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Classroom problem
Problem 1. (Compartment-based approach to Diffusion) Consider a chemical species A. Allow the
molecules of A to diffuse along the domain [0, L] × [0, h] × [0, h], where L = 1 mm and h = 25µm.
Divide the computational domain [0, L] × [0, h] × [0, h] into K = L/h = 40 compartments each of
volume h3, and denote the number of molecules of A in the ith compartment [(i− 1)h, ih)× [0, h]×
[0, h])] by NAi

, where i runs from 1 to K.
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Design a stochastic simulation algorithm for this reaction-diffusion system with initially 1000
molecules of A distributed uniformly at [10h, 12h) × [0, h] × [0, h]. Draw one realisation from your
algorithm and plot the number of molecules at each compartment for different instants t. Consider
the first 5× 105 reactions and the following rate constants:

κ1 = 1× 10−3, κ2 = 2× 10−5.

Problem 2. (Compartment-based approach to Reaction-Diffusion) Consider a chemical species A
being subjected to two reactions. Allow the molecules of A to diffuse along the domain [0, L]× [0, h]×
[0, h], where L = 1 mm and h = 25µm. Divide the computational domain [0, L]× [0, h]× [0, h] into
K = L/h = 40 compartments each of volume h3, and denote the number of molecules of A in the ith
compartment [(i− 1)h, ih)× [0, h]× [0, h])] by NAi

, where i runs from 1 to K.
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Ai
κ1−→ ∅ for i = 1, 2, . . . , K,

∅ κ2−→ Ai for i = 1, 2, . . . , K/5.

The domain is divided into two different regions [0, L/5] and [L/5, L] as a prepatterning, that is,
it is expected that the chemical A is produced in only part of the domain.

Design a stochastic simulation algorithm for this reaction-diffusion system with initially zero
molecules of A. Draw one realisation from your algorithm and plot the number of molecules at each
compartment for different instants t. Consider the first 2 × 105 reactions and the following rate
constants:

κ1 = 1× 10−3, κ2 = 2× 10−5.

Problem 3. (Reaction-Diffusion PDE) The following PDE approximates the concentration of molecules
along the domain [0, L]× [0, h]× [0, h]:

∂a

∂t
= D

∂2a

∂x2
+ κ2χ[0,L/5] − κ1a,
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with zero-flux boundary conditions

∂a

∂x
(0, t) =

∂a

∂x
(L, t) = 0.

Here, a(x, t) is the concentration of molecules of A at point x and time t, and χ[0,L/5] is the char-
acteristic function of the interval [0, L/5], so that χ[0,L/5](x) = 1 if x ∈ [0, L/5], and equals zero
otherwise.

Solve the PDE above and compare the values of a(x, t)h3 with the results from the compartment-
based approach.

Problem 4. (Velocity-jump process) Design another stochastic simulation algorithm for the reaction-
diffusion system of Problem 2, this time with a velocity-jump process as the underlying diffusion
model.

(a) for each molecule, compute its x-coordinate at time t+∆t according to the following steps:

• generate a random number r uniformly distributed in (0,1).
• assume that a particle moves along the x-axis at a constant speed s. Compute the position

of the molecule at time t+∆t by

X(t+∆t) = X(t) + V (t)∆t,

where the velocity can have only two values V (t) = ±s. Here, assume s = 1 × 10−2 and
∆t = 0.01.

• apply reflective boundary conditions if X(t+∆t) is less than 0 or greater than L.
• check if the particle turns in the time interval [t, t+∆t), that is, check whether r < λ∆t. If

so, then let V (t+∆t) = −V (t). Otherwise, set V (t+∆t) = V (t). The turning frequency
λ is given by

λ =
s2

2D
.

(b) for each molecule, generate a random number r1 uniformly distributed in the interval (0,1). If
r1 < κ1∆t, then remove the molecule from the system.

(c) generate a random number r1 uniformly distributed in the interval (0,1). If r2 < (κ2h
2L/5)∆t,

then generate another random number r3 uniformly distributed in the interval (0,1) and intro-
duce a new molecule at the position with x-coordinate equal to r3L/5.

(d) repeat the steps above until you reach your stopping criteria.

Reflective boundary condition at X(t) = 0

This condition can be used when there is no chemical interaction between the boundary and diffusing
molecules.

Consider solving a stochastic differential equation with the Euler-Maruyama method for the
unidimensional case. We compute the next position X(t+∆t) at time t+∆t by

X(t+∆t) = X(t) + f(X(t), t)∆t+ g(X(t), t)(
√
∆t)η, η ∼ N (0, 1). (1)

1. generate the normally distributed random number η.

2. compute possible position X(t+∆t) according to Eq. (1).

3. if X(t+∆t) is less than 0, then set instead

X(t+∆t) = −X(t)− f(X(t), t)∆t− g(X(t), t)(
√
∆t)η.
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