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A — () and ) — A | Simulation

We extend our analysis to consider a system with a single species and two reactions

We consider the degradation of some chemical
species A to some uninteresting form

AL

We also consider the production of the same
species A from an uninteresting form ()

0= A

The degradation reaction does not state that A is degraded into nothing, but that it is
degraded into unmoddeled species, or that there is an outflux to another compartment

The production reaction does not state that A is created from nothing, but that it is
produced from unmodelled species, or that there is an influx from another compartment
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A5
02 A

The reactions occur in a vessel of volume V

~~ The content of the vessel is well mixed

~~ The system is in thermal equilibrium

The rate constant s is defined in such a way that the quantity (x1 dt¢) corresponds to
the probability that a molecule of A is degraded in the infinitesimally small interval

[t,t +dt)

The rate constant xo is defined in such a way that quantity (V xo dt) is the probability
that a molecule of A is produced, in the infinitesimal interval and in the unit volume

[t,t+dt) and V
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A — 0 and

A — 0 and
0 — A 0 — A
(,:m N «:““ Y To model and simulate this system of two reactions, we consider again reaction events
equation Rate constants x| for degradation and x> for production have different physical units equation
St iatlslss For the first reaction, over the infinitesimal time dt, we had
distribution ~ #1 is expressed in [sec™!] aistribution
Ky is expressed in [sec—'m—3] P(one degradation) = P(EITHER molecule A1 OR --- OR Ay , () degrades) (la)
= P(A; degradesU---U Ay, (;) degrades) (1b)
The probability of the degradation reaction depends on the state of the system
P Y € P Y = P(A; degrades) + -+ P(Ay , (1) degrades) (1¢)
~ (It grows with the number of molecules available)
= N4 (t) X P(a molecule of A degrades) (1d)
The probability of the production reaction depends on the size of the system = NA(t) X k1dt (1e)
~ (It is constant, but proportional to volume) Again, the molecules of A were assumed to be indistinguishable and act independently
To understand the reasoning behind the scaling of k2 by volume, think of dividing the For the second reaction, over the infinitesimal time dt, we have
container in two equally large parts, the production rate in each is also divided by two
P(one production) = Vkadt (2)
oHENLIYS A — () and () — A | Simulation (cont.) P A — () and ) — A | Simulation (cont.)
2022 2022
We can start our reasoning about the system in terms of time until the next reaction
A — 0 and A — 0 and
0 — A o 0 — A ) )
R AL50 R a(t) = Na(t)r + Veo
St [Ny Sttt W i ) X X X . X P )
I T e use this combined information to determine the time s until the next reaction event
distribution

distribution

The state changes EITHER when one degradation OR one production reaction occurs

The probability that an event occurs in [t,t + dt) equals the probability N4 (t)x1dt
that the first reaction occurs PLUS the probability Vkodt that the second one occurs

P(one degradation) = N4 (¢) X k1 d¢
—_——

P(one production) = Vg dit
v

Let (a(t) dt) be the probability that EITHER the first OR the second reaction occurs

Oé(t) = N_A(f,)h'il + Viko
| —
Probability per unit time

We think of «(t) as the propensity of the system to react at time ¢, given its state N 4

~» The time s is an exponentially distributed number
® (Regardless of what reaction it will be)

® (Give the state of the system at t)

That is,
s ~ Exp (a(t))

Formally, time ¢+ s is to be understood as the exit time of the system from state N 4(t)

~» The expected (the mean) exit time is the reciprocal of a(t)

As a(t) = Na(t)k1 + Vkg increases/decreases with the increase/decrease in copy
numbers (other things being constant), also the mean exit time will change accordingly

~+ A large/small copy numbers of reactants indicates frequent/rare reactions
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The next reaction occurs at some time ¢+ s, we need to determine which one it will be

~» The index of the next reaction is a discrete random variable
Based on their relative probability of occurrence, we have

~~ For the first reaction

NA(t)/ﬂ
a(t)

P(degradation occurs) =

~~ For the second reaction

<

K2

P(production occurs) =
(1 ceurs) o)

The next reaction type is a random variable M with a generalised Bernoulli distribution
® (A variable with multinomial distribution with two events, and one trial)

® (If one trial and whatever the number of events, a binomial distribution)

Algorithm 1 Degradation 4+ production | Stochastic simulation algorithm

1: procedure DEGRADATION + PRODUCTION | SSA, EXPONENTIAL + MULTINOMIAL
Input: n4(t =0) = n4(0), V, k1 and ko
Output: (na(t+ 82))2=1,2,...

2: Set t=0,r=0and s, =0
3: Compute a1 (t) = na(t + s2)rw1, a2(t + s2) = Vko, and a(t) = an, (t)
4: Compute p = (p1, p2), with pp, = an, /a(t) for n, = 1,2
5: Compute the time s,41 until next reaction
S241 ~ Exp (a(t))

6: Compute the type m,41 of next reaction

my4+1 ~ Mult (p,n = 1)
7: Set

na(t+s:)+1, ifm=1
na(t+ sz41) =
na(t+s:)—1, ifm=0
8: Set z ~ z+1
9: Set ¢t~ t + Sz+1
10: Repeat
11: end procedure

CHEM-IV3 A — () and ) — A | Simulation (cont.)
2022
N T L
0 — A
tati . 1 | - . . 1 | - — —
Listributic — —
) )
=] S
> 0.5 | = 051 .
Mult(p, n) = =
m o~ u. ) = =
P T B
= &
0 | | | o — ‘ |
-1 0 1 2 -1 0 1 2
m m

The probability mass function

n! o
A . =1
f(m pm) = Tapt 1PF 2%
0

, elsewhere

e A — () and ) — A | Simulation (cont.)
2022

Chemieal s The evolution of n.4(t) is obtained by stochastic simulation for given parameter values

L
S A0
ks
0 A
" A
. ) A A A
Kinetic parameters 4
A A
A A
k1 = 0.1sec™t A A
_ -1 4 4
ko V = 1.0sec 4 4
A
Initial conditions

n4(0) =0

Each time the simulation is repeated, a different realisation of (N 4(t))¢>0 is obtained

(Y, (r=1,2,...,R)
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A=L0
0= A

There are only three ways that lead to have n(t + At) molecules of A, given n.4(t)
~ na(t+ At) was na(t) + 1 and one degradation occurred in [¢, ¢ + At)

(na +1)r1AL

~ na(t+ At) was na(t) — 1 and one production occurred in [¢, ¢t + At)

VKzAt
~ na(t+ At) was na(t) and no reactions occurred in [¢, ¢t + At)

1—[(na+ 1)r1At + VraAt]
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Let Py (t + At) be the probability that there are .4 molecules of A at time (¢ 4 At)

T
0.3 N
X
+ 021 B .
= A0
3 . B ::
S T 0% A
0 o? T?oo,
| | I
0 5 10

A — () and ) — A | Master equation

]P’n_A(t + At) = PnA(t)(t) X [1 — (nA =+ l)H,lAt — VH,QAt]

No reactions occur

+ Py iy+1(8) X (na + LriAt
—————

Degradation occurs

+PnA(t)—1(t) X VioAt
——

Production occurs

After rearranging and for At — 0, we get the ordinary differential difference equation

dP t
:17:() =K1 (n_A + 1)PnA+1(t) — K1 n_APn_A (t) + Ko V]P’nA,l(t) — K2 V]P)n_A (t)
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Chemical master Chemical master

equation dezA (t) equation

B TE w1 (na + Py +1(t) = m1maPny (8) + 12 VP, —1(t) — k2 VP, () Sl

«lrlnhuh:,n _V_/

Gain Loss Gain Loss dPnA (t) P P v P P
— =K 1 t) — t % _1(t) — t
Degradation Production dt = [(nA * ) nA+1( ) A TLA( )] + k2 [ A 1( ) nA( )}

=K1 [('fLA + 1)PnA+l(t) — nAP,,,A(t)] + ko V [PnA—l(t) — P“A(tﬂ

= [Hl(nA + 1)]P’71A+1(t) + Ko V]PHA,l(t)] — [HL17LA + K2 V] P,LA (t)

Each reaction contributes to the rate of change of Py, , with one gain and one loss term For each copy-number n 4 and at each time ¢, the rate at which the probability of that

number changes depends on an outgoing flow and on an incoming flow of probability
dP,, , (¢
7:17’;() = r1(na 4+ Py 41(t) + w2 VP, 4 —1(t) — k104Py, (8) — k2 VP, , (1) Whenever gains and losses are equal, the rate of change in probability is equal to zero
Degradation Production Degradation Production ® We say that the system, from the viewpoint of Py, , (1), is at steady-state
Gain Loss
= [Hl(nA + 1)PnA+1(t) + Ko VPnAfl(t)] — [h‘l naA + K2 V] ]P'rzA (t)
-, A — () and ) — A | Master equation (cont.) _;, A — () and () — A | Master equation (cont.)
2022 2022
Chemical master Chemical master dP,, (t)
equation ap (t) equation ndivi = f*?l(’fLA + 1)PTL_A+1(t) — K1 nAPnA (t) + K2 VPnA—l(t) — R2 VIP’VLA (t)
:17“‘; =r1(na 4+ Py 1+1(t) — k1naPry (8) + k2 VP, —1(t) — k2 VP, (1)

(with ng =0,1,...,00)

We know that chemical master equations (CME) are defined for all n4 € {0,1,...,00}

Assume to known the initial number of molecule of A and use it as initial condition
® In a degradation + production systems, there is no maximum number n .4
T
K 1 |
A-50
K2 e}
00— A I
* 05 - 1 ‘ o
or ny =T
3 Poy(t=0)=14" A
. . . . . . . . . By 0, elsewhere
This master equation consists of a set of infinitely many ordinary differential equations
~» The initial condition is the set {P, , (t = 0)}23:0 of initial probabilities 0

L
0 20 40 60 80 100
nA
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P, , (1)
dp,, , (t ANk 1)P, 1) — r1naPn, (t) + r2 VP —1(t) — k2 VP, (E
Chemical master 7;1%() =ki(na + I)PHA+1(7§) — K1 ”APIU\(t) + K2 VPV,,A_l(t) — K2 V]PH,A(t) Chemical master dt F(na +1) ’LA+1( ) = Fina ”A( )+ k2 A () = k2 %A( )
equation equation

S —— (with g = 0,1, ..., 050) Statistic (with ng =0,1,...,00)

distribution distribution

. . W inspect th t tions f last t lues of th bers n
We can inspect the component equations for a first two values of the copy number n4 ¢ can mspec ¢ component equations for a tast two values of the copy nuimbers 14

For n4 = 0, we have For ny =74, we have
dPy (1)
dt

dPrz ()
= K1 (0 + 1)P0+1(t) — K1 (O)Po(t) + K2 V]P)U_l(t) — K2 VPU(t) dt

= H1P1(t) — K2 V]P[)(t)

= K1 (W + I)PﬁJrl(t) — K1 (W)Pﬁ(t) + K2 V]P)Wfl(t) — K2 V]P’ﬁ(t)

= K2 VPW—I(t) — (Klm-‘r K2 V) ]P’H(t)

For ny =7 — 1, we have
For n4 = 1, we have A A ’

dPzo—1(t) o o
dPy (¢t —nA— A\ _ - s 1P
1O (4 DB (0) — s (VP8 + 2 VL (8) — 52 VEL (1) @ A D (O = s (- D ()
= 2r1Pa(t) — k1P1(t) + w2 VIPo(t) — k2 VIP1(2) N *{iwpﬁilil(t);}w VB ()
=2r1P2(t) — (k1 + k2 V)P1(8) + k2 VPo(2) = hlnAPﬁ(t) —r1(na — l)mel(t) + K2 VPW*Q(t) — k2 V]Pﬂfl(t)
= N|W]P’m(ﬁ) — [)ﬂ (W — 1) + K2 V] IPW,1 (t) + Ko Vpﬁfg(t)
CHENLY03 A — () and ) — A | Master equation (cont.) CHEMLLYOS A — () and ) — A | Master equation (cont.)
2022 2022

tati

Chemical master Chemical master
equation equation

The solution to the chemical master equation

dP, , (t) K1
’# = k1 (na + VP 41(8) — w11aPn (8) + k2 VPy —1(8) — k2 VP, (£) A=50
K2 A
(with nq =0,1,...,00) 0 — A A AAA A
Kinetic parameters and initial conditions N At
To solve this master equation in practice, a truncation at some n 4 > 7Tix can be used L A A
— - A A
~+ The approximation is acceptable, because P, , — 0 as n4 — oo, whatever ¢ #1 = 0.1sec 4 A
KoV = 1.0sec™ ! A Cp

n4(0) =0 ﬂi
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In addition, we have derived the chemical master equation for all valuesn4 = 0,1,...,00
Cu%aif;(t) =k1(na + DPpy+1(8) — k1naPn (8) + k2 VPr —1(t) — k2 VP, (1)

That is,

%t(t) = r1P1(t) — ko VPo(2)

dp;t(t) =2r1P2(t) — (k1 + k2 V) Pi(t) + k2 VPo(t)

dIP’;t(t) = 3m1P3(t) — (261 + k2 V) Pa(t) + w2 VP (t)

dp%;l(t) = w1 AP (8) = [o1(mA — 1) 4 k2 VIPag_1(t) + ro VPrg—2(t)
dmd;f;(t) = w2 VPig—1(t) = (ki + k2 V) Prg(t)

CHEM-LV03
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We can use the master equation to determine the expected evolution (E [N.(%)]);~¢

In general, we have

[eS)

E[NA@®] = D naPn,(t)

np=0
= Ma(t)

We can also use the master equation to determine the spread around (E[N4(t)]);>¢

In general, we have

o

Bl = MaOF] = 32 (4= Ma@) st

Va(t)

A — 0 and () — A | Statistics (cont.)

By multiplying each component equation of the master equation by n 4, we obtain

d]P)'n. t
ATJ‘:&() = rana(na + DPny41(8) = 5114 Py (1)
+ oA VP, —1(8) = roma VP, (8)  (for all ng =0,1,...,00)
That is,
dPo(t
nA (;)t( ) = r1naP1(t) — k2na VPo(2)

dPy (¢
d1t( ) = 2r114P2(t) — (k1 + k2 V) naP1(t) + kana VPo(t)

dP (1)
a 3r1naPs(t) — (261 + k2 V) naPa(t) + kang VP1(t)

Summing over all the values of n4, we get

24P, (1) & - 2
2; nAT: 2; r1na(na + 1P, +1(t) — 2 k1A Py 4 (1)
na=0 na=0 na=0

oo

oo
+ Z H,Qn_AVPn_Afl(t)f Z f'\ignAVPnA(t)
naA=0 n,=0
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A @ and A nd

- S AP, (1) & > s

Chemical master n, “hemical master

e > nAdiA = Y mima(na+ DPoys1(t) = Y mina®Poy(t) S

Statistics na=0 t na=0 n4=0 Statistics

oo oo
+ Z rona VP, —1(t) — Z rona VP, , (t)

We can write the ordinary differential equation for the evolution of the process’ mean
na =0 na=0 dMa(t e =
—— T():Hl Z na(na + )P, 41(t) — k1 Z nA2]PV,LA(t)
. n4=0 n=0
Rearranging terms, we get o o
4 = 0o oo + KoV Z naPy 4 —1(t) — k2 V Z nalPy , (t)
T 2 naPn () = r1 Z na(na + 1Py +1(t) — w1 Z; %Py, (1) na=1 nA=0
n =0 naA=0 n =0
Ma(t)
oo oo
+ KoV Z naPy 4 —1(t) — k2 V Z n APy, (t)
ng =1 n,=0
——
M4 (t)
CHENLIVOS A — () and () — A | Statistics (cont.) CHBNLIVS A — () and () — A | Statistics (cont.)
2022 2022
dM 4 (t >, > dM4(t > >
A o and T(): K1 Z na(na + 1Py, 11(t) —r1 Z nAZIF’nA(t) T():Kl Z (na —1)nalPy, (t) — k1 Z nAanA(t)
. n,=0 na=0 e na=0 na=0
’ oo oo
Statistics oo oo
+roV nA]P’n,A,l(t) —ko V nAP”A(t)
dimteie FraV > naPay 1 (8) =2V D naPy (1) n,Az=:1 77,AZ=0
na=1 napA=0
Changing the indexes (n4 + 1) ~ n4 and na ~ (n4 — 1) in the first term, we write Changing the indexes (n4 — 1) ~ n4 and na ~ (n4 + 1) in the third term, we write
dM 4 (2t >, dM 4 (t > >
T() =K1 Z (na = 1)naPn , (1) T() = k1 Z (na — D)naPn, (¢) — k1 Z nA2]PnA(t)
ns—1=0 n,=0 na=0
oo o0
i s s + roV (na + )P, (t) =k V naPn , ()
— K1 Z nAQIP’,,,A(t)—I—HgV Z nAPy,—1(t) — k2 V Z AP, (t) nAgzl . nAX::O A
nA=0 nap=1 nA=0
o0 (oo} (oo}
=n1 > (na—DnaPu,(t) =r1 Y (na— AP () —r1 D na?Puy (1)
na=1 n,=0 n =0
= - .
np=
. . . +roV 21 ) (na + 1P (t) — ko V ZO naP, , (1)
= —_ np=
— K1 Z a2 Py, (t) + 2V Z nAPy, —1(t) — 2V Z APy, (t) LA —_— “
na=0 ng=1 naA=0

n =0
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dMa(t) - - 2
dM oo oo — =K Z (na —1)nalPn, () — r1 Z A Pn, (1)
@irmienil meiien A(t) =K 7 Dn P t < 9 2[?’ t Chemical master dt na=0 na=0
S T—hl 2 (na —1)na ”A()—hl 2 nA “A( ) e A= A=
Statistics n =0 n =0 Statistics

[ee) [ee)
e +r2V 3L (at DPo,u(8) —r2V 3 maPuy(t)

S S n=0 n4=0
+r2V D> (na+ DPu (8 — 2V D nalP, (1)
n=0 n =0

Combining the third and fourth terms (gain and loss from production), we get
Combining the first and second term (gain and loss due to degradation), we get

dM(t) -
— L=k LA, (1)
AM(t oo Qi K1 Z NAL 7 5
7”4( ) = K1 Z [(’!LA— 1)7Z,A—’!LA2] ]P)”A(t) n =0
dt -0 —
n =0 00 o
A + R0V Y (nat DPny (8) — 2V Y naPuy (1)
oo oo
n,=0 na=0
+r2V D> (na+ DPu(8) — k2 VD naPhy (1) - -
na=0 na=0 = —K1 Z HAP”A(t)JrHQV Z [(nAJrl) 7TL_A]]P71A(t)
oo oo [e o) i —g —
na=0 na=0
=—n1 D maPu () RV Y (At DPy () — ko VD naPuy (1) 1
nA=0 n =0 n =0 ad ad
=—k1 3 AP () + RV D Poy(b)
na=0 n =0
o A — (0 and ) — A | Statistics (cont. vos A — () and ) — A | Statistics (cont.
CHEM-LV03 CHEM-LV03
2022 2022
dMa(t) > > . . s s _
——— Z naPy , (t) +r2 V Z Py, () We consider the evolution of the mean process from an initial condition M4(0) =0
dt na=0 n4=0 (m:,“.w‘ e i
Statistics A i) @

Because we have that Y n 4Py, (t) = M4(t) and > P, (t) =1, we have St it 052 A A ; A .

AMA(t) Kinetic parameters and initial conditions N A A

———— = -k Ma(t) + r2V A A

dt k1 = 0.1sec™ ! A, A
The equation of motion for the expected value of (N4(t));>0 KoV = 1.0sec™ ! 4 Cp 4
ns(0) =0 ﬂi
To integrate it, we need to specify the initial condition,
‘We have,

Mu(t=0) = Mu(0) oo ro
Ma(t) = 1 V + (M4 (0) - ﬁV) exp (—r1t)

The solution can be written in closed form, K
K2 v K2 v ( B
K2 K2 = — exp (—~r1
Ma(t) = TV-&- <MA(0)—TV> exp (—r1t) K1 K1
‘1 ‘1

K2

= l’vu—exp(—m))

K
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We can derive an ordinary differential equation for the evolution of the process’ variance
We start by considering the definition of variance of the process at time ¢

Chemical master
equation

piaven E[(Va(t) = Ma()?] = 37 [na— Ma(O) P (1)

Sta y n,
distribution

[TLAz —2naMu(t) + M_A(t)ﬂ ]P’,,,A(t)

na%Pr (1) — 2Ma(t) D naPy (1)

n 0 n4=0
Ma(t)
oo
+ MA(t)2 Z Pry (t)
na=0
=1
oo
= 2P, (1) — Ma(t)?
naA nA( ) A( )
na=0
= Val(t)
CHEMLLY0S A — () and () — A | Statistics (cont.)
2022
In addition, for all values n4 = 0,1,...,00, we derived the chemical master equation
raster dP, , (t)
—— ”;7? = k1(na + )P 41(t) — k11aP, (8) + k2 VB, —1(8) — k2 VP, (£)
By multiplying each component (n4 = 0, 1,...,00) of the master equation by 7,42
dP,, , (t)
’IL_AZ::[#;f =K1 nAz(nA =+ 1)P7,,A+1(t) — f'\'ln,A?)PnA (t)

+ Ko nA2 VP, —1(t) — k2 nA2 VP, (t)

After summing over n 4 and rearranging the terms, we get

d oo oo oo
& Z nA2]P71A (t) = k1 Z nA2(nA + 1P, +1(t) — k1 Z ni’\IP’nA(t)
n4=0 n4=0 naA=0
oo oo
+ KoV Z nAle’ﬂA,l(t) — ko V Z nA2IP’nA(t)

nap=1 n=0

CHEM-IV3 A — () and () — A | Statistics (cont.)
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oo
Z ”AZPMA(t) = Va(t)+ JMA(t)2
na=0
Chemical master
S:a‘“;ﬂ;s That is, we have quickly found a relationship between the process’ mean and variance

~ (‘This relation is general, not system specific, it will be used later on)
By taking the derivative of both sides with respect to time, we get

d & d
EMZ;O na”Py, (t) = 3 [Va®) + Ma(t)?]

= dv (t) + dM ()2
Ta A dar

= Svaw +2ma0)

Rearranging, we have

dVa(t)  d &
AVal) _ 4 5™ o (1) 2 Ma(t)

dt dt =0 :
!
?
CHEM-LV03 A—DPand ) — A | Statistics (COIlt.)
2022
d & ) oo
a Z n.A2HDn_A(t) =K1 Z TL_AQ(TL_A + 1)PnA+1(t) —K1 Z n_AS]P’,,LA(t)
n 4 =0 na=0 n=0

+ ko V E TLAZIP’nA,l(t)—HgV Z TLAZP”A(t)

nap=1 n =0

Changing indexes (ng + 1) ~ n4 and ng ~ (n4 — 1) in the first sum, we get

d oo oo oo
€ Z niPnA(t) =K1 Z (na — 1)2nAIPnA (t) —r1 Z n,ngn,A(t)
naA=0 na—1=0 naA=0

o0 o0
+ oV Z ni\IP’nA_l(t)—H,QV Z niPnA(t)

nap=1 nA=0
o0 o0
=k Y (ma—12naPu,(t) —r1 > niPay(t)
TZA:1 nA=0
N——
n =0

oo oo
+ RV D AP, () =2V D> nEPay (1)
na=1 na=0
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oo

oo oo
€ Z TLJ24P7LA(t) =K1 Z (nA_l)Z".APnA(t)_Hl Z "’LiIPnA(t)
na=0 naA=0 na=0
oo oo
+r2V D nAPu, 18—k VD nAPa, (1)
nag=1 naA=0

Changing indexes (n4 — 1) ~» n4 and n4 ~» (n4 + 1) in the third sum, we get

d oo oo oo
e Z ni]P’nA(t) =K1 Z (na — 1)2nAIP’nA(t) — K1 Z niPnA ()
na=0 naA=0 na=0

+ RV Z (n_A+1)2PnA(t)7H2V Z n?AIF’nA(t)

ng+1=1 na=0
oo oo
S S (A AP, () - k1 S Paa ()
naA=0 naA=0

+r2V D (a1 Py () — k2 VY nEPay (1)
naA=0 naA=0

A — () and () — A | Statistics (cont.)

o)

o ST AP () =k1 Y (=2n% + na)Pny (8)
nA=0 n =0

+r2V D (na+ 1) Py () — k2 VD nAPay (1)
naA=0 naA=0

Combining the third and fourth sum, we get
[ee) fee)
Q& ni]P’nA(t) =K1 Z (—Qni\ + na)Pny (1)
npA=0 nA=0
oo

2V 7 [(na+1)? = nd]Pay(t)
np=0 """

2n4+1

o0 o0
=r1 Y (=203 +na)Puy(t) +r2V D (2na+ DPay ()T
na=0 na=0

CHEM-LV03
2022
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A — () and ) — A | Statistics (cont.)

oo oo oo
a& Z niPnA(t) =K1 Z (na— I)Qn.APnA(t) — k1 Z ni\PnA(t)
naA=0 naA=0 n =0

o0 (oo}
+r2V D> (na+ 1) Py () — ko VD nAPay (1)
nA=0 naA=0

Combining the first and second sum, we get

d oo o0
o ST onAPa, () =r1 > [(na — 1)2na — 03] Pry (1)
na=0 nA:O\—’_/

*2"34‘*’"1\

oo oo
FraV 3 (At 1D)2Pry () —raV D nEPa, (1)
nap=0 nap=0

=r1 Y (=20 +na)Pny(t)

na=0

oo oo
+roV Z (nA+1)2PTLA(t) — RV Z ”,24Pn,4(t)
na=0 naA=0

A — () and () — A | Statistics (cont.)

d oo fee) [ee)
o 2 AP (D) =k D0 (“2nh +na)Pag(8) + RV DT (2na+ DPoy (1)
na=0 naA=0 naA=0

We can use some of the identities introduced earlier to get

d oo fee) [ee)

o 2 AP (D) =k D0 (“2nh + na)Pag(8) + RV YT (2na+ DPay (1)
na=0 naA=0 naA=0
Va(t)+Ma(t)?

) oo
= —2K1 Z n4Pr  (t) +r1 Z naPn (1)
na=0 naA=0

VA1) +M (1) M (1)

(oo} o0
+2m0V D> naPry () +h2V D Pry (1)

naA=0 n4=0

M4 (2) 1
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2022

A ) and
A

o — d

e a[VA(t) + Ma(t)?] = =261 [Va(t) + Ma(t)?] + w1 Ma(t) + 262 VM a(t) + k2 V

Statistics

Sta

distribution

Taking the derivative with respect to time, we obtain

dVv. dM,
cﬁ(t) +oMA(D) (ﬁ(t)

= —2K1 [V_A(t) + M_A(t)2] + k1 MA(t) + 22 VM A(L) + k2 V
Rearranging, we get

dVa(®)

dM
AO_ a0

dt
——
—r 1 MA(t)+r2V
+ HlMA(t) + 2Ko VM_A(t) + KoV
= —2K1 VA(t) + K1 M_A(t) + KoV

—2k1 [Via(t) + Ma(t)?]

crEMLIVOS A — 0 and ) — A | Statistics (cont.)

2022

— 0 anc dM4(t
o L A = —r1Ma(t)+ 12V
» dt
dVa(t
Statistics #() = —2K1 V_A(t) + HlMA(t) +roV

Statio:
distrit

We are interested in the expected value and spread of the process after an infinite time

Both the expected value and the spread of the process approach steady-state

8S __ H
M3 = Jim Ma()

ss

VA

lim Va(t
JMm, Valt)
By letting the derivatives to be equal to zero, we get

0=—r1MZP +r2V
0= —2K VJS45+H1MZS+H2V

After solving the set of equations, we get

Mg =vy="2v
K1

CHEM-IV3 A — () and ) — A | Statistics (cont.)

2022

A nd

A

Chemical master
equation

Statistics

dMal®) =—k1Ma(t)+r2V
dt
va(t) = 261 Va(t) + 51 Ma(t) + 52 V

The equations of motion for the mean and variance process can be integrated in time
® Initial conditions must be provided
® That is, M 4(0) and V.4(0)
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Stationary distribution
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CHENLLYOS A — () and ) — A | Stationary distribution (cont.)

2022 2022
A — 0 and A 0 and
D — A 0 — A
Chemical master Chemical master dP,, , (1)
e It is interesting to understand what is the limit probability distribution Py , (£ — 00) e g oM (na +1D)Py, +1(L) — k11aPyy (8) + 2 VPy,—1(t) — k2 VP, (1)
Stationar; . Stationar;
d:s:ributiin Tny = tlifgo P"'.A (t) (for all ng = 0,1,.. ) Lot o

distribution

For the case of n4 = 0 molecules, at t = co we get
One way to determine this limit distribution is by running many stochastic simulations
for a sufficiently long time, then build an empirical approximation of the distribution 0

K1

1(na + 1)P7LA+1(t) — HlnAPn,A(t) —+ Ko V]P”A_l(t) — K2 VIPnA (t)

(
(na + 1Py, +1(00) — k1naPs 4 (00) + 2 VP 4 —1(00) — k2 VP, (00)

Alternatively, we can consider the steady-state form of the chemical master equation

= r1(na 4+ 1)Tp 441 — K1nATny, + 2 Vi -1 — k2 Vs,
® Forall ng =0,1,...,, we have
= w1 (D)7 =1 — #1(0)Tn 4 =0 + K2 VApy=—1 — o Vn =0
dP t = K1y =1 — k2 VT =0
%() = r1(na + DPr1(t) — w114Pn, (1) + k2 VP, —1(8) — k2 VPr, (£) A e
0 This yields the relationship between the long-term probabilities of n4 = 0 and ny =1
K2
Tnpo=1 = :‘ilV Tn =0,
CHEM-V03 A — () and () — A | Stationary distribution (cont.) CHENLVOS A — () and () — A | Stationary distribution (cont.)
2022 2022
4 — 0 and A — and
‘('hl'vnn al master dP (t) ‘(‘\n'vnn al master dIP) (t)
’(‘17*; = k1 (na + DPr41(t) — m11aPr, (8) + k2 VP, —1(8) — k2 VP (£) ’;% = r1(na + DPr41(t) — m114P, (8) + 12 VP, —1(8) — k2 VPa, (£)
Stationary Stationary
distribution distribution

Similarly, for n4 = 1 molecules

Then, for n4 = 2 molecules
0= r1(na+D)mn 41 — r1namn, + k2 Vi, -1 — ko Vi,

0="ri(na+ 1)7r”A+1 — K1NATn 4 + K2 Vip—1 — k2 Vi,
=r1(2)mn =2 — k1 (D)0 =1 + k2 Van =0 — k2 Vg =1 = k1(3)Tn =3 — k1 (2)Tn =2 + K2 Vp =1 — ko VIp 4 =2
= 2K1 Ty =2 — K1Tn =1 + k2 VTn =0 — k2 Vitn 4 =1 =3r1mp =3 — 261Tn =2 + Ko Van =1 — ko Vi =2
= 2R T =2 — (k1 + k2 V)Trn,_A:l + K2 VTrnA=O

= 3r1Tn =3 — 2(k1 + r2 V)T =2 + K2 Vg =1
This yields the relation between the long-term probabilities of n4 = 0,1 and nyq = 2 This yields the relation between the long-term probabilities of ng = 1,2 and nyg = 3

Y4 1 K2 1 _112(k1 +R2V) 1/ kaV
TrnA:2—2 T ﬂnA:1_§ ?1 Tn =0 Tna=3 = 3 T 7771_,4:2_5 o Tng=1

2



CHEM-LV03
2022

A ® and
D — A

Chemical master

equation
Statistics

Stationary
distribution

CHEM-LV03
2022

A — 0 and
0D — A
Chemical master
equation
Statistics
Stationary

distribution

A — () and () — A | Stationary distribution (cont.)

dP, , (t
#() = r1(na + DPp41(t) — m11aPr, (8) + k2 VP, —1(8) — k2 VP, ()
For the general case, the steady-state chemical master equation for n4 = 1,2, ...
0=ri(na+Dmn 41— Kinamn, + k2 Vin,—1 — k2 Vi,

This yields the relation between the long-term probabilities of ng — 1,n4 and ngq + 1

1

™ =
natl r1(na+1)

[(kina + ko V) mn, — ko Vs, —1]

A — () and ) — A | Stationary distribution (cont.)

The recursion from the steady-state master equation has also a closed-form solution

C [ raV\™
Toa = — | — (for all ng =0,1,... and C € R)
nA-: K1

To determine constant C, substitute 7, , in the normalisation constraint

X C [ kaV A
1= Z !< >
N—— ——

na=0 nA K1
A
—c ad 1 KoV A
o X (%)

Rearranging, we get
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A — () and ) — A | Stationary distribution (cont.)

We can iteratively obtain 7, , for all values of n4 =1,2,...,00, from a known 7, 4, =0

1

A T )

[(I{l’!LA +r2 V)T, — kK2 Vﬂ’n,A—l]

After computing {7, , }ijoo, we re-normalise to satisfy the usual closure constraint

S
Z T, =1
naA=0

That is, for all n4 we re-compute all the 7, ,

Tn g
Tn, =

e (na=1,2,...,00)
Y0 T
A=

A — () and ) — A | Stationary distribution (cont.)

The resulting stationary distribution 7, , of copy numbers is the Poisson distribution

1 (V™ KoV
Tr,,,A—nA! K1 P K1

Transient distributions are also Poisson, with mean M4 (t), if n4(0) =0




