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Classroom problem
(System with multiple favourable states, revisited)
Consider a chemical species A being subjected to four reactions in a container of volume V = 0.5:

R1) 3A κ1−→ 2A

R2) 2A κ2−→ 3A

R3) A κ3−→ ∅

R4) ∅ κ4−→ A.

The following ODE approximates the evolution of the average number nA of molecules of A:

dnA(t) = − κ1

6V 2
nA

3(t) +
κ2

2V
nA

2(t)− κ3nA(t) + κ4V, nA(0) = 0,

where the equation rates are in the time scale of minutes. Consider the first 5 minutes of the
reaction and the following rate constants:

κ1 = 1.5× 10−3, κ2 = 0.36, κ3 = 37.5, κ4 = 2200.

(a) plot the time evolution of the copy number by solving the SDE corresponding to the sce-
nario above. Compare it with the deterministic solution. Are there any significant differences
between the stochastic and deterministic solutions?

(b) change V to 20V and solve the corresponding ODE and SDE. What is the effect of changing
the volume V ?

(c) back to the original volume V = 0.5, prepare a routine to compute the empirical distribution
of the copy number given the initial condition. You may follow the procedure bellow:

1. choose a number Nr of realisations (Nr < 104 will suffice).
2. solve the corresponding SDE Nr times. You may use the same time discretisation as in (a)

and (b) and any method for solving SDEs, e.g. Euler-Maruyama. Hint : you might need
to impose some boundary conditions at NA(t) = 0, for the sake of simplicity, you may
impose a reflective boundary. For details, check the end of this document.

3. for instants 0 = t0, t1, . . . , ti, . . . , tI−1, tI = T , count the number of realisations which fall
into the interval [(j − 1)∆nA, j∆nA), with j = 1, . . . , J . Here, we set a computational
upper bound B > 0, and divide the computational domain [0, B] into J volumes of length
∆nA. You may decide on a value for B based on your result from (a).

4. at each time step, normalise the counts by the total amount of realisations Nr

5. check the evolution of the density pSDE(nA, t) of the empirical distribution for some selected
time steps.

(d) Let pFP (nA, t) denote the solution to the Fokker-Planck equation given the stochastic model
and some initial condition. Solve it for the same space-time discretisation used for the empir-
ical probability density function pSDE(nA, t). Hint : propagate the density pFP (nA, t) for the
centroids of the space discretisation.

(e) compare the evolution of the density pSDE(nA, t) with pFP (nA, t). Ideally, the two densities
should match as Nr → ∞.
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Homework
In this section, we work with the experiments carried out by [1] to observe and analyse the trajecto-
ries of swimming microorganisms. Algae, for instance, have their random movement influenced by
the balance between gravitational and viscous torques, as algae are bottom-heavy. Their random
movement is also influenced by a light source.

Let us work on the random walk of a swimming microorganism fixed on a two dimensional space.
Initially, the organism is placed on the point x0 = (x

(1)
0 , x

(2)
0 ) = (0, 0), with an orientation θ0 with

respect to the x
(1)
0 -axis. Assume that the organism, currently at time t, will change its direction at

a random time t + τ , changing its original orientation θt to θt + δθt . The turning angle δθ can be
model by a distribution whose probability density function satisfies

p(δθ) ≥ 0, −π ≤ δθ ≤ π, (1)

under the condition that ∫ π

−π

p(δθ) dδθ = 1. (2)

This is the case for the von Mises distribution, which has the following probability density func-
tion:

p(δθ) =
1

2πI0(κ)
exp (κ cos (δθ − µδ)), −π ≤ δθ ≤ π, (3)

where Im denotes the modified Bessel function of the first kind and order m. When κ = 0, the von
Mises distribution equals the uniform distribution, and as κ → ∞ the distribution becomes sharply
peaked around the mean turning angle µδ.

Based on their experiments, [1] suggested the following form for the mean turning angle µδ:

µδ(θ, τ ) =

{
−dτ sin θ, −π ≤ θ ≤ π,

0, θ = ±π,
(4)

where dτ is a dimensionless parameter.
Problem 1. Simulate a two dimensional random walk using a velocity-jump process where the or-
ganism moves at a constant velocity s = 1 and changes direction from t to t+ τ , where τ ∼ Exp(λ),
λ = 1. You may compute the random turning angle from the von Mises distribution and calculate
the new position according to

xt+τ = xt + sτ(cos (θt + δθ), sin (θt + δθ)). (5)

It is enough to simulate the first 104 jumps. Assume κ = 0.1, dτ = 0 and check whether the walk has
a preferable direction?
Problem 2. Simulate another two dimensional random walk using a velocity-jump process, this time
assume κ = 0.5, dτ = 2. And now, does the random walk have a preferable direction?

Reflective boundary condition at X(t) = 0

This condition can be used when there is no chemical interaction between the boundary and diffusing
molecules.

Consider solving a stochastic differential equation with the Euler-Maruyama method for the
unidimensional case. We compute the next position X(t+∆t) at time t+∆t by

X(t+∆t) = X(t) + f(X(t), t)∆t+ g(X(t), t)(
√
∆t)η, η ∼ N (0, 1). (6)

1. generate the normally distributed random number η.

2. compute possible position X(t+∆t) according to Eq. (6).

3. if X(t+∆t) is less than 0, then set instead

X(t+∆t) = −X(t)− f(X(t), t)∆t− g(X(t), t)(
√
∆t)η.
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