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Overview

Some notions in mathematical and numerical analysis that are used in optimisation

® Only instrumental concepts, to solve optimal control problems

Optimisation refers to the problem of finding the value of the inputs (independent
variables) to some function such that the corresponding outputs (dependent variables)
take an optimal value, where optimality is defined in some sense by the function itself

~~ The task can be formulated as a root-finding problem

~~ As the problem of finding the zeros of a function

We will focus to a specific class of solution approaches known as Newton-type methods



Preliminaries
Root-finding with Newton-type methods
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Let function f be a twice-differentiable function (first and second derivatives) on 72"

Preliminaries fRY SR, feck(r™)

We shall use function f to refresh some basic notions from multivariate calculus

® We are mainly interested in its gradient vector and its Hessian matrix

We consider a Rosenbrock’s function, classic benchmark for optimisation methods
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Preliminaries

Preliminaries | A scalar function

The Rosenbrock’s function

f (&) =100(z2 — 7)) + (1 — 21)?

Function f(z) has a global minimum

z* =(1,1)
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2023
Preliminaries Let the symbol Vf(z) denote the gradient vector of function f at some point » ¢ R
_8f(f1:| SX2y ;1:\v)'
Or
Of(z, @2,y 2w)
Vf($17$2,-..,ZEN) = O1o

Of (z1,22,...,2N)
8;1,;\'
Nx1

At any point 2 € R, we can define a vector of first derivatives, the gradient of f at z

Y/ (2) = [0f (2)/0x1  Of (2)/0r2 -+ Of (x)/0un]"

The symbol V = [0/8x1  8/0z5 -+  8/dxy] T denotes the gradient operator
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Preliminaries

The Rosenbrock’s function

f(z) = 100(z2 — a)? + (1 — 21)?
of (=) = —4001 (72 — 27) — 2(1 — =1)
oz
o (=) _ 200(a2 — 27)
Ox2
oz
Vf(z)=

Oxo
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Preliminaries

Preliminaries | Gradient (cont.)

"/
s

Consider some point z’, say z’ = (0,0), we can evaluate the gradient vector of f at z’

of (z)
oz

of (=)

0T

_ [~400z1 (z2 — 22) — 2(1 — =)
- 200(z2 — )

Vf(z) =

X2

v ) = [ D ]
7]
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Let the symbol V2f () denote the Hessian matrix of function f at point = € R

Preliminaries

[92f ()  9°f (x) 9 (z) ]
01101 011015 o Ow10xy
*f (z) 9% (z) %f (x)
) 01001 010015 o D101y
V3 () =
%[ (z) 9 (2) d%f (x)
LOzy Oz OxpnOan T an Oz
N XN

At point = € R" | we can define a matrix of second derivatives, the Hessian of f at

Vf (2) = [hy]in
Jj=1
O%f (21,32, ..,%N)

with h;; = 1.9
7,01,

, a symmetric (N X N) matrix
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Preliminaries

The Rosenbrock’s function

f(z) =100(z2 — 2f)? + (1 — 21)?

&f(x)  8f(z)
) 011011 011012
Vf(z) =
9%f (z)  0%f(x)
012011  O12012
o%f (z) 2
= 1200z{ — 400 2
011011 1 %z +
*f (z)
= —400
011012 n
%f (z)
= —400
61261131 n
82
f) _ 200

63328182
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Preliminaries

Preliminaries | Hessian (cont.)

Function f (z),

f(z1,2) = 100(zz — 22)% + (1 — 21)?

Gradient vector Vf (z),

Vf(z)

Hessian matrix V2f (z),

V2 f (x)

L 8231 82272

[—400z (72 — 22) — 2(1 — =1)
200(z2 — z?)

[0f (z)  Of (z)} T

[0%f (z)  &°f (=)
O0r1011  Ox1012
0°f (z)  8*f ()
LOz20z1  Om2012
(120022 — 40022 +2  —400z;
—40021 200



P Preliminaries | Hessian (cont.)
2023

Preliminaries

Of(z) 9°f (z)
Ox10x1  Ox1072

*f (z)  &f(x)
Ox20x1  Ox2012

_ [1200z2 — 40022 +2  —400z;
- —400z; 200

V3f (2)

Consider some point z’, say z’ = (0,0), we can evaluate the Hessian matrix of f at z’

2p (. _ [12002'7 — 4002’2 +2 —400z'y
Vi) = { —4002"4 200

2 o
“lo 200
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Preliminaries

Of(z) 9°f (z)
Ox10x1  Ox1072

*f (z)  &f(x)
Ox20x1  Ox2012

_ [1200z2 — 40022 +2  —400z;
- —400z; 200

V3f (2)

Consider some point z’, say z’ = (1,1), we can evaluate the Hessian matrix of f at z’
2p (. _ [12002'7 — 4002’2 +2 —400z'y
Vi) = { —400z' 200

_[802 —400
=~ |-400 200
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Vf(I/)T($ _ II?/) é(ﬂ? — z’)TVQf(w’)(z — 13/)

Preliminaries
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Vf(m’)T(x—a:’) %(:rfx’)TV%‘(m’)(xf:r’)

Preliminaries

z2



The Newton method

Root-finding with Newton-type methods
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S Let function g : RY — R with N > 1 be some function belonging to class C(R")
he ewton

method ® We are interested in solving the system of nonlinear equations Vg (z) = 0
That is, we are interested in the point(s) z* = (z{,z3,...,z} ) such that
[0g (z1, 22, ..., 2N)]
lokint 0
g (z1,22,...,TN) 0
Vg (") = 022 = |
) 0
0g (z1,22,...,7N)
L Ozy J

Points in which all the partial derivatives of g are zero are stationary points

® We want to know where these fixed points or extrema are located
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The Newton Oz
Vg(a*) = Oz

L ozy ]
[fi (21,22, 2N) ]
fo (w1 22, y2N)
v (21,32, , o)
[0
0
L0

Points z* are points in which all the functions {fi, f2, ..., fv } are jointly equal to zero
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Tangent’s method (Baby Newton)

Consider the problem of finding the zero of a differentiable function f : [a,b] C R — R

The Newton
method

~+ We are interested in point(s) o € [a, b| such that /(o) =0

We know the function corresponding to the tangent to f(z) at any point (") € [a, b]

8

y(z)=f (l‘“))-‘r 1 (:1:“’) (:1: — :L'“’j)

N——
df (z)
dz

2 (k)

~ k = 0, the tangent to f at z(®)

y(z)=f (w‘o)) +f (x<°>) (m _ x(O))
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Preliminaries

The Newton
method

Newton-type

methods

Convergence

The Newton method | Baby Newton (cont.)

We can use the tangent to find the point 2 = z(**1), the point such that y (z(*+1)) =0

8 T T T T T T T
& 0=/ (;,;<k>)+f/ (,Im) (wmu _ ,Iw)
o
gy g _ L (2
2F ) T 4 1 (:I:(k:))
@ o
ol

~ From z(©), we solve for point zD

21 = 50 _ f (:1;(0))
. 70

“““:\.\H
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The operation can be repeated for k = 0, 1,2, ..., to find points z(k+1 approaching «

- ® As f (zk) — 0 also differences |z(**t1) — z(k)| — 0 (asymptotically, z(¥) — )
method

) ) _ S ()
) ) f! (:I;U"))

~+ Importantly, the derivative f’ (;r“"')) must, exists and must be non-zero
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Preliminarie

The Newton
method

Newton-type

method

The Newton method | Baby Newton (cont.)

y(z)=f (:1;“») s (:1;<A’>) (.'1; — f1;<]"))

) _ o _ F=P)

T =T — m
The recursion defines the sequence {z (")} that is generated by the Newton’s method
8
6
at
Al ~~ The method reduces to locally

substituting f with its tangent

~ The substitution is repeated
until convergence
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Newton’s method returns the exact value a after an infinite number of iterations

® When it converges

The Newton
ekl In general, we would be satisfied to obtain an approximation which is e-accurate

® We would end the recursion when the user-specified tolerance ¢ is reached

la —z®| <&
—_——
e(k)
To perform the test, we would need to know the exact value of « (the unknown)

In practice, an estimator of the error based on measurable quantities is used

® For the Newton’s method, this could be the difference between iterates

o)~z D) <6
—_————

e(k)

® Alternatively, there is also the possibility to use the residuals

I (=) I <e
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The Newton
method

The Newton method (cont.)

Consider the set of nonlinear equations from the vector-valued function f : RN — RN

fi (@, 22,..,2n) =0
(@1, 22,...,2n) =0

In (@1, 22,...,5v) =0
As we are letting f = (f1,...,fv)T and z = (21,...,2y)7T, we can re-write the system

f(z)y=0

We are interested in solving this system of equations, by extending Newton’s method

L1 — p(B) f (=)

’((r“‘))
— (k) _ (f’ (ij))_lf (‘,,.(/J)

For N > 1, we firstly need to replace the first derivative with a set of first derivatives
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The Newton
method

The Newton method | The Jacobian

fi(z, 22,0, 2n) =0
fo(ery w2, . zn) =0

In (z1,22,...,2v) =0
We have N functions, each in N variables, we collect all the derivatives of function f

Let the symbol J; (z) denote the Jacobian matrix of function f

[Ofi ()  Ofi (z) o Ofi (z)]
O oo Ozy
Of (z)  Ofa () o Of2 (x)
Jp () = 6,'1:1 8,.1:2 55.75\“'
oy (@) Ofw(e) ()
L On 1o Ozy
NxN

The Jacobian J; of function f is the multivariate equivalent of the first derivarive f’
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Note how the N rows of the Jacobian matrix of the vector-valued function f correspond

The Newton
method

to the transpose of the N gradient vectors of the (scalar) components of function f

Vi (z)"

LVin .(90) ’

Oh(x) O (v) Of ()7
oxy O Oxy
Of (z)  Of(z) df ()
Ouy 1o Oy
fy () Ofy () Ofy (2)
L O O Ory
NXxXN
[V ()"
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Consider the recursion of the univariate Newton’s method, as we derived it earlier

) . . AN —1 .
The Newton L(k+1) — L (R) _ g (. (K) (k)
method x =7 (f (‘I' I

We can define §z = z(F+1) — £(*) and understand the recursion as follows

Solve for §z(8) ¢/ (‘,;”‘ J) §z(F) — —f <;z:[~]‘f‘)

Compute 1) = 27 4 5,7

For the general case, let #(°) € RN be an initial solution then for k =0,1,...

Solve for 6z J; (,’r“‘)) ozF) = —f (.1:”"’)

Compute =z = 2(F) 4 5200

The operation is repeated until convergence

® That is, until dz is small enough
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Solve for dz  J; (.1:(/‘ )) oxF) = —f (:z:”‘i’)
The Newton N
method h’—/ T _f—l

A b
C (k+1) (k) c (k)
ompute = =1 + 6z

A system of linear equations with coefficient matrix J; ((z'(“) is solved at each iteration

== («) 1 ()

It is possible to re-write the Newton method as we derived it, as an iteration scheme
Solve for 6z Jy (+1) g2 = - (1)
——
(z(k+1)71(1€))

C te z(FTD — (8 5z (k)
ompute 7 T + z
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The Newton
method

Starting at £ = 0 from some initial solution £(®) | we have the Newton’s step

gD = g(B) _ Jfl (;1’(“) f (:n(/‘)> , k=0,1,...

Each Newton step moves (%) in the (opposite) direction of vector f (;I?““))

® The direction is also rotated according to matrix Jfl (:l?““))



The Newton method (cont.)

Consider the function f(z) = (fi (21, 22), f2(21, 962))T

(
fi(z,z2) =32+ 22 -1
)
s)

CHEM-E7225
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The Newton
method

T
fo(z1,22) = Sin(§$1) +z§’

We are interested in point(s) z* = (z;, z5) where f(z*) =0

ZALZT
Z AL L7
A v
"'»"."i L7 FHATTS
y,

7}
L
XA /77
",I!!

fo(z1, x2)
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The Newton 2
method

[N
-2 0 2
1 x1

The problem has two solutions, two points where both function f; and f» equal to zero

R

(0.47,-0.88)T
(—0.47,0.88)T

X



The Newton method (cont.)

The Newton Consider the function f(z) = (fi (21, 22), f2(z1, $2))T

method

CHEM-E7225
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2

{fl(mlva) = e(e+e2)

fa(zr, 22) = e(zi=a3) 1

We are interested in point(s) ¢* = (z;, 25) where f(z*) =0

=77
~’.~.~;~:/,7
y,

27

fi(zr, z2)
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The Newton
method

The problem has a unique solution, the point where both function f; and f» are zero
e (07 O) T
O
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Our main interest in root-finding is on certain vector-valued functions f : RN — RV

® Functions f that are the gradient of twice-differentiable functions g : RY — R

f(2) = Vg ()

The Newton
method

We are interested in point(s) z* € RN such that Vg (z) =0

® Extrema: Minima, maxima, and saddle points of g (z)

Solve for §z  J; (:1,'(/‘)) szF) = —f (.1“:))

Compute "1 = () 4 5,07
~ Function f is gradient Vg (z) of g, the Jacobian J; (1,'(/")) is its Hessian V?g (1'/")

Solve for dz  V2g (m“‘ i)) sz = —vyg (:1:“‘))

Compute gD = g (B) 4 54(F)
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The Newton
method

Solve for dz  V2g (;n”“)) sz = —vyg (;L'(M)

Compute gD — (k) 4 5z (F)

We can re-write the Newton method as we derived it, as an explicit iteration scheme
Solve for 6z  V2g (:17(/")) (x(k+1) - x(k)) =—-Vyg (:1:“‘»)

. -1
Compute 211 = (k) — (Vzg(:n(/“))) Vg(z*)

That is, starting from some initial solution (guess) z(®

g+ = g(B) _ (V29 (:L‘(L')))_l Vg (:I;U")), k=0,1,...



The Newton method | Towards optimisation (cont.)

The Newton N X
Consider function f : R?2 = R

method

CHEM-E7225
2023

2 1
f(aj) = g = E (5z12 + 53:22 + 31112 — 11 — 212) e(—(z12+122))

We are interested in those points
(21, z2) where Vf(z) =0

We can easily identify the points
where the gradient vanishes

N

th
&7

® Two minima
® A maximum
® A saddle




CHEM-E7225
2023

Preliminaries

The Newton

method
—
Newton-type G

methods ~

Convergence

We can analyse solutions from the Netwon’s method, from different initial points z(®)

Suppose that we let () = (—0.9, —0.9)
~ After 5 iterations the method converges to z = (—0.63058, —0.70074)

Suppose that we let z(0) = (-1.0,-1.0)
~~ After 400 iterations the stopping criterion is still not fulfilled

Suppose that we let z(0) = (+0.5, —0.5)
~ After 5 iterations the method converges to the saddle point
® z = (0.80659, —0.54010)
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The Newton
method

2D — . (B) _ (Jf (.1:(‘>))_1f (Jj[:/f))

g+ — (k) _ (Vzg(:r“’)))_l Vg (:1;“”)

In spite of a simple implementation, the Newton method is demanding for a large N
~~ The method requires analytic expressions of the derivatives
~+ The method also requires inverting the Jacobian (Hessian)

~ Naive inversion of a N x N matrix is O(N3)

(0)

For the method to converge, it is also important that ='"/ is chosen near enough =~
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The Newton
method

The Newton method | Towards optimisation (cont.)

L) = () _ (Jf (.,,m)) ~ (.,,m)

gD = g(k) _ (Vgg(m“)))_l Vg (,1;“"))

Flexibility is achieved by replacing Jacobians (Hessians) by invertible approximations

M)
NxN

The use of invertible approximations leads the family of Newton-type methods

—1
2D — (k) _ Q) f (,,;U-))
(GO
—1
gD = g(k) _ M) Vg (:17(”)

——
(Vzg('z,(/'>))71



Newton-type methods

Root-finding with Newton-type methods
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Newton-type
methods

Newton-type methods

Consider some function f € C?(R") bounded below, we are interested in its minima
® That is, we are interested in point z* € RY such that f(z*) is the smallest

® The minima of f occur at points z where the gradient Vf(z) is zero

We can use Newton and Newton-type recursions to find the zeros of function Vf(z)

® From some initial approximate solution z(®), we have

N p -1
2 =20 () (M) Vs, k=01

d(k)

At iteration steps k > 0, let z(* 1) be the next point of the sequence

® Point 2" 1) depends on point z*) and some vector ")

The vector (direction) (") depends on two terms
~~ The gradient vector Vf (.1,1/‘ fw) of f

~~ The Hesse matrix V2 (2(*)) of f

~ (Or, an approximation M (*))
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Newton-type

i \ \ —1 PN
methods 2(k+1) — (k) +(1) (A[(k‘)) (—Vf(:lr”’ ), k=0,1...

d(k)

We can also introduce a dependence on some parameter oy € R>q, the step-length

® In the basic implementation a(®) is constant and equal to positive one
°* Vf ((z'(“) gives the direction of max positive growth of f from = (")

® V2f (2" applies a transformation to the gradient direction f

The negative sign sets the iterates to move downwards
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Newton-type

methods The algorithmic formulation of a general Newton-type (line-search/descent) method

Let #(9) € RN be an initial approximation of the minimiser

Determine descent direction d(") € RN
Compute step-length a® e R>o0

Compute new approximation (1) = (k) 4 (k) g (k)
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Newton-type
methods

Newton-type methods (cont.)

Because vector d(%) needs be a descent direction, it must satisfy certain conditions

dRwf(zM) <0 (Vf (=1) #0)
45 2 0 (Vf (;L-(L)) =0)

~ dIVf (7)) is the directional derivative of f along d")

For example, consider a function f (a quadratic form) and its gradient vector at z(®)

4

[~

(L) (MD) 7 (=94

a(k)

d(k)

Direction d*) must be a suitable descent direction

e Parameter a(*) defines the step-size
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The step-size (¥ ) can be computed by solving a one-dimensional minimisation problem

® The minimisation of the restriction of function f(x) along direction d*)

the minimiser along d(*)

® The idea is to set a(*) to reach fl,‘“‘)

min?

Newton-type
methods

.‘\:‘::::\":\3\\\-\\‘\\\ X
N \\\‘|‘| 1

When [ or its restriction is not quadratic, the computation of a®) can be involved

e Certain (Wolfe’s) conditions on a(¥) must be satisfied before it is accepted
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Newton-type
methods

Newton-type methods | Step-lengths

Given a descent direction d(*), we would want the step-length a(*) to be optimal

® Such that function f is smallest along d(*)
® (Along the restriction f (x(k) —+ a(k)d(k)))

f (xoc) " a<k>d<k>) ~f (zoc))

+a®yTs (mw)d(k)

QNRRR RN
N NN
N

\

NN
AN A
nh

NN \\§\
i
\\\\\i\\?\i{ NN

1
Z(aF2 g(k) 2 (k)Y 7(k)
+ 5(@®)2aMy f(x )d

By setting to zero the derivative with respect to a(¥) of a second-order approximation
around z(*) of the restriction of function f along the descent direction d(*), we get

® _ vTy (x(k))d(k)
dRV2f (z(k))d®)
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Newton-type

methods s = (B) 4 o (R) (M(k))*l (*Vf(f“))): k=0,1...

Convergence

(k)

Newton’s directions, M*) = V2f (x(k))

—1

a® = _ | vy (x(m) v/ (Iw)

MF) -0
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—1

Newton-type

methods FIO N v2y (x(/o) v/ (,1;“' ))
M (k)

Consider functions f such that the Hessian matrices {V2f (x(k))} are positive definite

® Also, suppose that for some x > 0 the condition number of V2f (w(k))

_ Amax(Vf (2V))
<k (for all k)

Kw%@Wp

Under these conditions, the sequence {z(F)} converges to a minimum z* of function f
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The positive definiteness of M) must be over a large enough neighbourhood of 7 (k)

If M(®) > 0, then d(®) = — (M(k))71 \%i (x(k)) is a descent direction

Newton-type

methods d(k)Vf (:t(k)) <0 (Vf (fﬂ(k)) #0)

‘We have,

dB vy (x“”) =_vTy (z(k)> M® vy (x(k>)
=0

>0
<0

Note that a descent direction do not necessarily imply a reduction in function value
® The step-length a(*) may lead to f (z(k+1)) > f (m(k))
® The step-length can be reduced, to avoid this risk
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-1

methods

M (k)

For Hessians that are not positive definite, direction d®) may not be a descent direction

10w («9) =0 (r (+1) £ 0)
® (Also Wolfe’s conditions on the step-length may lose validity /meaning)
Against this, it is possible to add a diagonal or full matrix E(*) to the Hessian
v2f (:r(k)) +E® 0

M (k)
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, o\ —1
Newton-type 2D = 50 4 o8 (MW) (=Vf(")), k=0,1...

methods

(k)

Quasi-Newton directions, M®*) = §2f (:v(k))

-1

a® = [ 92y (I(k)) v (IM)

M*F) 0

A common approach for constructing approximations of the Hessian matrix is BFGS
® The Broyden, Fletcher, Galfarb, and Shanno’s method
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Given an initial symmetric matrix M(®) = 0, the BFGS method recursively computes
M B+ — (k)
e (V/ (@5+D) = Vf (2®)) (Vf (2+D) = v (@9))"
(Vf (0+D) = Vf (™)) T (k+D) — g(0)) T
M) (gt — g(B)) (z(k+1) m(z))T M*
(20D — g (®) T AR) (z(+1) — g (R)

The matrices from rank-one updates, as BFGS, need be symmetric and positive definite

This is guaranteed by the following condition,

(z(F+D) — (BT (g (z(k)) — Vf (z(k-*-l))) >0

From a quadratic approximation of f about z(®)
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Given an approximate solution z(®) and a positive definite approximate Hessian M (®)

Newton-type

Newton- We have the general formulation of the quasi-Newton’s method

Solve for d®) MF) ¢*) = _vf (x(m)
(Compute a® Verify Wolfe’s conditions)
Set z(k+1) g (k+1) — () 4 o) g(k)
Compute z(F+1) — z(k)
Compute Vf (z(k‘H)) Vi (z(k))

Compute M+
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Newton-type
methods

Newton-type methods | Gradient directions (cont.)

. -1
gD = (B _ (M<k)) Vf(,T,(M)7 k=0,1...

d(k)

Gradient directions (gradient descent, steppest descent, ...), M®E =7

-1
d®) = — \1:_/ vf (:l:“”)
M (k)

This approach is successfully utilised for large-scale optimisation problems

® Where large Hessian matrices are expensive to invert
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Conjugate-gradient directions

A = —vy (;17(0))
Newton-type d*+D) = _vf (;L-<*'+1>) +8® g g =0,1,...

methods

There exist alternatives for computing parameter B(’“), some commonly used ones

~~ Fletcher-Reeves
g = IV (G
V5 (z®=D) |2

~ Hestenes-Stiefel

VI ()" (V1 (20) — v (241))

ﬂ(k) _
HS S gD (7 (20) - v (1))
~ Polak-Ribiére r
g _ VI (@®) " (Vf (W) - Vf (=)
PR —

IVf (z=1)]2
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Consider function f : R2 - R
Newton-type
methods 2

1
flz)=-— 1—0(5z12 + 5z22 4+ 3z120 — 21 — 2172) e[_(®12+“”22)}

f(z1,22)

f()

-2
-2 0 2

I 1

Compare sequences {$<k)} with Newton and quasi-Newton direction, from various z(°)
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:vl(o) = (0.5, —0.5), Newton converges (to a saddle) and some inexact methods collapse

2

Newton-type methods (cont.)

Newton-type 15+
methods

0.5

descent GC-FR

descent quasi—-Newton

4 Newton

descent Newton

descent grad,
i -quasi-Newton, GC
0
descent grad X§>

Newton

descent Newton
descent GC-PR
L

-0.5

0 0.5 1 15
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(0)

7y~ = (0.4,0.5), Newton diverges but starts well together with some inexact methods

2

a—— Newton

Newton-type

descent Newton

methods /
1+ 4

descent grad,
of- descent GC-FR quasi-Newton, GC 8

descent grad XEO)

Newton

15+ =
5 descent quasi—-Newton descent Newton

descent GC-PR

2 I L L L L I I
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2




Convergence rates
Root-finding with Newton-type methods
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Consider the set of nonlinear equations from the vector-valued function f : RY — RN
f@)=0
We are interested in solving this system of equations, a root-finding problem

® That is, find z* such that f (z*) =0

Convergence

The exact Newton method, solve
f (mw)) +J (z(m) (z+D — 20y = ¢

We get the exact iterates,
SR+ _ (k) _ (Jf (x(m))*lf (N))
The Newton-type iterates,
(D) — o (B) _ (Mu«)) ' (x(k))

M *) must be an invertible and positive definite approximation of the Jacobian J, [ (x(k ))
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Let (*) be the approximated solution at iteration k and let z* denote the solution
Consider converging sequences of iterates {x(k)},

lim z®) = z*

k—oo

Convergence

Or, equivalently,
lim ||z® —z*|| =0
k— o0

We are interested in characterising the rate at which iterates the (%) converge to z*

Consider the convergence condition,

2+ —ax|
< C (for some C € (0,1) and k > ko)
[«

Order of convergence is denoted by p and C' is known as the convergence factor

® The condition is defined for an error, which is based on unknown z*

The necessary condition for convergence is that (%0) is chosen sufficiently close to z*

® Because of this, only local convergence properties can be established
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Convergence

Convergence (cont.)

We define the following (local) convergence rates for the sequence {m(k>} of iterates

® Q-linear, for some C*) € (0,1) and for all k =0,1,...

lz(k+1) — 2|

e o) 7 )
e — 2] et

C®) is the rate of convergence

® [t remains constant with k

An equivalent form

lz D~z

limsupy_, o ||z(k> T

Linear contraction rates characterise an exponential decay of the approximation error

® An exponential decay (or growth) is not necessarily rapid, it depends on C'
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Convergence

Convergence (cont.)

® (-superlinear, for some stable sequence C*) — 0

o o (k+1)
s x
(k+1) _ % ’
N2 = 2 oy )
&) —ax| <
k|
z P
C*) is the rate of convergence
® It shrinks with &
In the limit form,
. [ A+ — 2|
hmsqu—moWZ 0 Cy .
k

The rate of the exponential decay is not constant, but decays with the iteration count

® [t is equivalent to an always increasing linear contraction rate
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® (-quadratic, for some C(¥) < 0o and for all k =0,1,...

. x(kﬂ)

Convergence Hz(k+1) _ :E*” v’
7”1(1“) P < c® L
o (2®

Rearranging terms, we have

24D — 0 :
NGt gt
) (200

C®) (£(*)) is a local rate of convergence
® Tt shrinks with k and z(*)
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