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Classroom problem

(System with multiple favourable states, revisited)
Consider a chemical species A being subjected to four reactions in a container of volume V' = 0.5:

R1)

R2)
R3) A
R4) 0

3A 5 24
24 2
K3 @

The followmg ODE approximates the evolution of the average number 724 of molecules of A:

dna(t) = 6‘/12—3@) + ﬁmm) — kamia(t) + K4V, TA(0) =0,

where the equation rates are in the time scale of minutes. Consider the first 5 minutes of the
reaction and the following rate constants:

(a)

k1 =15x1073 ky=0.36, kg=2375, k4= 2200.

plot the time evolution of the copy number by solving the SDE corresponding to the sce-
nario above. Compare it with the deterministic solution. Are there any significant differences
between the stochastic and deterministic solutions?

change V to 20V and solve the corresponding ODE and SDE. What is the effect of changing
the volume V7?7

back to the original volume V' = 0.5, prepare a routine to compute the empirical distribution
of the copy number given the initial condition. You may follow the procedure bellow:

1. choose a number N, of realisations (NN, < 10* will suffice).

2. solve the corresponding SDE N, times. You may use the same time discretisation as in (a)
and (b) and any method for solving SDEs, e.g. Euler-Maruyama. Hint: you might need
to impose some boundary conditions at N4(t) = 0, for the sake of simplicity, you may
impose a reflective boundary. For details, check the end of this document.

3. for instants 0 = tg,ty,...,t;,...,t;_1,t; = T, count the number of realisations which fall
into the interval [(j — 1)Any, jAny), with j = 1,...,J. Here, we set a computational
upper bound B > 0, and divide the computational domain [0, B] into J volumes of length
An 4. You may decide on a value for B based on your result from (a).

4. at each time step, normalise the counts by the total amount of realisations N,

5. check the evolution of the density p®PF(

time steps.

n.4,t) of the empirical distribution for some selected

Let p(ny,t) denote the solution to the Fokker-Planck equation given the stochastic model
and some initial condition. Solve it for the same space-time discretisation used for the empir-
ical probability density function pSPF(ny4,t). Hint: propagate the density pf'7(ny,t) for the
centroids of the space discretisation.
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compare the evolution of the density p n4,t) with pff(ny,t). Ideally, the two densities

should match as N, — oo.



Homework

In this section, we work with the experiments carried out by [1]| to observe and analyse the trajecto-
ries of swimming microorganisms. Algae, for instance, have their random movement influenced by
the balance between gravitational and viscous torques, as algae are bottom-heavy. Their random
movement is also influenced by a light source.

Let us work on the random walk of a swimming microorganism fixed on a two dimensional space.

Initially, the organism is placed on the point xq = (x(()l),x02)) = (0,0), with an orientation , with

respect to the x(()l)—axis. Assume that the organism, currently at time ¢, will change its direction at

a random time ¢ + 7, changing its original orientation 6, to 6; + dg,. The turning angle dy can be
model by a distribution whose probability density function satisfies

p(6e) >0, —m<d <, (1)
under the condition that

/7r p(de) ddp = 1. (2)

This is the case for the von Mises distribution, which has the following probability density func-
tion:

p(dg) = CETAP] exp (kcos (dg — ps)), —m<dg <, (3)

where [,,, denotes the modified Bessel function of the first kind and order m. When x = 0, the von
Mises distribution equals the uniform distribution, and as k£ — oo the distribution becomes sharply
peaked around the mean turning angle ;.

Based on their experiments, [1] suggested the following form for the mean turning angle y:

—d;sinf, —nm<60<r7
0,7)= T ’ - = 4
ps(6.7) {0’ A ()
where d, is a dimensionless parameter.

Problem 1. Simulate a two dimensional random walk using a velocity-jump process where the or-
ganism moves at a constant velocity s = 1 and changes direction from t to t + 7, where T ~ Ezp()\),
A = 1. You may compute the random turning angle from the von Mises distribution and calculate
the new position according to

Tipr = Ty + s7(cos (0; + 0p),sin (0, + dp)). (5)

It is enough to simulate the first 10* jumps. Assume k = 0.1,d, = 0 and check whether the walk has
a preferable direction?

Problem 2. Simulate another two dimensional random walk using a velocity-jump process, this time
assume k = 0.5,d, = 2. And now, does the random walk have a preferable direction?

Reflective boundary condition at X (¢) =0

This condition can be used when there is no chemical interaction between the boundary and diffusing
molecules.

Consider solving a stochastic differential equation with the Euler-Maruyama method for the
unidimensional case. We compute the next position X (¢ + At) at time ¢ + At by

X(t+At) = X&)+ f(X(1),)At+ g(X(t),t)(VA)y, n~N(0,1). (6)
1. generate the normally distributed random number 7.
2. compute possible position X (¢ + At) according to Eq. (6).
3. if X (t + At) is less than 0, then set instead

X(t+At) = —X(t) — f(X(t),)At — g(X (1), 1) (VAb)n.
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