \mu)$ actually get

Dual optimisation problem

The best lower-bound d^* is obtained by maximising the Lagrange dual function $q(\lambda, \mu)$

$$\max_{\substack{\lambda \in \mathcal{R}^{N_g} \\ \mu \in \mathcal{R}^{N_h}}} q(\lambda, \mu)$$
where to $\mu \geq 0$

The dual optimisation problem is itself a constrained optimisation problem

- It is defined as a convex (concave) maximisation problem
- The decision variables are the dual variables λ and μ

The convexity of the dual optimisation problem is independent of the primal problem

The Lagrangian function | Duality (cont.)

 $\begin{array}{c} {\rm The\ Lagrangian} \\ {\rm function} \end{array}$

conditions

Equality constraint
Constrained

The best lower-bound d^* is obtained by maximising the Lagrange dual function $q(\lambda, \mu)$

$$d^{*} = \left(\max_{\substack{\lambda \in \mathcal{R}^{N_g} \\ \mu \in \mathcal{R}^{N_h}}} \quad q\left(\lambda, \mu\right), \text{ s.t. } \mu \geq 0 \right)$$

For any general nonlinear programs, we have the weak-duality result

$$d^* \le p^*$$

For any convex nonlinear programs¹, we have strong-duality result

$$d^* = p^*$$

¹Slater's constraint qualification conditions must also be satisfied.

The Lagrangian function | Duality (cont.)

The Lagrangian function

Optimality conditions

Equality constraints
Constrained
problems

Example

Strictly convex quadratic program

Consider a strictly convex quadratic program $(B \succ 0)$ in primal form

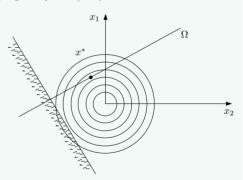
The primal optimisation problem

$$\min_{x \in \mathcal{R}^N} \quad c^T x + \frac{1}{2} x^T B x$$
subject to
$$Ax - b = 0$$

$$Cx - d \ge 0$$

The primal global minimum

$$\rightsquigarrow p^*$$



We are interested in the Lagrange dual function $q(\lambda, \mu)$

The Lagrangian function | Duality (cont.)

The Lagrangian function

Optimality

Equality constraints

Constrained problems

$$\min_{x \in \mathcal{R}^N} \underbrace{c^T x + \frac{1}{2} x^T B x}_{f(w)}$$
subject to
$$\underbrace{Ax - b}_{g(x)} = 0$$

$$\underbrace{Cx - d}_{h(x)} \ge 0$$

For the Lagrangian function, we have

$$\mathcal{L}(x,\lambda,\mu) = \underbrace{c^T x + \frac{1}{2} x^T B x}_{f(x)} - \underbrace{\lambda^T (Ax - b)}_{\lambda^T g(x)} - \underbrace{\mu^T (Cx - d)}_{\mu^T h(x)}$$

$$= c^T x + \frac{1}{2} x^T B x - \lambda^T A x + \lambda^T b - \mu^T C x + \mu^T d$$

$$= \underbrace{\lambda^T b + \mu^T d}_{\text{constant in } x} + \underbrace{(c - A^T \lambda - C^T \mu)^T x}_{\text{linear in } x} + \underbrace{\frac{1}{2} x^T B x}_{\text{quadratic in } x}$$

The Lagrangian

Optimality

Equality constraints Constrained The Lagrangian function | Duality (cont.)

$$\mathcal{L}(x, \lambda, \mu) = \lambda^{T} b + \mu^{T} d + (c - A^{T} \lambda - C^{T} \mu)^{T} x + \frac{1}{2} x^{T} B x$$

The Lagrange dual function $q(\lambda, \mu)$ is defined as infimum of the Lagrangian function

• The minimisation is with respect to the primal variables x

We have,

$$q(\lambda, \mu) = \inf_{x \in \mathcal{R}^N} \left(\lambda^T b + \mu^T d + (c - A^T \lambda - C^T \mu)^T x + \frac{1}{2} x^T B x \right)$$

$$= \lambda^T b + \mu^T d + \inf_{x \in \mathcal{R}^N} \left((c - A^T \lambda - C^T \mu)^T x + \frac{1}{2} x^T B x \right)$$

$$= \lambda^T b + \mu^T d - \frac{1}{2} \left(c - A^T \lambda - C^T \mu \right)^T B^{-1} \left(c - A^T \lambda - C^T \mu \right)$$

We used the fact that for general unconstrained quadratic problems $f(x^*) = \frac{1}{2}c^T B^{-1}c$

The Lagrangian function | Duality (cont.)

The Lagrangian function

Optimality conditions

Equality constraints
Constrained
problems

$$q(\lambda, \mu) = \lambda^T b + \mu^T d - \frac{1}{2} (c - A^T \lambda - C^T \mu)^T B^{-1} (c - A^T \lambda - C^T \mu)$$

After rearranging, we formulate the dual optimisation problem

$$\max_{\substack{\lambda \in \mathcal{R}^{N_h} \\ \mu \in \mathcal{R}^{N_g}}} -\frac{1}{2} c^T B^{-1} c + \begin{bmatrix} b + AB^{-1} c \\ d + CB^{-1} c \end{bmatrix}^T \begin{bmatrix} \lambda \\ \mu \end{bmatrix} - \frac{1}{2} \begin{bmatrix} \lambda \\ \mu \end{bmatrix}^T \begin{bmatrix} A \\ C \end{bmatrix} B^{-1} \begin{bmatrix} A \\ C \end{bmatrix}^T \begin{bmatrix} \lambda \\ \mu \end{bmatrix}$$
 bject to $\mu \ge 0$

The objective function is concave, the dual problem is a convex quadratic program

The term $(-1/2)c^TB^{-1}c$ is constant with respect to the dual variables

• It is retained to verify the strong duality result, $d^* = p^*$

The Lagrangian function | Duality (cont.)

The Lagrangian function

conditions

Constrained problems

Example

Linear program

The primal optimisation problem

$$\min_{w \in \mathcal{R}^N} \quad c^T w$$
subject to
$$Aw - b = 0$$

$$Cx - d \ge 0$$

The primal global minimum

$$\leadsto p^*$$

We are interested in the Lagrange dual function $q\left(\lambda,\mu\right)$

The Lagrangian function | Duality (cont.)

The Lagrangian function

Conditions

Equality constraints

Constraine

$$\begin{aligned} & \min_{w \in \mathcal{R}^N} & c^T w \\ \text{subject to} & Aw - b = 0 \\ & Cx - d \geq 0 \end{aligned}$$

For the Lagrangian function, we can write

$$\mathcal{L}(w,\lambda,\mu) = c^T w - \lambda^T (Aw - b) - \mu^T (Cw - d)$$
$$= \lambda^T b + \mu^T d + \left(c - A^T \lambda - C^T \mu\right) w$$

The Lagrange dual, as infimum of the Lagrangian

$$q(\lambda, \mu) = \lambda^T b + \mu^T d + \underbrace{\inf_{w \in \mathcal{R}^N} \quad \left(c - A^T \lambda - C^T \mu\right) w}_{\text{unconstrained linear program}}$$
$$= \lambda^T b + \mu^T d + \begin{cases} 0, & c - A^T \lambda - C^T \mu = 0 \\ -\infty, & \text{otherwise} \end{cases}$$

The Lagrangian function | Duality (cont.)

The Lagrangian function

Optimality

Equality constraints

$$q\left(\lambda,\mu\right) = \lambda^T b + \mu^T d + \begin{cases} 0, & c - A^T \lambda - C^T \mu = 0 \\ -\infty, & \text{otherwise} \end{cases}$$

The Lagrange dual function $q(\lambda, \mu)$ equals $-\infty$ at all points $(\widetilde{\lambda}, \widetilde{\mu})$ that do not satisfy the linear equality $c - A^T \lambda - C^T \mu = 0$, these points can be treated as infeasible points

We use this observation to formulate the dual optimisation problem,

$$\max_{\substack{\lambda \in \mathcal{R}^{N_h} \\ \mu \in \mathcal{R}^{N_g}}} \begin{bmatrix} b & d \end{bmatrix} \begin{bmatrix} \lambda \\ \mu \end{bmatrix}$$
subject to $c - A^T \lambda - C^T \mu = 0$

$$\mu \ge 0$$

The Lagrangian function

Conditions

Equality constraints

Constraine

Optimality conditions

Nonlinear optimisation

Optimality conditions | Unconstrained problems

The Lagrangian function

Optimality

conditions
Equality constraints
Constrained

Consider the unconstrained optimisation problem with $f: \mathcal{R}^N \to \mathcal{R}$ and $f \in \mathcal{C}^1(\mathcal{R}^N)$

$$\min_{v \in \mathcal{R}^N} f(w)$$

We are imprecisely assuming that the domain of definition of function f is \mathcal{R}^N

• More precisely, the function is defined only on some set $\mathcal{D} \subseteq \mathcal{R}^N$

That is, we re-write the unconstrained optimisation problem

$$\min_{w \in \mathcal{D}} f(w)$$

The Lagrangian function

Optimality conditions

Constrained problems

Optimality conditions | Unconstrained problems (cont.)

$$\min_{w \in \mathcal{D}} \quad f\left(w\right)$$

First-order necessary optimality conditions

If point $w^* \in \mathcal{D}$ is a local minimiser, then the first-order necessary condition holds

$$\nabla f\left(w^*\right) = 0$$

A point w^* such that $\nabla f(w^*) = 0$ is a stationary point

By contradiction, assume that the local minimiser would be such that $\nabla f(w^*) \neq 0$

• Then, there is a direction $-\nabla f(w^*)$ that would be a descent direction

$$\nabla f(w^*)^T (-\nabla f(w^*)) = -\|\nabla f(w^*)\|_2^2 < 0$$

In the vicinity of w^* , for a point $\widetilde{w} = w^* + \lambda(w' - w^*)$ along the descent direction

$$f\left(w^* + \lambda(w' - w^*)\right) \approx f\left(w^*\right) + \lambda \underbrace{\nabla f\left(w^*\right)^T\left(w' - w^*\right)}_{\leq 0}$$

 $< f(w^*)$ (a contradiction for a local minimiser)

The Lagrangian

Optimality conditions

Equality const

Optimality conditions | Unconstrained problems (cont.)

$$\min_{w \in \mathcal{D}} \quad f\left(w\right)$$

Second-order necessary optimality conditions

If point $w^* \in \mathcal{D}$ is a local minimiser, then the second-order necessary condition holds

$$\nabla^2 f\left(w^*\right) \succeq 0$$

Assume the existence of direction $(w'-w^*)$ such that $(w'-w^*)^T \nabla^2 f(w^*)(w'-w^*) < 0$

• Along direction $(w' - w^*)$, the objective function would diminish

In the vicinity of w^* , for a point $\widetilde{w} = w^* + \lambda(w' - w^*)$ along the descent direction

$$\begin{split} f\left(w^* + \lambda(w' - w^*)\right) \approx \\ f\left(w^*\right) + \lambda \underbrace{\nabla f\left(w^*\right)^T\left(w' - w^*\right)}_{=0} + \frac{1}{2}\lambda^2 \underbrace{\left(w' - w^*\right)^T \nabla f\left(w^*\right)\left(w' - w^*\right)}_{<0} \\ < f\left(w^*\right) & \text{(a contradiction for a local minimiser)} \end{split}$$

Optimality conditions | Unconstrained problems (cont.)

The Lagrangian

conditions

Equality constraints

Constrained

Second-order sufficient optimality conditions

The sufficient second-order condition to have a strict local minimiser

$$\nabla^2 f\left(w^*\right) \succ 0$$

Optimality conditions | Unconstrained problems (cont.)

The Lagrangian function

Optimality conditions

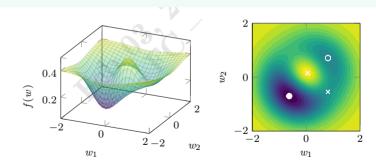
Equality constraints

Constrained

Example

Consider the unconstrained optimisation problem

$$\min_{w \in \mathcal{R}^2} \quad \frac{2}{5} - \frac{1}{10} \left(5w_1^2 + 5w_2^2 + 3w_1w_2 - w_1 - 2w_2 \right) e^{\left(-\left(w_1^2 + w_2^2 \right) \right)}$$



The Lagrangian function

Conditions

Equality constraints

Constraine

Equality constraints

Optimality conditions

Optimality conditions | Equality constraints

The Lagrangian function

Optimality

Equality constraints

Consider the equality constrained optimisation problem in the general form

$$\min_{w \in \mathcal{R}^N} f(w)$$
subject to $g(w) = 0$

- We assume that $f: \mathbb{R}^N \to \mathbb{R}$ and $g: \mathbb{R}^N \to \mathbb{R}^{N_g}$ are smooth functions
- The feasible set is $\Omega = \{w \in \mathcal{R}^N | g(w) = 0\}$, a differentiable manifold

We are interested in the optimality conditions for this class of optimisation problems

- To have a condition $\nabla f\left(w\right)=0$ (or $\nabla f\left(w\right)=0$ and $\nabla^{2}f\left(w\right)\succeq0$) is not enough
- Variations in other feasible directions must not improve the objective function

Optimality conditions | Equality constraints (cont.)

The Lagrangian function

Optimality

Equality constraints

problems

To formulate the optimality conditions, we need two notions from differential geometry

- The tangent vector to the feasible set Ω
- The tangent cone to the feasible set Ω

These notions will allow for a local characterisation of the feasible set

For (standard, well-behaved) equality constrained optimisation problems, the set of all the tangent vectors to the feasibility set Ω at a feasible point w^* form a vector space

• The tangent space

Optimality conditions | Equality constraints (cont.)

The Lagrangia function

Optimality conditions

Equality constraints

Remember the equality constraint function, each component function need be smooth

$$g\left(w\right) = \underbrace{\begin{bmatrix}g_{1}\left(w\right)\\ \vdots\\ g_{n_{g}}\left(w\right)\\ \vdots\\ g_{N_{g}}\left(w\right)\end{bmatrix}}_{N_{g}\times1}$$

Each function is required to be at least differentiable once, to compute the Jacobian

Jacobian of the equality constraints

The Jacobian of the equality constraint functions is a rectangular $(N_g \times N)$ matrix

• It collects (transposed) gradients $\nabla g_{n_q}\left(w\right)$ of component functions $g_{n_q}\left(w\right)$

Optimality conditions | Equality constraints (cont.)

The Lagrangian function

Optimality

Equality constraints

$$g\left(w\right) = \underbrace{\begin{bmatrix}g_{1}\left(w\right)\\ \vdots\\ g_{n_{g}}\left(w\right)\\ \vdots\\ g_{N_{g}}\left(w\right)\end{bmatrix}}_{N_{g}\times1}$$

More explicitly, the gradient vector of an equality constraint function $g_{n_q}(w)$

$$abla g_{n_g}\left(w
ight) = egin{bmatrix} \partial g_{n_g}\left(w_1,\ldots,w_N
ight)/\partial w_1 \ dots \ \partial g_{n_g}\left(w_1,\ldots,w_N
ight)/\partial w_n \ dots \ \partial g_{n_g}\left(w_1,\ldots,w_N
ight)/\partial w_N \end{bmatrix} \ egin{bmatrix} \partial g_{n_g}\left(w_1,\ldots,w_N
ight)/\partial w_N \ \partial g_{n_g}\left(w_1,\ldots,w_N
ight)/\partial w_N \end{bmatrix} \ egin{bmatrix} \partial g_{n_g}\left(w_1,\ldots,w_N
ight)/\partial w_N \ \partial g_{n_g}\left(w_1,\ldots,w_N
ight)/\partial$$

Each gradient $\nabla g_{n_q}(w)$ is a column-vector of size $(N \times 1)$

The Lagrangian function

Optimality

Equality constraints
Constrained

Optimality conditions | Equality constraints (cont.)

In the Jacobian of g(w), the gradients are transposed and arranged along the rows That is,

$$\nabla g\left(w\right)^{T} = \begin{bmatrix} \nabla g_{1}\left(w\right)^{T} \\ \nabla g_{2}\left(w\right)^{T} \\ \vdots \\ \nabla g_{n_{g}}\left(w\right)^{T} \\ \vdots \\ \nabla g_{N_{g}}\left(w^{*}\right)^{T} \end{bmatrix}$$

$$= \begin{bmatrix} \left[\partial g_{1}\left(w\right) / \partial w_{1} & \cdots & \partial g_{1}\left(w\right) / \partial w_{n} & \cdots & \partial g_{1}\left(w\right) / \partial w_{N} \\ \vdots \\ \partial g_{2}\left(w\right) / \partial w_{1} & \cdots & \partial g_{2}\left(w\right) / \partial w_{n} & \cdots & \partial g_{2}\left(w\right) / \partial w_{N} \end{bmatrix} \right]$$

$$= \underbrace{\begin{bmatrix} \left[\partial g_{1}\left(w\right) / \partial w_{1} & \cdots & \partial g_{1}\left(w\right) / \partial w_{n} & \cdots & \partial g_{1}\left(w\right) / \partial w_{N} \right]}_{\left[\partial g_{n_{g}}\left(w\right) / \partial w_{1} & \cdots & \partial g_{n_{g}}\left(w\right) / \partial w_{n} & \cdots & \partial g_{n_{g}}\left(w\right) / \partial w_{N} \end{bmatrix}}_{N_{g} \times N}$$

Optimality conditions | Equality constraints (cont.)

Equality constraints

$$\nabla g\left(w\right)^{T} = \underbrace{\begin{bmatrix} \nabla g_{1}\left(w\right)^{T} \\ \nabla g_{2}\left(w\right)^{T} \\ \vdots \\ \nabla g_{n_{g}}\left(w\right)^{T} \\ \vdots \\ \nabla g_{N_{g}}\left(w^{*}\right)^{T} \end{bmatrix}}_{N_{g} \times N}$$

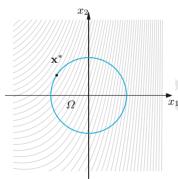
We denote the Jacobian matrix of vector-valued multivariate function $g\left(w\right)$ as $\nabla g\left(w\right)^{T}$

• Alternative notation used for the Jacobian, $J_g\left(w\right)$ and $\frac{\partial g\left(w\right)}{\Box}$

Optimality conditions | Equality constraints (cont.)

Equality constraints

Consider the minimisation of some function f(w) under some equality constraint g(w)



Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(x) = \frac{3}{5}x_1^2 + \frac{1}{2}x_1x_2 - x_2 + 3x_1$$

$$\text{Let } g: \mathbb{R}^2 \to \mathbb{R}$$

$$g(x) = x_1^2 + x_2^2 - 1$$

$$g(x) = x_1^2 + x_2^2 - 1$$

The feasible set

$$\Omega = \{ x \in \mathcal{R}^2 : g(x) = 0 \}$$

When on the constraint(s), feasibility is satisfied when moving along tangent directions

• Optimality conditions must be verified along these directions

Optimality conditions | Equality constraints (cont.)

The Lagrangia function

Optimality conditions

Equality constraints

Constrained

problems

Tangent vector

A vector $p \in \mathcal{R}^N$ is a tangent vector to the feasible set Ω at point $w^* \in \Omega \subset \mathcal{R}^N$ if there exists a smooth curve $\overline{w}(t) : [0, \varepsilon) \to \mathcal{R}^N$ such that the following is true

 \rightarrow The curve for t=0 starts at the feasible point w^*

$$\overline{w}(0) = w$$

 \rightarrow The curve is in feasible set for all $t \in [0, \varepsilon)$

$$\overline{w}(t) \in \Omega$$

Then, vector p is the derivative of \overline{w} at t = 0

$$p = \frac{d\overline{w}(t)}{dt}\Big|_{t=}$$

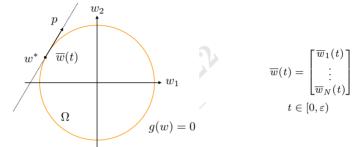
The Lagrangian function

Optimality

Equality constraints
Constrained

Optimality conditions | Equality constraints (cont.)

Curve $\overline{w}(t)$ is parameterised by $t,\,t$ varies over the infinitesimally small interval $[0,\varepsilon)$



- $w^* \in \Omega$ is where the curve starts $\overline{w}(t=0) = w^*$ and ε is small enough
- Thus, the curve $\overline{w}(t)$ remains inside Ω (surely in the limit $\varepsilon \to 0$)

$$p(t) = \frac{d\overline{w}(t)}{dt} = \begin{bmatrix} d\overline{w}_1(t)/dt \\ \vdots \\ d\overline{w}_N(t)/dt \end{bmatrix} = \begin{bmatrix} p_1(t) \\ \vdots \\ p_N(t) \end{bmatrix}$$

Tangent vector p defines a direction along which it is possible move without leaving Ω

Optimality conditions | Equality constraints (cont.)

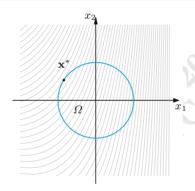
The Lagrangia function

Optimality conditions

Equality constraints

Constrained problems

Example



Consider the usual feasibility set

$$\Omega = \{ x \in \mathcal{R}^2 : x_1^2 + x_2^2 - 1 = 0 \}$$

The points x^* on the unit circle

$$w^* = \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix}$$

An alternative characterisation of a feasible point x^* , for $\alpha^* \in [0, 2\pi]$

$$x^* = \begin{bmatrix} \cos\left(\alpha^*\right) \\ \sin\left(\alpha^*\right) \end{bmatrix}$$

Optimality conditions | Equality constraints (cont.)

For a fixed α^* (fixed x^*) and some $\omega \in \mathcal{R}$, we can construct a feasible curve from x^*

For a fixed
$$\alpha^*$$
 (fixed x^*) and some $\omega \in \mathcal{R}$, we can construct a feasible curve from x

$$\overline{x}(t) = \begin{bmatrix} \cos(\alpha^* + \omega t) \\ \sin(\alpha^* + \omega t) \end{bmatrix}$$

We can also determine the tangent vectors along the curve,

$$p_{\omega}(t) = \frac{d\overline{x}(t)}{dt}$$

$$= \begin{bmatrix} -\omega \sin(\alpha^* + \omega t) \\ \omega \cos(\alpha^* + \omega t) \end{bmatrix}$$

$$= \omega \begin{bmatrix} -\sin(\alpha^* + \omega t) \\ \cos(\alpha^* + \omega t) \end{bmatrix}$$

The tangent vector at t = 0 (or, at x^*),

$$p_{\omega} = \frac{d\overline{x}(t)}{dt}\Big|_{t=0}$$
$$= \omega \begin{bmatrix} -\sin(\alpha^*) \\ \cos(\alpha^*) \end{bmatrix}$$

The Lagrangian function

Conditions

Equality constraints

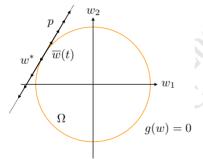
Constrain problems

Optimality conditions | Equality constraints (cont.)

The Lagrangian function

Optimality conditions

Equality constraints
Constrained
problems



Tangent cone

The tangent cone $T_{\Omega}(w^*)$ of the feasible set Ω at point $w^* \in \Omega \subset \mathcal{R}^N$ is the set of all the tangent vectors at w^*

• 'If p is a tangent vector, then also 2p is a tangent vector, ...'

Sometimes the set of elements of the tangent cone define a space, the tangent space

The Lagrangia function

conditions

Equality constraints
Constrained

Optimality conditions | Equality constraints (cont.)

To construct a smooth curve $\overline{w}(t)$ that satisfies the conditions needed to define tangent vectors, we can consider the equality constraint g(w) and its Taylor's expansion at w^*

Consider the first-order Taylor's series expansion of function g at point w^*

$$g(w) = \underbrace{g(w^*)}_{=0} + \nabla g(w^*)^T (w - w^*) + \mathcal{O}((w - w^*)^2)$$

• We know g and we can compute its gradients (\leadsto Jacobian)

Similarly, at t = 0 (that is, at point w^*), we have the approximated curve

$$\overline{w}(t) = \underbrace{w(0)}_{w^*} + \underbrace{\frac{d\overline{w}(t)}{dt}\Big|_{t=0}}_{p} (t-0) + \mathcal{O}\left((t-0)^2\right)$$

$$\approx w^* + tp$$

We can construct a direction such that from w^* it is feasible, up to the first-order

$$g(w) = \underbrace{g(w^*)}_{=0} + \underbrace{\nabla g(w^*)^T(w - w^*)}_{=0} + \mathcal{O}((w - w^*)^2)$$

Optimality conditions | Equality constraints (cont.)

The Lagrangian function

Optimality conditions

Equality constraints

problems

$$g\left(w\right) \approx \underbrace{g\left(w^{*}\right)}_{=0} + \underbrace{\nabla g\left(w^{*}\right)^{T}\left(w-w^{*}\right)}_{=0}$$

We consider the tangent vectors p that projected by the Jacobian $\nabla g\left(w^{*}\right)^{T}$ are zero

$$\nabla g \left(w^* \right)^T p = 0$$

Tangent directions p that satisfy the orthogonality condition are feasible, $g\left(\overline{w}(t)\right)=0$

• If the constraints at w^* are zero, along p they will remain zero up to first-order

The feasible tangent directions are in the null-space of the Jacobian $J_g(w)$

This suggests a criterior for building a possible tangent cone $T_{\Omega}(w^*)$

$$T_{\Omega}(w^*) = \{ p \in \mathcal{R}^N : \nabla g(w^*)^T p = 0 \}$$

Optimality conditions | Equality constraints (cont.)

The Lagrangia function

Optimality conditions

Equality constraints
Constrained

The collection of tangent directions to Ω that are orthogonal to the equality constraints

$$\mathcal{F}_{\Omega}(w^*) = \{ p \in \mathcal{R}^N : \nabla g_{n_g}(w^*)^T p = 0, \text{ with } n_g = 1, 2, \dots, N_g \}$$

The collection in this set is denoted as the linearised feasible cone for equality constraints

- For equality constrained problems that are smooth, $\mathcal{F}_{\Omega}\left(w^{*}\right)$ is a space
- More generally, the set of all tangent vectors to Ω is just a cone

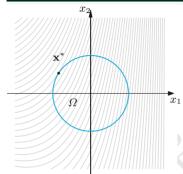
In general (with inequality constraints), it is difficult to characterise the tangent cone

• The linearised feasible cone for equality constraints is a good proxy to it

Though, in general, we have

$$\mathcal{F}_{\Omega}(w) \neq T_{\Omega}(w)$$

Equality constraints



Consider the usual feasibility set

$$\Omega = \{ x \in \mathcal{R}^2 | x_1^2 + x_2^2 - 1 = 0 \}$$

A possible tangent vector $p_{\omega}(x^*)$

$$p_{\omega}(x^*) = \omega \begin{bmatrix} -\sin(\alpha^*) \\ \cos(\alpha^*) \end{bmatrix}$$

The vector space is mono-dimensional

The vector space corresponds to the tangent cone, it is constructed by choosing $\omega \in \mathcal{R}$

$$T_{\Omega}(x^*) = \{ p \in \mathcal{R}^2 : p = \omega \begin{bmatrix} -\sin(\alpha^*) \\ \cos(\alpha^*) \end{bmatrix}, \text{ with } \omega \in \mathcal{R} \}$$

The tangent vectors are orthogonal to the gradient vector of the constraint function

$$\nabla g\left(x^{*}\right) = 2 \begin{bmatrix} \cos\left(\alpha^{*}\right) \\ \sin\left(\alpha^{*}\right) \end{bmatrix}$$

Optimality conditions | Equality constraints (cont.)

The Lagrangia

function

Equality constraints

Constrained problems First-order necessary optimality conditions (I)

Consider the equality constrained optimisation problem

$$\min_{w \in \mathcal{R}^{N}} f(w)$$
subject to $g(w) = 0$

A point w^* is a local minimiser, if $w^* \in \Omega$ and for all tangents $p \in T_{\Omega}(w^*)$, we have

$$\nabla f\left(w^*\right)^T p \ge 0$$

When we consider the directions that are in the tangent cone $T_{\Omega}(w^*)$ of point w^* in the feasible set Ω , we must only have directions along which the objective worsens

If $\nabla f(w^*)^T p < 0$, then there would also exist some feasible curve $\overline{w}(t)$ such that

$$\frac{df\left(\overline{w}\left(t\right)\right)}{dt}\Big|_{t=0} = \nabla f\left(w^{*}\right)^{T} p$$

$$< 0$$

There would exist a feasible descent direction, along which the objective improves

Optimality conditions | Equality constraints (cont.)

The Lagrangian function

Optimality conditions

Equality constraints
Constrained

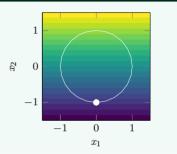
Example

Consider the constrained optimisation

$$\min_{w \in \mathcal{R}^2} \quad w_2$$
 subject to
$$w_1^2 + w_2^2 - 1 = 0$$

The minimiser w^*

$$w^* = (0, -1)$$



The gradient vector of the objective function at the minimiser

$$\nabla f\left(w^*\right) = \begin{bmatrix} 0\\1 \end{bmatrix}$$

The gradient at w^* is orthogonal to the tangent space at w^*

• Not true for (most of the) other feasible points

The Lagrangian

Optimality

Equality constraints
Constrained

Optimality conditions | Equality constraints (cont.)

We are interested in the conditions under which the identity $\mathcal{F}_{\Omega}(w^*) = T_{\Omega}(w^*)$ holds

We say that the linear independence constraint qualification (LICQ) holds at point w^* if and only if the vectors $\nabla g_{n_q}(w^*)$ are linearly independent, $n_g = 1, \ldots, N_g$

• $\{\nabla g_{n_g}(w^*)^T\}$ are the rows of the Jacobian, gradients of the equality constraints

$$\nabla g\left(w\right)^{T} = \underbrace{\begin{bmatrix} \nabla g_{1}\left(w\right)^{T} \\ \nabla g_{2}\left(w\right)^{T} \\ \vdots \\ \nabla g_{n_{g}}\left(w\right)^{T} \\ \vdots \\ \nabla g_{N_{g}}\left(w^{*}\right)^{T} \end{bmatrix}}_{N_{g} \times N}$$

The linear independence qualification is equivalent to requiring rank $\left(\nabla g\left(w^{*}\right)^{T}\right)=N_{g}$

• This condition can be satisfied if and only if $N_g \leq N$

Optimality conditions | Equality constraints (cont.)

The Lagrangia function

Optimality

Equality constraints

problems

It can be shown that, in general, the following holds

$$T_{\Omega}(w^*) \subseteq \mathcal{F}_{\Omega}(w^*)$$

When LICQ holds, we have

$$T_{\Omega}(w^*) = \mathcal{F}_{\Omega}(w^*)$$

We can restate the first-order optimality conditions (II)

$$\min_{w \in \mathcal{R}^N} f(w)$$
subject to $g(w) =$

Point w^* is a local minimiser, if $w^* \in \Omega$, LICQ holds at w^* , and for all $p \in \mathcal{F}_{\Omega}(w^*)$

$$\rightsquigarrow \nabla f(w^*)^T p = 0$$

The Lagrangian

Optimality

Equality constraints

Optimality conditions | Equality constraints (cont.)

We can further restate the first-order optimality conditions (III)

$$\min_{w \in \mathcal{R}^N} \quad f(w)$$
subject to $g(w) = 0$

Point w^* is a local minimiser, if $w^* \in \Omega$, LICQ holds at w^* , and there is a $\lambda^* \in \mathcal{R}^{N_g}$

$$\rightsquigarrow \nabla f(w^*) = \nabla g(w^*)\lambda^*$$

Remember the Lagrangian function for equality constrained problems, we have

$$\mathcal{L}(w,\lambda) = f(w) - \lambda^{T} g(w)$$

We retrieve the optimality condition

$$\nabla_{w} \mathcal{L}(w^{*}, \lambda^{*}) = \nabla f(w^{*}) - \nabla g(w^{*}) \lambda^{*}$$
$$= 0$$

This result is important, because we can optimise simultaneously for both w^* and λ^*

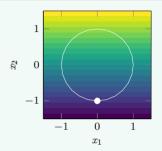
Equality constraints

Consider the constrained optimisation

$$\min_{w \in \mathcal{R}^2} \quad w_2$$
 subject to
$$w_1^2 + w_2^2 - 1 = 0$$

The Lagrangian function

$$\mathcal{L}(w,\lambda) = w_2 - \lambda(w_1^2 + w_2^2 - 1)$$



The gradient of $\mathcal{L}(w,\lambda) = w_2 - \lambda(w_1^2 + w_2^2 - 1)$ with respect to the primal variables w $\nabla_w \mathcal{L}(w,\lambda) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} - \lambda \begin{bmatrix} 2w_1 \\ 2w_2 \end{bmatrix}$

$$abla_{w}\mathcal{L}\left(w,\lambda
ight)=egin{bmatrix}0\1\end{bmatrix}-\lambdaegin{bmatrix}2w_{1}\2w_{2}\end{aligned}$$

The first order optimality conditions, $g(w^*)$ and $\nabla_w \mathcal{L}(w, \lambda) = 0$

$$w_1^2 + w_2^2 - 1 = 0$$
$$-2\lambda w_1 = 0$$
$$-2\lambda w_2 + 1 = 0$$

The Lagrangia

Optimality

Equality constraints

Optimality conditions | Equality constraints (cont.)

 $Some\ remarkable\ facts\ about\ first-order\ optimality\ conditions\ and\ Lagrangian\ functions$

$$\mathcal{L}(w,\lambda) = f(w) - \lambda^{T} g(w)$$

The gradient of the Lagrangian function with respect to the dual λ equals $-g\left(w\right)$

$$\nabla_{\lambda}\mathcal{L}\left(w,\lambda\right)=-g\left(w\right)$$

At a minimiser $w^* \in \Omega$, we have $g\left(w^*\right) = 0$ and $\nabla_w \mathcal{L}\left(w^*, \lambda^*\right) = 0$, or

$$\begin{bmatrix} \nabla_{w} \mathcal{L} \left(w^{*}, \lambda^{*} \right) \\ \nabla_{\lambda} \mathcal{L} \left(w^{*}, \lambda^{*} \right) \end{bmatrix} = \nabla_{w, \lambda} \mathcal{L} \left(w^{*}, \lambda^{*} \right)$$
$$= 0$$

The LICQ condition led to define the Karhush-Kuhn-Tucker (KKT) conditions

$$\nabla_{w,\lambda} \mathcal{L} (w^*, \lambda^*) = 0$$
$$g (w^*) = 0$$

Optimality conditions | Equality constraints (cont.)

The Lagrangian function

conditions

Equality constraints
Constrained

Second-order necessary optimality conditions

$$\min_{w \in \mathcal{R}^N} f(w)$$
subject to $g(w) = 0$

Point w^* is a local minimiser if $w^* \in \Omega$, LICQ holds at w^* , there exists a $\lambda^* \in \mathcal{R}^{N_g}$ such that $\nabla f(w^*) = \nabla g(w^*)\lambda^*$, and for all tangent vectors $p \in \mathcal{F}_{\Omega}(w^*)$ we also have

$$p^{T} \nabla_{w}^{2} \mathcal{L}\left(w^{*}, \lambda^{*}\right) p \geq 0$$

Second-order sufficient optimality conditions

$$p^{T} \nabla_{w}^{2} \mathcal{L}\left(w^{*}, \lambda^{*}\right) p > 0$$

The Lagrangian function

Optimality

Equality constraints

Constrained problems

Equality and inequality constraints

Optimality conditions

The Lagrangian function

Optimality conditions

Equality constraints

Constrained problems

Optimality conditions | Constrained problems

Consider the equality and inequality constrained optimisation problem in general form

$$\min_{x \in \mathcal{R}^N} \quad f(x)$$
subject to $g(x) = 0$

$$h(x) \ge 0$$

 $h\left(x\right)\geq0$ • We assume a smooth functions $f:\mathcal{R}^{N}\to\mathcal{R},\ g:\mathcal{R}^{N}\to\mathcal{R}^{N_{g}},\ \mathrm{and}\ h:\mathcal{R}^{N}\to\mathcal{R}^{N_{h}}$

$$g\left(w\right) = \begin{bmatrix} g_{1}\left(w\right) \\ \vdots \\ g_{N_{g}}\left(w\right) \end{bmatrix}$$
$$h\left(w\right) = \begin{bmatrix} h_{1}\left(w\right) \\ \vdots \\ h_{N_{b}}\left(w\right) \end{bmatrix}$$

• We have the set of feasible points $\Omega = \{w \in \mathbb{R}^N : g(w) = 0, h(w) \ge 0\}$

To formulate the optimality conditions for these problems, we extend previous notions

The Lagrangian

Optimality conditions

Constrained problems

Optimality conditions | Constrained problems (cont.)

Tangent vector

A vector $p \in \mathbb{R}^N$ is a tangent vector to the feasible set Ω at point $w^* \in \Omega \subset \mathbb{R}^N$ if there exists a smooth curve $\overline{w}(t) : [0, \varepsilon) \to \mathbb{R}^N$ such that the following is verified

 \rightarrow The curve for t=0 starts at the feasible point w^*

$$\overline{w}(0) = w^*$$

 \leadsto The curve is in feasible set for all $t \in [0, \varepsilon)$

$$\overline{w}(t) \in \Omega$$

 \rightarrow Vector p is the derivative of \overline{w} at t=0

$$\left. \frac{d\overline{w}(t)}{dt} \right|_{t=0} = I$$

Tangent cone

The tangent cone $T_{\Omega}(w^*)$ of the feasible set Ω at point $w^* \in \Omega \subset \mathcal{R}^N$ is the set of all the tangent vectors at w^* : Same definition, but it requires a different characterisation

Optimality conditions | Constrained problems (cont.)

The Lagrangian function

Conditions

Constrained

With equality constrained problems, we defined the linearised feasible cone $\mathcal{F}_{\Omega}(w^*)$

• For feasible points w^* , we have first-order necessary optimality conditions

$$\nabla f(w^*)^T p \ge 0$$
, for all $p \in \mathcal{T}_{\Omega}(w^*)$

• Under linear independence constraint qualification (LICQ) conditions

$$T_{\Omega}(w^*) = \mathcal{F}_{\Omega}(w^*)$$

To characterise the tangent cone with inequality constrains, we introduce new concepts

Optimality conditions | Constrained problems (cont.)

The Lagrangian function

conditions

problems

Equality constrain Constrained We need to describe the feasibility set in the neighbourhood of a local minimiser $w^* \in \Omega$

The active constraints and the active set

Consider the inequality constraint functions

$$h\left(w\right) = \begin{bmatrix} h_{1}\left(w\right) \\ \vdots \\ h_{N_{h}}\left(w\right) \end{bmatrix}$$

An inequality constraint $h_{n_g}(w^*) \leq 0$ is said to be an active inequality constraint at $w^* \in \Omega$ if and only if $h_{n_g}(w^*) = 0$, otherwise it is an inactive inequality constraint

- The index set of active inequality constraints is $\mathcal{A}(w^*) \subset \{1, 2, \dots, N_h\}$
- The index set $A(w^*)$ is denoted as the active set
- The cardinality of the active set, $N_{\mathcal{A}} = |\mathcal{A}(w^*)|$

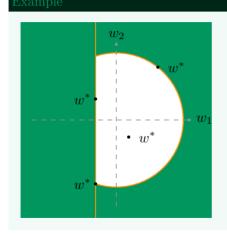
Optimality conditions | Constrained problems (cont.)

The Lagrangian function

Optimality conditions

Equality constraints

Constrained problems



Determine the active set for the different feasible points w^*

Optimality conditions | Constrained problems (cont.)

The Lagrangian function

Optimality conditions

problems

Equality constraints
Constrained

The linearised feasible cone for equality and inequality constraints

The linearised feasible cone $\mathcal{F}_{\Omega}(w^*)$ at point $w^* \in \Omega$ is the set of all tangent directions to Ω that are orthogonal to the equality constraints and the active inequality constraints

$$\mathcal{F}_{\Omega}\left(w^{*}\right) = \left\{p \in \mathcal{R}^{N} : \nabla g_{n_{g}}\left(w^{*}\right)^{T} p = 0 \text{ with } n_{g} = 1, \dots, N_{g} \right.$$

$$\left. \nabla h_{n_{h}}\left(w^{*}\right)^{T} p \geq 0 \text{ with } n_{h} \in \mathcal{A}(w^{*})\right\}$$

We require that tangent directions remain inside the feasible set, up to the first order

Optimality conditions | Constrained problems (cont.)

The Lagrangian function

Optimality conditions

problems

Equality constraints

Constrained

Consider point $w^* \in \Omega$ and the gradient vectors $\left\{\nabla g_{n_g}\left(w^*\right)\right\}_{n_g=1}^{N_g}$ and $\left\{\nabla h_{n_h}\left(w^*\right)\right\}_{n_h=1}^{N_h}$

The gradient vectors are the rows of the Jacobians evaluated at point w^* ,

$$\underbrace{\begin{bmatrix} \nabla g_{1}\left(w^{*}\right) \\ \vdots \\ \nabla g_{N_{g}}\left(w^{*}\right) \end{bmatrix}}_{\nabla g\left(w^{*}\right)^{T}} = \begin{bmatrix} \left[\partial g_{1}\left(w\right)/\partial w_{1} & \partial g_{1}\left(w\right)/\partial w_{2} & \cdots & \partial g_{1}\left(w\right)/\partial w_{N}\right]^{T} \\ \vdots \\ \left[\partial g_{N_{g}}\left(w\right)/\partial w_{1} & \partial g_{N_{g}}\left(w\right)/\partial w_{2} & \cdots & \partial g_{N_{g}}\left(w\right)/\partial w_{N}\right]^{T} \end{bmatrix} \\
\underbrace{\begin{bmatrix} \nabla h_{1}\left(w^{*}\right) \\ \vdots \\ \nabla h_{N_{h}}\left(w^{*}\right) \end{bmatrix}}_{\nabla h\left(w^{*}\right)^{T}} = \begin{bmatrix} \left[\partial h_{1}\left(w\right)/\partial w_{1} & \partial h_{1}\left(w\right)/\partial w_{2} & \cdots & \partial h_{1}\left(w\right)/\partial w_{N}\right]^{T} \\ \vdots \\ \left[\partial h_{N_{A}}\left(w\right)/\partial w_{1} & \partial h_{N_{A}}\left(w\right)/\partial w_{2} & \cdots & \partial h_{N_{h}}\left(w\right)/\partial w_{N}\right]^{T} \end{bmatrix} \\
\underbrace{\begin{bmatrix} \nabla h_{1}\left(w^{*}\right) \\ \vdots \\ \nabla h_{N_{h}}\left(w^{*}\right) \end{bmatrix}}_{\nabla h\left(w^{*}\right)^{T}} = \begin{bmatrix} \left[\partial g_{1}\left(w\right)/\partial w_{1} & \partial h_{1}\left(w\right)/\partial w_{2} & \cdots & \partial h_{1}\left(w\right)/\partial w_{N}\right]^{T} \\ \vdots \\ \left[\partial h_{N_{A}}\left(w\right)/\partial w_{1} & \partial h_{N_{A}}\left(w\right)/\partial w_{2} & \cdots & \partial h_{N_{h}}\left(w\right)/\partial w_{N}\right]^{T} \end{bmatrix}$$

Constrained problems

Optimality conditions | Constrained problems (cont.)

At a feasible point $w^* \in \Omega$, we have

$$g(w) = 0$$
$$h(w) \ge 0$$

Moreover, at the active inequality constraints we have

$$\begin{bmatrix} \vdots \\ h_{n_g \in \mathcal{A}} (w^*) \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ 0 \\ \vdots \end{bmatrix}$$

For points w^* on the equality constraints and the active inequality constraint, we define

$$\overline{g}(w^*) = \underbrace{\begin{bmatrix} g_1(w) \\ \vdots \\ g_{N_g}(w^*) \\ \vdots \\ h_{n_g \in \mathcal{A}}(w^*) \\ \vdots \\ \vdots \\ (N_g + \mathcal{N}_A) \times 1 \end{bmatrix}}_{(N_g + \mathcal{N}_A) \times 1}$$

2022

Constrained problems

Optimality conditions | Constrained problems (cont.)

We say that the linear independence constraint qualitification (LICQ) holds at point w^* is and only if vectors $\{\nabla g_{n_q}(w^*)\}$ and $\{h_{n_h \in \mathcal{A}}(w^*)\}$ are linearly independent

That is, when the rank condition on the Jacobian of function \overline{q} holds

$$\operatorname{rank}\!\left(rac{\partial\overline{g}\left(w^{*}
ight)}{\partial w}
ight)=N_{g}+\mathcal{N}_{\mathcal{A}}$$

Importantly, note that inactive inequality constraint do not affect the LICQ coinditions

For feasible points $w^*\in\Omega,$ we have $\mathcal{T}_\Omega(w^*)\subset\mathcal{F}_\Omega(w^*)$

$$\mathcal{T}_{\Omega}(w^*) \subset \mathcal{F}_{\Omega}(w^*)$$

If LICQ holds at w^* , we also have

$$\mathcal{T}_{\Omega}(w^*) = \mathcal{F}_{\Omega}(w^*)$$

Inactive constraints do not affect the tangent cone

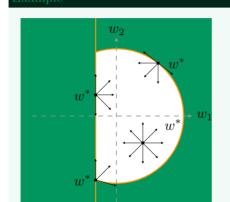
Optimality conditions | Constrained problems (cont.)

The Lagrangian function

Optimality conditions

Equality constraints

Constrained



Determine the tangent cone for the different feasible points w^*

Optimality conditions | Constrained problems (cont.)

Constrained problems

First-order necessary optimality conditions (I

$$\min_{w \in \mathcal{R}^N} \quad f(w)$$
subject to
$$g(w) = 0$$

$$h(w) \le 0$$

Point w^* is a local minimiser, if $w^* \in \Omega$, LICQ holds at w^* , and for all $p \in \mathcal{F}_{\Omega}(w^*)$

$$\rightsquigarrow \quad \nabla f(w^*)^T p \ge 0$$

The Lagrangian

conditions

Constrained

problems

Optimality conditions | Constrained problems (cont.)

$$\min_{w \in \mathcal{R}^{N}} f(w)$$
subject to $g(w) = 0$

$$h(w) \le 0$$

The LICQ condition leads to define the Karhush-Kuhn-Tucker (KKT) conditions

Let w^* be a minimiser of objective function f, given constraint functions g and hIf LICQ holds at w^* , then there exists vectors $\lambda \in \mathbb{R}^{N_g}$ and $\mu \in \mathbb{R}^{N_h}$ such that

$$\nabla f(w^{*}) - \nabla g(w^{*})\lambda^{*} - \nabla h(w^{*})\mu^{*} = 0$$

$$g(w^{*}) = 0$$

$$h(w^{*}) \ge 0$$

$$\mu^{*} \ge 0$$

$$\mu_{n_{h}}^{*} h_{n_{h}}(w^{*}) = 0, \quad n_{h} = 1, \dots, N_{h}$$

First-order necessary optimality conditions (II)

The Lagrangian

Optimality conditions

Equality constrain

Constrained problems

Optimality conditions | Constrained problems (cont.)

$$\frac{\nabla f\left(w^{*}\right)}{N \times 1} - \frac{\nabla g\left(w^{*}\right)}{N \times N_{g}} \underbrace{\lambda_{g}^{*} \times 1}_{N_{g} \times 1} - \frac{\nabla h\left(w^{*}\right)}{N \times N_{h}} \underbrace{\mu^{*}}_{N_{h} \times 1} = 0$$

$$\underbrace{g\left(w^{*}\right)}_{N_{g} \times 1} = 0$$

$$\underbrace{h\left(w^{*}\right)}_{N_{h} \times 1} \ge 0$$

$$\underbrace{\mu^{*}_{N_{h}} \cdot h_{n_{h}}\left(w^{*}\right)}_{N_{h} \times 1} = 0, \quad n_{h} = 1, \dots, N_{h}$$

We defined the following terms,

$$\nabla f(w^*) = \left(\frac{\partial f(w^*)}{\partial w}\right)^T$$

$$\nabla g(w^*) = \left(\frac{\partial g(w^*)}{\partial w}\right)^T$$

$$\nabla h(w^*) = \left(\frac{\partial h(w^*)}{\partial w}\right)^T$$

Optimality conditions | Constrained problems (cont.)

The Lagrangian function

Conditions

Equality constraints

Constrained problems

$$\nabla f(w^{*}) - \nabla g(w^{*})\lambda^{*} - \nabla h(w^{*})\mu^{*} = 0$$

$$g(w^{*}) = 0$$

$$h(w^{*}) \ge 0$$

$$\mu^{*} \ge 0$$

$$\mu_{n_{h}}^{*} h_{n_{h}}(w^{*}) = 0, \quad n_{h} = 1, \dots, N_{h}$$

The KKT conditions are first-order necessary optimality conditions for arbitrarily constrained problems, and thus correspond to $\nabla f\left(w^{*}\right)=0$ for unconstrained problems

• For convex problems, the KKT conditions are sufficient for globality

The last three KKT conditions are often denoted as complementarity conditions