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We start with the degradation of some chemical species A to an uninteresting form ()

A= 0 A0
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The equation does not state that A is degraded into A, y Reactions occurs in a some vessel of fixed volume V A A
nothing, but rather that it is degraded into uninter- ® The content of the container is well mixed A A
. . . A A A
esting species (or, that there is an outflow of A) Acp A ® The system is in thermal equilibrium B Cp A
A
i

The rate constant x is defined in such a way that (x dt) corresponds to the probability

These reactions are intended to capture the change of a molecule of species A into one ] ’ > bon( :
that a randomly chosen molecule of A is degraded in the infinitesimally small interval

or more other molecules, such as radioactive decay or dissociation of complex molecules

~~ They are not intended to model conversions in the presence of a catalyst [t,t +dt)

In systems biology, they are used as simplified models for RNA and protein degradation
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A — ) (cont.)

Let N 4(t) be the number of molecules of species A present in the system at time ¢

Between time t and time ¢ + d¢, we assume that one of three things can occur

~» No reaction occurs (no molecules of A degrade)
~ Na(t+dt) = Na(t)—0
~» One reaction occurs (only one molecule of A degrades)
~ Na(t+dt) = Na(t)—1
~» Two or more reactions occur (two or more molecules of A degrade)

~s N(t+dt) = Na(t) — 2 (or more)

We are interested in the probabilities that these events occur in the interval [¢, ¢ + dt)

A — () (cont.)

Suppose that at initial time ¢t = 0 there are exactly n.4(0) molecules of A in the system
Na(t=0)=mn4(0)
‘We are interested in the number of of molecules in the system, as time ¢ > 0 progresses

Because reaction events occur randomly with certain probabilities, now we do not know
when they will occur and we cannot determine precisely how the system will evolve

Let us denote with (N4 (#));>0 the evolution in time of the copy-numbers of species A
(Na(t))i>o0

Each N 4(t) is a random variable, thus we do not know its value nor when it will change
® We know that they do not vary continuously with time

® (Copy numbers can only take on integer values)

The collection (N4(t));>0 of random variables N 4(t) indexed by t is a random process
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A — ) (cont.)

We can assume that the molecules of A are indistinguishable and that act independently

~ The probability that one reaction occurs in dt is the same for each of them

P(one reaction occurs) = P(EITHER molecule A; OR --- OR Ay, () reacts) (la)
= P(A; reacts U --- U Ay, (4) reacts) (1b)
= P(A; reacts) + -+ P(Ay , (;) reacts) (1¢)
= P(a molecule of A reacts) x N.4(t) (1d)
= kdt x N(t) (1e)

(We implicitly assumed that reactions of individual molecules are mutually exclusive)

If the time interval dt¢ is small enough, then the probability that two or more reactions
occur is very small (much smaller than that of the other events) and it can be neglected

P(two or more reactions occur) = 0 (2)

The probability that no reactions occur in [¢,t 4+ dt) equals the remaining probability

P(no reactions occur) = 1 — [N4(t)rdt + 0] 3)

A — () (cont.)

We can use the probabilistic definition of reaction events to design a procedure that
simulates a realisation n4(t) of the number N 4(t) of molecules of A, over times ¢ > 0

Given a large number of realisations of the system’s evolution, we do statistics with it

That is,
~+ Firstly, simulate the reaction system to replicate the random events over time

~~ Secondly, calculate the average behaviour and variability among replicates

The simulations of the system are probabilistic, thus no two simulations will be identical
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A — ) (cont.)

We choose a small interval At and evaluate the number of molecules N 4(t), recursively
More explicitly, we define a partitioning of the time axis
t € {ty =kAt}p=12,. . K

That is, graphically

O vtyeeeees [ R R ER lk—1-tk
—— ==
At At

We want to get a realisation of the process (N4 (t));>0, at those discrete points in time
K
(Na(®)ez0  ~  (Nalte))k=1
That is,

Na(0) -« Na(ty) -+ Na(tp—1)-+  Na(ty) -+ Na(tgr1) -+ Na(tk—1)-+-Na(tx)

A — () (cont.)

O v etyoenes [ R T W k-1 -tk
——
At At
At times t; with &k =1,2,..., K, we firstly evaluate whether a reaction event occurs

~» For degradation systems, the probability that a reaction occurs is n 4 (t)<At
® (This probability depends on the abundance of A and on the rate constant)

® (This probability is approximated well, so long as At is small enough)
Once we established whether a reaction has occurred, we update the molecule count

na(ty) ~ na(thr1)

To move forward, repeat the procedure from n 4 (t;+1) and probability n4(t;41)xAt

na(0)---na(tr)------ na(te—1) - na(te) - Naltpyr) - Na(tr—1)--- Na(tx)
———

Ana(0) Ang(tg—1) AN A (1)

AN (tk—1)
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A — ) (cont.)

Suppose that we know the precise number of molecules of A at the initial time ¢ =0
We can start a realisation of the process from 7 4(0) molecules of A at time ¢t = 0A¢
n(0) - Na(tr)------ Na(te)------ Na(tg—1) -+ Na(tx)

To move forward to ¢ = 1A, we would need to evaluate (fix) the copy-number N 4(;,)
na(0) - na(ty) - Na(te)----- Na(tg—1) -+ Na(tx)

We firstly need to determine whether a reaction event occurred between time 0 and #;

~» Then, we change the copy-number from n4(0) to n4(¢1), accordingly

50 -

SIM - Naive, uniform

40
K
{”A(tk)}tkzl 30

A sample path of the < 20
process, a realisation

~ n4(0) =50

I I I I I |
10 20 30 40 50 60 70 80 90 100 110 120
Time [sec]

A — () (cont.)

Each simulation of the system generates a sample path, a realisation of the process
® The procedure can be repeated multiple (many) times

® No two realisations of the process will be equal

The objective is to generate a large number R of sample paths {{ni\r)(tk)}fzzl}ﬁzl
~ We use them to compute statistics

~ To get insight about the process
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na(0) - na(te) - nA(te—1) - ma(te) - Naltpgr) oo Na(tx—1) - Na(tx)
——
A— 0 Ang(0) Ana(tiy) ANA(t) ANA(tk—1)
Stochastic simulation Realisations are obtained using computer routines able to generate random numbers
® This is needed to decide whether a reaction occurs or not, but how?
Easy to generate a random number u uniformly distributed in the unit interval [0, 1]
~ Number u can then be used to determine whether a reaction occurs or not
T A — () | Simulation (cont.) CHEMLIVOS A — () | Simulation (cont.)
2022 2022
Simulations Simulations
1+ - 1+ - aster equation
= 051 B E 05l | For any a, b € [0, 1] such that b > a, we can compute the probability that u € (a, b)
= =,
u~U(0,1) Pla < U <b)=P(U < b)—P(U < a)
b a
0| — — 0| : = [ swau- [7 jwds
| u=0 u=0
0 1 0 1
=b—a
U
We can use this result to determine whether a reaction event occurs or not

The probability density function
u € [0,1]

]'7
Flw) = {0, elsewhere

The cumulative distribution function
0, u<O0

F(u)=1qu, uelo,1]
1, uw>1
|
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A — () | Simulation (cont.)

We have defined the probability that a reaction occurs in the interval (¢, t + At)
na (tp)RAL
Let a =0 and b = n4(t)sAt, we have

PO < U < na(ty)rAt)) = na(ty)rAt — 0

® If we draw a u € [0, na(t;)xAt), then 1
we say that the reaction does occur

nA(tetr = te + At) = na(ty) — 1

® If we draw a u € [na(t)xAt, 1], then we
say that the reaction does not occur

fuw) | F(u)
=]
T
!

na(tiin = to+ At) = na(t) of — —

A — () | Simulation (cont.)

Starting at time ¢ = 0 with N A(0) = n_4(0) molecules of A, we can simulate the system

Algorithm 1 Degradation | Stochastic simulation algorithm, naive (uniform)

1: procedure DEGRADATION | SSA (NAIVE FORMULATION, UNIFORM)
Input: N4(t =0) = n4(0), x, and At
Output: (1.4 (t))k=0,1,...

2: Set k=0

3 Set t, = kAL

4: Generate a random number u ~ U(0,1)
5: if u < ng(ty)<At then

6: na(te1) = na(ty) — 1

7 else

8: "A(tk+l):”A(tk)

9: end if

10: Set k ~» k + 1 and repeat
11: end procedure
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Drawing a number u ~ U(0,1) and checking whether it is smaller than n4(t)xAt
correctly implements the definition of reaction event, provided that At is very small

~ To obtain valid results, we must ensure that At is small

® More precisely, it is required that n(t;)~At < 1

A — () | Simulation (cont.)

An evolution of (N 4(t)) is obtained by stochastic simulation for given parameter values

A0
Kinetic parameters and initial condition
A
A
% =0.1sect 4 A
A A A
Na(0) = na(0) a0t
= 20 molecules 4 4
A
Simulation parameters A Cp
i
At = 0.001 sec /

Each time the simulation is repeated, a different realisation of (N 4(¢)):>0 is obtained

(NS =120 R)
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2022 2022

SIM - Naive, uniform

Simulations B Simulations
Master equatior

Because N4(0) = 20, x = 0.1sec™!, and At = 0.001sec, we always have n 4 (t)xAt < 1

The worst case scenario occurs at the initial time

na(t) ~ At =0.002
AN

10 20 30 40 50 ) 60 70 80 90 100 110 120 20 0.1 0.001
Time [sec]

<0

The largest probability that a single reaction event occurs is at t = 0, when n4 = 20

10 20 30 40 50 60 70 80 90 100 110 120
Time [sec]

TS A — () | Simulation (cont.) CHEMLIVOS A — () | Simulation (cont.)

2022 2022

Simulations Simulations
\ R— e 1 a 1 —
o - = =
<] =)
I 050 4 ost .
Instead of uniform numbers u, we can generate a number b with a Bernoulli distribution & &
b ~ Bern(p) = =
The probability of success is p € (0, 1) is equal to the probability that a reaction occurs e T R
(ty)r A oL . 'L — J
=n K
P At -1 0 1 2 -1 0 1 2
b b

The cumulative distribution function

0, b<0
F(blp)=41-p b=1
1, b>0
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Starting at time ¢t = 0 with N4(0) = n.4(0) molecules of A, we can simulate the system

>

() | Simulation (cont.)

Algorithm 2 Degradation | Stochastic simulation algorithm, naive (Bernoulli)

1: procedure DEGRADATION | SSA (NAIVE FORMULATION, BERNOULLI)
Input: Ng(t =0) =n4(0), ~, and At

Ou

© P N>R

10:
11: end procedure

tput: (n.4(tk))k=01,...
Set k=0
Set t, = kAt
Generate a random number b ~ Bern(n (t)xAt)
if b =1 then
nA(te+1) = na(ty) — 1
else
na(tp1) = na(ty)
end if
Set k ~» k 4+ 1 and repeat

A — () | Simulation (cont.)

SIM - Naive, Bernoulli

I I I I I I I |
10 20 30 40 50 60 70 80 90 100 110 120
Time [sec]

SIM - Naive, Bernoulli

10 20 30 40 50 60 70 80 90 100 110 120
Time [sec]
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A — () | Simulation (cont.)

An evolution of (N 4(t)) is obtained by stochastic simulation for given parameter values

A0
Kinetic parameters and initial condition B
k=0.1sec” ! ata a
Na(0) = n.4(0) S
= 20 molecules A4
Simulation parameters A Cp !
At = 0.001 sec /

Each time the simulation is repeated, a different realisation of (N 4(?))¢>0 is obtained

{nx)(l,k)}kK:l (r=1,2,...,R)

A — () | Simulation, by jumps

To avoid risk of multiple events, the simulation accuracy is increased by decreasing At

Qv overe- 7SR Y APPSR t—1-ti
—_— =
At At

~ Unfortunately, this increases the computational requirements of the simulation

® At each time node in {kAt}r—1,2, ..., we draw a random number and check

However, at most time nodes in {kAt};—1 2, .. no reaction event is ever found to occur
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A — () | Simulation, by jumps

To improve efficiency, we can approach the simulation task from a different viewpoint

‘We could proceed differently and ask at what time the next reaction event will occur

® If the time now is ¢, we are interested in the time ¢ + s of the next reaction

‘We do not know how to determine t+ s precisely, we can model it as a random variable

® That is, we would need to determine its distribution

A — () | Simulation, by jumps (cont.)

t --t+s ---t+s+ds---
—_—— — —

G(s|NA(t))  Na(t+s)sds

F(sINa(t))ds

Probability f (s | Na(t))ds is computed as product of G (s | Na(t)) and N(t + s)xds
® No reactions in [¢,¢ + s) AND one reaction in [t + s,t + s + ds)

® The events must jointly occur and not affect each other

That is,
f(s| Na(t))ds= G (s| Na(t)) x Na(t+ s)rds

Because no reactions have occurred in [t, ¢ + s), we have that N4(t + s) = N(t)

(s | Na(t))ds = G (s | Na(t)) x Na(t)rds

We need to determine the probability G (s | N4 (t)) of no reactions in [¢, ¢ + s)
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A — () | Simulation, by jumps (cont.)

Let f (s | Na(t))ds be the probability that the next reaction occurs in [¢,t 4+ s 4 ds)
® Given that we are at time ¢ and that there are N 4(t) copies of A

coiteeit4 s t4+s+ds..

F(sINa(t))ds

For a reaction to occur in [t + s, t + s+ ds), no reaction must have occurred in [¢, ¢+ s)

We let G (s | N4(t)) be the probability that no reaction occurred in [¢, ¢ + s)

® Again, given that we are at time ¢ and there are N 4(t) copies of A

ot t4s t+s+ds---
——

G(s|Na(1))
We know the probability that one reaction occurs in [t + s, t+ s +ds), given Na(t + s)

cteeit+st+s+dse.
————

N4 (t+s)rds

A — () | Simulation, by jumps (cont.)
f(s|Na(t))ds = G(s| Na(t)) Na(t)xds
—_——— ——
To be determined  known

We first consider the probability that no reaction occurs in some interval [¢, t + 0+ Ao)

vttt ot o+ Ao

G(o+Ac|N (1))

It is given by the product of the probabilities of two events that must jointly occur
® The probability that no reaction occurs in [t,t + o)
® The probability that no reaction occurs in [t + o,t + o + Ao)

As this is true for any arbitrary time o > 0 (say, o = s), for some small Ao we have

et t+o0 t+o+Ao---
—_—— —— —

G(o|Na(t)) 1=Ny(t+o)sAo

G(o+Ac|N (1))
For any value of N 4(t), we can write

G (o + A0 | Na(t)) = G (o | Na()) x [L = Na(t + 0)rio]
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A — () | Simulation, by jumps (cont.)

G(o+Ac | Na(t)) = G (o | Na(t))[1 = Na(t + 0)rAo]

Simulations

As no reaction occurs during the interval ¢, ¢ + o, we have that N4 (¢t + o) = N4(t) Master equation
After substituting and rearranging, we can thus write
G o+ A0 | Na(t) = G(o | Na(D)) = G (o | Na(1) Na(t)rAo
Similarly, we can write the change in probability
G(o+Ac | Na(t)) = G (o | Na(t)) = =G (o | Na(t)) Na(t)sAo
Rearranging again, we get
G(o+ Ao | Na(t)) — G (o | Na(t))
AG(a|Na(1)
N =—Na(t)G (o | Na(t) s
o
In the limit for Ao — 0,
dG (o | Na(1))
ST A — _NAWG (o | Na(t) s
o
A — () | Simulation, by jumps (cont.) CHEMLLVES
2022
dG (J | NA(t)) imulations
—————=—Na()rG (0| Na(1)) .

do

Statistics

We solve the ordinary differential equation from initial condition G (6 =0 | N4(t)) =1
® That is, the probability that no reaction occurs in zero time is one

® This is true whatever the copy-number N 4(t) and time ¢

w G (oINa(1)) = exp (~Na(t)ro)

The solution is the probability that no
reaction occurs in the interval [¢,t 4 o]

G(o|Na(t))
T
!

~» Given N 4(t) molecules of A at ¢

It is a function of the random time o 0 2 4 6 8

A — () | Simulation (cont.)

dG (o | Na(t))
= Nal®)G (o | Na(®)) s

o
The probability of no reaction in [t, ¢t + s), given N 4(¢) molecules at t, changes in time

Because N 4(t) is fixed, we can re-write the differential relation more clearly

dG (9 | Na(t)) _

- ~Na(DRG (o | Na(t)

This is a common ordinary differential equation of the general form

WO _ i)

‘ (v(z = 0) = 1)

The solution is the exponential decay or growth, depending on A

y(t) = yo exp (Ax)

A — () | Simulation, by jumps (cont.)

w G (s | Na(t)) = exp (—Na(t)rs)

G(s|Na(t))
T
!

f(s I Na(t))ds = G (s | Na(t)) Na(t)s
=exp(=Na(t)rs)Na(t)rds ol N

After substituting, we get the probability (density) of the time s to the next reaction
f(s1Na(t)) = Na(t)rexp (=Na(t)rs)

Again, given that there are N 4(t) molecules of A at time ¢
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A — () | Simulation, by jumps (cont.)

s | Na(t)) = Na(t)rexp (= Na(t)x s)
N—— N—_——

A A

Aexp (—As)

This probability density function tells us that the time s until the next reaction is a
random number s with an exponential distribution whose parameter is (N4 (t)x) > 0

® The larger the parameter (the abundance of A, the faster the decay

® Shorter times s are given more probability, thus are more likely

A — () | Simulation, by jumps (cont.)

The exponential distribution describes the time between events in a ‘Poisson process’
® (A Poisson process models a sequence of events occurring at random times)

® (Poisson processes are continuous-time discrete-state processes)
The most important distribution in the theory of discrete-event stochastic simulation
The expected value of R (and its standard deviation),
oo
B[R] :/ of (| A)dr
0
oo
= / riexp (—Ar)dr
0
="t
The memoryless property,

P(R>(t+s)|R>t)=P(X >s) forallt,s>0
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A — () | Simulation, by jumps (cont.)

1] ] 1} ]
g05 205
r ~exp (\) if ’ EE’ ’
(A>0)
ol . ol .
| \ | . \ | | |
0 2 4 6 0 2 4 6
r T

The probability density function

Frin = {gexﬂ—”) o

The cumulative distribution function

1—exp(—=Ar) 7>0

F(Tl’\):{o r<0

A — () | Simulation, by jumps (cont.)

Starting at time ¢t = 0 with N 4(0) = n4(0) molecules of A, we can simulate the system

Algorithm 3 Degradation | Stochastic simulation algorithm

1: procedure DEGRADATION | SSA, EXPONENTIAL
Input: Ng(t =0) = n4(0) and w
Output: (na(t+sz))r=1,2,...
Set t =0, z=0and s, =0
Generate a random number for the time s,41 until next reaction

ss+1 ~ Exp (na(t + 5:)r)

4 Set z ~ z41

5: Set t ~ t + Sz41

6: Set ng(t+ sz+1) =na(t+s,) +1
7 Repeat

8: end procedure
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An evolution of (N 4(t)) is obtained by stochastic simulation for given parameter values

A

A A
Kinetic parameters and initial conditions A Aa A
A A A
= 0.1sec™ ! A 4
Na(0) = na(0) A A

=20 A Cp

7

Each time the simulation is repeated, a different realisation of (N 4(¢)):>0 is obtained

{n,(é\r)(tl-:)}ljc(:l (T: 1727"'7R)

A — () | Simulation, by jumps (cont.)

SIM - Exponential

10 20 40 50 60 70 80 90 100 110 120
Time [sec]
0.04 -
2003
1]
2
5]
3
20.02
H
©
8
<
< 001
0 . ~ . )
10 20 30 40 5 60 70 80 9 100 110 120
End time [sec]
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A — () | Simulation, by jumps (cont.)

50

SIM - Exponential

10 20 30 40 50 60 70 80 90 100 110 120
Time [sec]

SIM - Exponential

Time [sec]

A — () | Simulation, by jumps (cont.)

Starting at time ¢t = 0 with N4(0) = n.4(0) molecules of A, we can simulate the system

Algorithm 4 Degradation | Stochastic simulation algorithm

1: procedure DEGRADATION | SSA, EXPONENTIAL FROM UNIFORM
Input: Ng(t =0) =n4(0) and x
Output: (n,A(t + 3z))z:1,2,...

2: Set t =0,2z=0and s, =0

3: Generate a random number u ~ U(0,1)
4: Compute the time s,41 until next reaction
1 1

S = —In —
i na(t+ sz)k u

5: Set z~» z+1

6: Set t ~ t + Sz41

7 Set ng(t+ sz+1) = na(t+sr) —1

8: Repeat

9: end procedure
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A— 0

Master equation

A — () | Master equation (cont.)

When the time interval [¢, ¢t + At) is small, at most one molecule had been degraded
Only one of two events can lead to have n4 (¢t + At) molecules of A at time ¢ + At
~» One reaction occurred in [¢, ¢ + At)
na(t+ At) was na(t + At) +1

This occurs with probability & (n4(t) + 1) At, for each of the n4(¢) + 1 copies
~» No reactions occurred in [t, t + At)

na(t+ At) was na(t + At)
This occurs with probability 1 — kn 4 (t)At, for each of the n4(t) molecules

Reaction events are mutually exclusive (OR) and valid for each molecule of A (AND)
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A — () | Master equation

Let Py, 4 (t + At) be the probability that there are n4 molecules of A at time (¢ + At)

0.3 -
4
+ 0.2 -
= Py, (t+ At
o1l I . alt+A4t)
" let]
0,9? ?900,
| | |
0 5 10
nA

A — () | Master equation (cont.)

The probability of having n4 molecules at time ¢ + At must encode this information

P (t+At) =P 1(t) x  r(nalt) + 1)At
AND

One reaction occurs
+
~~
OR
P t) x [1—rna(t)At
na (1) [ (t)A1]
AND

No reactions occur
After expanding terms, we obtain

PnA(t —+ At) = PnA+1(t) X H(TZ_A(L) —+ I)At +Pn_A(t) — PnA(t) X HnA(L)At

Rearranging and dividing by At,

Bu (t+ A1) = Py (1)

At =Py 41(t) X m(na(t) +1) = Ppy (t) X (51.4(1))

= r(na(t) + DPpy41(t) — mna(t)Pn, (1)
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Pp, (t 4+ AL) — Py, (t)
= r(na(t) + Py +1(t) — 5na(t)Pny (1)

APp (1)
At
For each copy-number n4 and at each time ¢, the rate at which the probability of that
number changes depends on an outgoing flow and on an incoming flow of probability

Simulat

Master equation

Statistic

~ The probability of a smaller copy number decreases the rate of change
~» The probability of a larger copy number increases the rate of change

Whenever the two flows are equal, the rate of change in probability is equal to zero
® The system, from the viewpoint of Py 4 (t), is said to be at steady-state

S TA)

A — () | Master equation (cont.)
(for ng =0,1,.

CHEM-LV03

2022
= r(na + 1)Pny4+1(t) — knaPn, (1)
of initial probabilities

dPy, , (t)
dt
Thus, this chemical master equation consists of m4 + 1 ordinary differential equations
naA
n =0

Simulat

Master equation

® The initial condition is the set {Pn , (t = 0)}

Statistic

For the degradation system, the initial condition can be assumed to be concentrated
for ng =7g

T
1
P, (t=0)=< "
na ) { 0, elsewhere

(Although, it does not have to be so)

<
138
T

7?....?. ..?7
0 5 10
nA

Pn,(t =0)

o

A — () | Master equation (cont.)

= r(na + D)Ppy+1(t) — knaPny (1)

APy, (1)
At
For At — 0, we get the ordinary differential difference equation for copy-number 7.4
dP, , (t)
BAR = (o DPa g1 (8) — Py (1)
These ordinary differential difference equations are chemical master equations (CMEs)
~ In general, the CME is defined for all values n4 € {0,1,...,00}
A}

For the degradation reaction system, there can be at most n 4 (¢t = 0) = 74 molecules

~+ The corresponding CME is defined for n4 € {0,1,.

A — () | Master equation (cont.)
(with na =0,1,...,71)
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= r(na + 1)Ppy+1(t) — knaPny (1)

dPy, , (t)
dt
We can inspect the component equations of the CME for the few first values of n.4

‘‘‘‘‘ lations

s
Master equation

Statist

For n4 = 0, we have
dPq (¢t
dt( ) = k(04 1)Po+1(t) — (0)Po(2)

= kP (t)

For n4 = 1, we have
= k(14 1)P14+1(t) — =(1)P1(2)

dPy (1)
dt
= 2kPa(t) — kP (1)
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Master equation dPnA (t)
Statistics AAAAEI£4447 =

K(na + Py 11(t) — 5naPpy () (with na =0,1,...,7%) e dPs (1)

n, —_
T"; = r(na + D)Ppy+1(t) — knaPny (t) (for ng =0,1,...,72)
For a few last values of n 4, we have the following component equations

_ Consider the component equation of the CME corresponding to n4 = 4, we have
For n4 = miq, we have p q D g A A

dP7—(t)
dPrg(t) _ — A AP (t
I = w7+ DPrn (1) = #(T)Prr() dt Al
We can solve this ordinary differential equation, we have an initial condition
For ny =ng — 1, we have As there are T4 molecules of A at t = 0, the associated initial condition
dPrg—1(t) _
MT = k(A4 — 1+ DPag_141(t) — s(x — 1Paz-1(t) Prz(t=0)=1
= wMAPrZ(t) — r(Mg — 1)Prgz—1(2)
CHEMLIVES A — () | Master equation (cont.) T A — () | Master equation (cont.)
2022 2022

Simulations Simu lations

Master equation Master equation dP. (t) . .
St Statistics %:K(”A‘f‘l)PnAH(t)—*inAPnA(t) (with ng =0,1,...,721)

dPr(t
"744() = —knAPrg(t) ) ) )
di Now consider the component equation of the CME corresponding to N 4(t) =g — 1,
By integrating this component equation over the interval [0, t) from Pr7(¢t =0) =1, dPr7_1(%) o .
A — A = k(A — 1+ 1) P11 (8) —s(g — DPrg_1(2)
. dt —_—
Pr(t) = Prg(t = 0) exp (—r7at) g P (t)
= exp (—KTAt) *

= kT exp (—KTAL) — £(TA — DPrg—1(t)

The probability of having 4 molecules of A at time ¢ decays exponentially with ¢ . o .
. L As there are exactly 4 molecules of A at ¢t = 0, we have the associated initial condition
® The decay rate depends on the kinetics x and the initial copy-number

Prg_1(t=0)=0

Again, we can use this initial condition to solve this individual component equation
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It can be shown by induction that for copy-number n 4, we have the general solution

Prg () = exp (=) (7)1 = exp (—rt) A4

We used the binomial coefficient,

dPrr—1(t
"ATI() = wnig exp (—wmat) —r(Ta — D)Paz_1(t) (W) fony
— =
constant, at ¢ naA nA! (’I’L_A - ’H,A)

The probability that there are n4 molecules of A at ¢ is given by a binomial distribution
Integrating over the interval [0, ¢) from the initial condition Pr7_1(¢ = 0) = 0, we get

Prg1(t) = exp [—(7Z — 1)t] x g [1 — exp (—r1)]

CHEM-LV03
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CHEM-LV03
2022

P, (t) = exp (—rnat) (n'A> [1 —exp (—rt)]|"A™"A
on
A=A
= exp (—rt)"A (nA> 1 — exp (—xt)
naA
P N~—— 1-p

()

The parameters of the distribution are p = exp (—rt) and g

(1_p)n,—k:

A — () | Master equation (cont.)

Master equation 1 —| 1+ Master equation
= B (Exanple (Degiadation - Masterequation) ]
= 05 1 = 0.5 The solution to the chemical master equation
. = = ;
b~Bin(\) T = A0 ; p
0 ol Kinetic parameters and initial condition A A A
| | | 1 A A
2 4 6 r = 0.1sec™ A )
b 1, na=20 4
’ A= A
ili i Pp , (0) = 4
The probability mass function n.4 (0) { 0, elsewhere CX}
n 7
f(bln,p):( )p”(l—p) /
b
The cumulative probability function
L]
n

Folnp) =Y (

=0

l

)p’ (1-pn
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B dPy (1) .
- 7?:1’; =k(na + )P yq1(t) — snaPny(t) (for ng =0,1,...,7%)

Statistics

Master equation

Statistics

In matrix-vector form,

Pry—1

10 20 30 40 50 60 70 80 90 100 110 120 d
Time [sec] - Pn_A =
at |p
na+1
t
0 —k(na —1) KN 0 Pry—1
.. 0 —KnA k(na +1) 0 Pry
.. 0 —k(na+1) k(na+2) 0 Py 441
50 60 70 u“‘8“0 H‘9‘0‘ ‘1;)0 110 120 N t
Time [sec]
|
CHENLLYOS A — () | Master equation (cont.) P —
2022 2022
Simulations Simulations
Master equation Master equation
e Any attempt to solve the CMEs analytically or even numerically will be unpractical Statistics

® CMEs can be solved exactly and explicitly in only a very few cases [!]

As there is a potentially large number of possible states (copy-number of molecules)

A—=0

Statistics

For realistic systems, simulation is the approach to gaining insight into the dynamics

Analytic solution for mass-action models with only zeroth and first order reactions [?]

® Analytical solutions are important for testing stochastic simulation algorithms

1D.A. McQuarrie (1967). Stochastic approach to chemical kinetics. Journal of Applied
Probability, 4:413—-478.

2T. Jahnke and W. Huisinga (2007). Solving the chemical master equation for monomolecular
reactions systems analytically. Physical Review E, 80: 066106.
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We use the master equation to determine the expected evolution of process (N4 (%)),
mulations
BAD 50 S
At a point ¢ in time, we can determine the expected value of the process
~» The expected number of molecules of species A at time ¢
oo
E[NA®] = 37 naPny(t)
nA=0
A
= Z ’rLA]P’nA (t)
nA=0
= Ma(t)
From the CME, the probability of n4 molecules of A at ¢
MA T —1
Py, () = exp (—H’rlAt)( A) (1 — exp (—rt))™AT"A
nA
A — () | Statistics (cont.) CHEMLIVES
2022

_ Simulation
laster equation

Statistics

The expected evolution (E[N4(t)])¢>0 = Ma(t) of the degradation process A R

A — ) | Statistics (cont.)

oy
= naPp
E[Na(t)] “Z::O AP, ()

M (t)

By substituting and rearranging, we get the expected number of molecules at time ¢

A
Mat) =S nAexp(—HnAt)<Zj) (1 — exp (—rt))™A—"4

Boy (1)

no=0

=M exp (—rt)

A — () | Statistics (cont.)

Consider the deterministic representation of the degradation system in a compartment,

d[A(®)]

= A

The concentration of the chemical species A in the reactor is [A](t) = na(t)/V

After solving this equation with initial condition [A(0)] =1/ V, we get

M (t) = g exp (—kt) 40 - i
Kinetic parameters and initial condition :':E
= 200 B
k= 0.1sec™?
N4 (0) = n.4(0) 0 |

The approximation of the expected process evolution, based on a number of realisations

=20

20

40
t

® The empirically evaluated spread around the expected evolution

60

80

40 -
[A()] = [A(0)] exp(—rt) =
=74/ V exp(—~t) i 20| i
= Ma(t)/V
(We used a volume of size one) (s B

20

40 60

t

80

For this case, the mean process can be obtained by solving the deterministic model



