Stochastic simulation of elementary chemical reactions

Classroom problems

Problem 1. (Generating exponentially distributed random variables).
Let $U \sim \mathcal{U}(0,1), \lambda>0$, and let $g:(0,1] \rightarrow \mathbb{R}$ be

$$
g(y)=-\frac{\ln (y)}{\lambda}=\frac{\ln (1 / y)}{\lambda} .
$$

Draw 10^{5} realizations of $g(U)$ when $\lambda=10$. Next, plot a normalized histogram of your realizations together with the evaluation of the probability density function of an exponential distribution with parameter λ.

Hint: When $X \sim \operatorname{Exp}(\lambda)$, we can use Julia's function $\operatorname{pdf}(\operatorname{Exp}(1 / \lambda), x)$ from package Distributions.jl. It is enough to plot it for $x \in[0,1]$.

Problem 2. (Gillespie Algorithm - naive formulation). Consider the chemical reaction

$$
\mathcal{A} \xrightarrow{\kappa} \emptyset,
$$

where \mathcal{A} is the chemical species of interest and κ is the rate constant of the reaction. Obtain an evolution of $\left(N_{\mathcal{A}}(t)\right)_{t \geq 0}$ for the first 30 seconds by stochastic simulation, given the following parameter values

$$
\begin{aligned}
\kappa & =0.1 \mathrm{sec}^{-1} \\
N_{\mathcal{A}}(0) & =n_{\mathcal{A}}(0) \\
& =20 \\
\Delta t & =0.001 \mathrm{sec} .
\end{aligned}
$$

Step 1. Compute the propensity function $\nu(t)=n_{\mathcal{A}}(t) \kappa \Delta t$.
Step 2- Generate a random number u uniformly distributed in the interval [0,1].
Step 2. Update the number of molecules if $u<n_{\mathcal{A}}\left(t_{k}\right) \kappa \Delta t$. Continue with step 1 until stopping time T or other stopping criteria.

Problem 3. (Gillespie Algorithm).
Step 1. Compute the propensity function $\nu_{n_{r}}(t)$ for each of the N_{r} reactions. Then compute

$$
\alpha=\sum_{n_{r}}^{N_{r}} \nu_{n_{r}}(t) .
$$

Step 2. Compute the time when the next chemical reaction takes place as $t+\tau$, where τ is sampled from the exponential distribution with parameter α (Problem 1).

Step 3. Find out which reaction occurs at time $t+\tau$, that is, find j such that

$$
u \geq \frac{1}{\alpha} \sum_{n_{r}=1}^{j-1} \nu_{n_{r}}(t) \quad \text { and } \quad u<\frac{1}{\alpha} \sum_{n_{r}=1}^{j} \nu_{n_{r}}(t), \quad u \sim \mathcal{U}(0,1),
$$

or sample j from the multinomial distribution with probability vector $\alpha^{-1}\left[\nu_{1}(t), \nu_{2}(t) \ldots, \nu_{N_{r}}(t)\right]$. Then the j th reaction takes place. Update numbers of reactants and products of the j th reaction. Continue with step 1 for time $t+\tau$.
(a) (Stochastic Simulation of Degradation) consider again the chemical reaction

$$
\mathcal{A} \xrightarrow{\kappa} \emptyset,
$$

where \mathcal{A} is the chemical species of interest and κ is the rate constant of the reaction. Draw 10 realizations of $\left(N_{\mathcal{A}}(t)\right)_{t \geq 0}$ for the first 100 seconds using the Gillespie algorithm above. Consider $n_{\mathcal{A}}(0)=20$ as the initial condition on the number of molecules and $\kappa=0.1 \mathrm{sec}^{-1}$ as the rate of the reaction. Plot a time-series of your realizations.
(b) (Stochastic Simulation of Production and Degradation) consider now the chemical reactions

$$
\begin{gathered}
\mathcal{A} \xrightarrow{\kappa_{1}} \emptyset \\
\emptyset \xrightarrow{\kappa_{2}} \mathcal{A},
\end{gathered}
$$

where \mathcal{A} is the chemical species of interest and κ_{1}, κ_{2} are the rate constants of the reactions. Draw 10 realizations of $\left(N_{\mathcal{A}}(t)\right)_{t \geq 0}$ for the first 30 seconds. Consider $n_{\mathcal{A}}(0)=0$ as the initial condition on the number of molecules, $\kappa_{1}=0.1 \mathrm{sec}^{-1}$ and $\kappa_{2}=1 \times 10^{3} \mathrm{sec}^{-1} \mathrm{~m}^{-3}$ as the reaction rates, and $V=10^{-3} \mathrm{~m}^{3}$ as the volume of the vessel where the reactions take place. Plot a time-series of your realizations, as well as the evolution of the stochastic mean $M(t)$ given by

$$
M(t)=\frac{\kappa_{2} V}{\kappa_{1}}+\left(M(0)-\frac{\kappa_{2} V}{\kappa_{1}}\right) \exp \left(-\kappa_{1} t\right)
$$

Hint: reactions of the type $\emptyset \xrightarrow{\kappa} \mathcal{A}$ have propensity function of the form $\nu(t)=\kappa V$.
(c) draw 10^{6} realizations of the setup in (b) during the first 100 seconds of the reaction and plot a normalized histogram of your realizations at the stopping time $T=100 \mathrm{sec}$. Compare the histogram with the solution to the steady-state version of the chemical master equation, $\phi(\cdot)$, given by

$$
\begin{aligned}
\phi(0) & =1, \\
\phi(1) & =\frac{\kappa_{2} V}{\kappa_{1}} \phi(0), \\
\phi(n+1) & =\frac{1}{\kappa_{1}(n+1)}\left[\kappa_{1} n \phi(n)+\kappa_{2} V \phi(n)-\kappa_{2} V \phi(n-1)\right], \quad \text { for } n \geq 1 .
\end{aligned}
$$

Homework

Problem 4. Consider a model of transcription and translation consisting of three species $(\mathcal{G}, \mathcal{M}, \mathcal{P})$, representing Gene, mRNA, and Protein, respectively. We suppose that there are four possible transitions in our model:
$R 1) ~ \emptyset \xrightarrow{\kappa_{1}} \emptyset+\mathcal{M}$ (translation)
R2) $\mathcal{M} \xrightarrow{\kappa_{2}} \mathcal{M}+\mathcal{P}$ (transcription)
R3) $\mathcal{M} \xrightarrow{d_{M}} \emptyset$ (degradation)
R4) $\mathcal{P} \xrightarrow{d_{P}} \emptyset$ (degradation)
Consider a volume V of size one and assume that we always have one Gene, that is $N_{\mathcal{G}}(t) \equiv 1, t \geq 0$. With the choice of rate constants $\kappa_{1}=200, \kappa_{2}=10, d_{M}=25$, and $d_{P}=1$, and of initial quantities $n_{\mathcal{M}}(0)=50$ and $n_{\mathcal{P}}(0)=8$:
(a) draw a realization of the stochastic model up to time $t=8$.
(b) allow for the possibility that the protein dimerizes via the reaction $2 \mathcal{P} \xrightarrow{\kappa_{3}} \mathcal{D}$, and that the degradation of the dimer is allowed by the reaction $\mathcal{D} \xrightarrow{d_{d}} \emptyset$. With the new set of species $(\mathcal{G}, \mathcal{M}, \mathcal{P}, \mathcal{D})$, draw a realization of the stochastic model when $\kappa_{3}=0.01, d_{d}=1$ and $n_{\mathcal{D}}(0)=0$. Hint: reactions of the type $2 \mathcal{A} \xrightarrow{\kappa} \mathcal{B}$ have propensity function of the form $\nu(t)=\frac{\kappa}{V^{2}} N_{\mathcal{A}}(t)\left(N_{\mathcal{A}}(t)-1\right)$.

