

Higher-order reactions

Stochastic analysis and simulation of reactive and diffusive systems

Francesco Corona $(\neg_{-}\neg)$

Chemical and Metallurgical Engineering School of Chemical Engineering CHEM-XOXO 2022 Kinetics Zeroth-order reactions First-order reaction Second-order reactions Higher-order reactions Rate constants Propensity functions

CHEM-XOXO

2022

Kinetics

CHEM-XOXO 2022

Kinetics Zeroth-order reactions First-order reaction Second-order reactions Higher-order reactions Rate constants Propensity

Stochastic mass-action kinetics

We considered the molecules of N_s chemical species homogeneously distributed in a volume V, at thermal equilibrium, interacting through N_r irreversible reaction channels

We symbolised the n_s -th species with S_{n_s} and its abundance in the reaction compartment at time t with copy-numbers $N_{n_s}(t)$, the reaction channels were denoted by \mathcal{R}_{n_r}

For any n_r -th reaction channel involving the N_s species, we have the chemical equation

$$\underline{S}_{1,n_r} \mathcal{S}_1 + \underline{S}_{2,n_r} \mathcal{S}_2 + \dots + \underline{S}_{N_s,n_r} \mathcal{S}_{N_s} \xrightarrow{k_{n_r}}$$

$$\overline{S}_{1,n_r} \mathcal{S}_1 + \overline{S}_{2,n_r} X_2 + \dots + \overline{S}_{N_s,n_r} \mathcal{S}_{N_s} \quad (n_r = 1, \dots, N_r)$$

At time t, the state of the system of size Ω is the collection of abundances of all species

 $N(t) = (N_1(t), N_2(t), \dots, N_{N_s}(t))$ $X(t) = (X_1(t), X_2(t), \dots, X_{N_s}(t))$

Stochastic mass-action kinetics (cont.)

Often, we have deterministic rate laws with definite orders, in which the conversion rate $\hat{v}_{n_r}(N^c(t))$ is proportional to the copy-number of reactants raised to some power

$$\widehat{v}_{n_r}\left(X^{c}(t)\right) = \widehat{k}_{n_r} \prod_{n_s=1}^{N_s} N^{c}_{n_s}(t)^{\underline{S}_{n_s,n_r}}$$

The conversion rate $\hat{v}(X^c(t) \mid \hat{k}_{n_r})$ is the reaction count per unit of time

• The conversion rate constant $\hat{k}_{n,r}$ has always units sec⁻¹

Similarly, we have deterministic rate laws with definite orders, in which the reaction rate $v_{n_r}(X^c(t))$ is proportional to the concentration of reactants raised to some power

$$v_{n_r}(X^c(t)) = k_{n_r} \prod_{n_s=1}^{N_s} X^c_{n_s}(t)^{\underline{S}_{n_s,n_r}}$$

The reaction rate $v(X^{c}(t) | k_{n_{r}})$ is the reaction count per unit of time and system size • The reaction rate constant $k_{n,r}$ has units that depend also on Ω

Stochastic mass-action kinetics (cont.)

Kinetics Higher-order reactions

$$\underbrace{\widehat{k}_{n_r}}_{\widehat{v}(\cdot)} \underbrace{\prod_{n_s=1}^{N_s} N_{n_s}^c(t)^{\underline{S}_{n_s,n_r}}}_{\widehat{v}(\cdot)} = \underbrace{\Omega k_{n_r}}_{\Omega k_{n_r}} \underbrace{\prod_{n_s=1}^{N_s} X_{n_s}^c(t)^{\underline{S}_{n_s,n_r}}}_{\Omega v(\cdot)}$$

By equating the conversion rate and the (overall) reaction rate, we get

There exists a relationship that combines reaction rate and conversion rate constants

Because we have that $N_{n_s} = \Omega X_{n_s}$, we get

$$\widehat{k}_{n_r} = \frac{k_{n_r}}{\Omega^{\sum_{n_s=1}^{N_s} \underline{S}_{n_s,n_r} - 1}}$$

Stochastic mass-action kinetics (cont.)

Kinetics

CHEM-XOXO

2022

The progress $Z_{n_r}(t)$ of the n_r -th channel is the reaction count

At time t, we have the collection of copy-numbers of all species

 $Z(t) = (Z_1(t), \dots, Z_{N_n}(t))$

 $N(t) = (N_1(t), N_2(t), \dots, N_{N_s}(t))$

When a reaction occurs, the state is updated

N(t) = N(t=0) + SZ(t)

CHEM-XOXO 2022

Kinetics

Stochastic mass-action kinetics (cont.)

The basis for the stochastic analysis and simulation is the probability per unit time of occurrence of reaction \mathcal{R}_{n_r} , or the reaction propensity, given the system state N(t)

$$\frac{\underline{S}_{1,n_r}}{S_1 + \underline{S}_{2,n_r}} S_2 + \dots + \underline{S}_{N_s,n_r} S_{N_s} \xrightarrow{\kappa_{n_r}} \overline{S}_{1,n_r} S_1 + \overline{S}_{2,n_r} X_2 + \dots + \overline{S}_{N_s,n_r} S_{N_s} \quad (n_r = 1, \dots, N_r)$$

Each reaction \mathcal{R}_{n_r} is equipped with a rate constant κ_{n_r} and a rate law $\nu_{n_r} (N(t) | \kappa_{n_r})$ \sim We can think of the stochastic rate law as an hazard or propensity function

 $\nu_{n_r}\left(N(t) \mid \kappa_{n_r}\right)$

 \sim With associated stochastic rate constant, an hazard or propensity constant

κ_{n_r}

The rate law and the interpretation of the constant is determined by the reaction order

The dependence of the rate law only on state N(t) is linked to modelling assumption

- (The relationship reflects our assumption about the system)
- (Elementary reactions | well-mixed | thermal equilibrium)

I-XOXO 022	Stocna
der	
er reactions rder	For a well in the \mathcal{R}_{t}
der	u deia

CHEM

Kinetic

Stochastic mass-action kinetics (cont.)

ll-mixed system in thermal equilibrium, each combination of molecules involved n_r channel is assumed to have the same probability per unit time to react, κ_{n_r}

 $\kappa_{n_r} dt$ is the probability that a particular combination of molecules reacts in [t, t+dt)

 $\rightsquigarrow~\kappa_{n_r}$ is thus the hazard or stochastic rate constant

When at state n(t), there are $h_{n_r}(n(t))$ combinations of molecules for reaction \mathcal{R}_{n_r}

Conditional on the state of system N(t) being n(t), the probability that a reaction \mathcal{R}_{n_r} occurs in the time interval [t, t + dt) is given by the function $\nu_{n_r} (n(t) | \kappa_{n_r}) dt$

Thus, we can write the propensity function, or stochastic rate law

$$\nu_{n_r}\left(n(t) \mid \kappa_{n_r}\right) = \kappa_{n_r} h_{n_r}\left(n(t)\right)$$

The specific form of function $h_{n_r}(n(t))$ depends on the reaction order of channel \mathcal{R}_{n_r}

Stochastic mass-action kinetics (cont.)

Kinetics Zeroth-order reactions First-order reactions Second-order reactions Higher-order reactions Rate constants

In the absence of other reactions taking place, the time until one such reaction event

$\operatorname{Exp}\left(\nu_{n_r}\left(n(t) \mid \kappa_{n_r}\right)\right)$

However, other reactions may occur in [t, t + dt) and change n(t) during the interval
Thus, this time is only assumed to be exponentially distributed

Z022 Kinetics Zeroth-order reactions Second-order reactions Rate constants Propensity functions

CHEM-XOXO

Zeroth-order reactions Reaction networks

CHEM-XOXO 2022

Kinetics Zeroth-order reactions First-order reaction Second-order reactions Higher-order reactions Rate constants Propensity functions

Zeroth-order reaction

We consider a zeroth-order reaction (production of species S_{n_s}) for the n_r -th channel

 $\emptyset \xrightarrow{\kappa_{n_r}} S_{n_s}$

The equation does not state that S_{n_s} is created from nothing, but rather that it is produced from uninteresting species, or that there is an influx from another compartment

Rate constant κ_{n_r} denotes the hazard that a molecule of S_{n_s} undergoes reaction \mathcal{R}_{n_r}

• The abundance $N_{n_s}(t)$ of S_{n_s} is irrelevant

At any time t, for zeroth-order reaction we have the propensity function

$$\nu_{n_r} \left(N(t) \mid \kappa_{n_r} \right) = \kappa_{n_r} h_{n_r} \left(N(t) \right)$$
$$= \kappa_{n_r}$$

In this case, the deterministic reaction rate $\hat{v}_{n_r}(N(t) \mid \hat{k}_{n_r}) = \hat{k}_{n_r}$ is also constant

2022
Kinetics
Zeroth-order
reactions
First-order reactions
First-order reactions
Righer-order
reactions
Rate constants
Propensity

CHEM-XOXO

First-order reactions

First-order reaction | Unimolecular

We consider a first-order reaction (degradation of species S_{n_s}) through n_r -th channel

 $\mathcal{S}_{n_n} \xrightarrow{\kappa_{n_r}} \emptyset$

The equation does not state that S_{n_s} is degraded into nothing, but rather that it is degraded into uninteresting species, or that there is an outflux to another compartment

Rate constant κ_{n_r} denotes the hazard that a molecule of S_{n_s} undergoes reaction \mathcal{R}_{n_r}

 \rightsquigarrow There are $N_{n_s}(t)$ distinct molecules of \mathcal{S}_{n_s} at t

• Each subject to hazard κ_{n_r} of reacting

At time t, for first-order/unimolecular reactions we have the propensity function

$$\nu_{n_r} \left(N_{n_s}(t) \mid \kappa_{n_r} \right) = \kappa_{n_r} h_{n_r} \left(N_{n_s}(t) \right)$$
$$= \kappa_{n_r} N_{n_s}(t)$$

In this case, the deterministic reaction rate is $\hat{v}_{n_r}(N(t) \mid \hat{k}_{n_r}) = \hat{k}_{n_r} N_{n_s}(t)$

CHEM-XOXO

2022

Second-order

reactions

Second-order reactions Reaction networks

Second-order reaction | Bimolecular (cont.)

We consider also second-order reaction between species S_{n_s} only, in the n_r -th channel

$$2\mathcal{S}_{n_s} \xrightarrow{\kappa_{n_r}} \emptyset$$

Rate constant κ_{n_s} is the hazard that any pair of molecules of S_{n_s} , while moving around the compartment, collide with sufficient energy and undergoes reaction \mathcal{R}_{n_r}

 \rightsquigarrow There are $N_{n_s}(t)$ molecules of S_{n_s} at time t

- $\rightsquigarrow \frac{N_{n_s}(t) \times (N_{n_s}(t) 1)}{2}$ distinct pairs
- Each pair subject to hazard κ_{n_r}

At time t, for second-order/bi-molecular reactions have the propensity function

$$\nu_{n_r} \left(N_{n_s}(t) \mid \kappa_{n_r} \right) = \kappa_{n_r} h_{n_r} \left(n(t) \right)$$
$$= \kappa_{n_r} \frac{N_{n_s}(t) \times (N_{n_s}(t) - 1)}{2}$$
$$= \overline{\kappa_{n_r}} \left[N_{n_s}(t) \times (N_{n_s}(t) - 1) \right]$$

In this case, the deterministic reaction rate is $\hat{v}_{n_r}(N(t) \mid \hat{k}_{n_r}) = \hat{k}_{n_r} \underbrace{N_{n_s}(t)N_{n_s}(t)}_{N_{n_s}(t)^2}$

CHEM-XOXO 2022

Kinetics Zeroth-order reactions First-order reaction Second-order reactions Higher-order reactions Rate constants Propensity functions

Second-order reaction | Bimolecular

We consider a second-order reaction between species S_{n_s} and Sn'_s in the n_r -th channel

 $\mathcal{S}_{n_s} + \mathcal{S}_{n'_s} \xrightarrow{\kappa_{n_r}} \emptyset$

Rate constant κ_{n_s} is the hazard that a pair of molecules of S_{n_s} and $S_{n'_s}$, while moving around the compartment, collide with sufficient energy and undergoes reaction \mathcal{R}_{n_r}

 \rightarrow There are $N_{n_s}(t)$ molecules of S_{n_s} and $N_{n'_s}(t)$ molecules of $S_{n'_s}$ at time t

$$\rightsquigarrow$$
 There are $\frac{N_{n_s}(t) \times N_{n'_s}(t)}{2}$ distinct pairs

• Each pair subject to reaction hazard κ_{n_r}

 ν_{n_r}

At time t, for second-order/bi-molecular reactions we have the propensity function

$$\begin{aligned} \left(N(t) \mid \kappa_{n_r} \right) &= \kappa_{n_r} h_{n_r} \left(n(t) \right) \\ &= \kappa_{n_r} \frac{N_{n_s}(t) \times N_{n_s'}(t)}{2} \\ &= \overline{\kappa_{n_r}} \left[N_{n_s}(t) \times N_{n_s'}(t) \right] \end{aligned}$$

In this case, the deterministic reaction rate is $\hat{v}_{n_r}(N(t) \mid \hat{k}_{n_r}) = \hat{k}_{n_r} N_{n_s}(t) N_{n'_s}(t)$

First-order react Second-order reactions Higher-order reactions

Propensity

Higher-order reactions

Reaction networks

Higher-order reactions

netics

Higher-order reactions

CHEM-XOXO

2022

Based on combinatorial considerations about the number of available combinations of reacting molecules, it is straightforward to extend the theory to higher-order reactions

$$\underline{S}_{1,n_r}S_1 + \underline{S}_{2,n_r}S_2 + \dots + \underline{S}_{N_s,n_r}S_{N_s} \xrightarrow{\kappa_{n_r}} \overline{S}_{1,n_r}S_1 + \overline{S}_{2,n_r}X_2 + \dots + \overline{S}_{N_s,n_r}S_{N_s}$$

For rate constant κ_{n_r} , we have the general form of the propensity function at time t

$$\nu_{n_r} \left(N(t) \mid \kappa_{n_r} \right) = \kappa_{n_r} \prod_{n_s=1}^{N_s} {\binom{N_{n_s}(t)}{\underline{S}_{n_r, n_s}}}$$
$$= \kappa_{n_r} \left[{\binom{N_1(t)}{\underline{S}_{n_r, 1}} \times {\binom{N_2(t)}{\underline{S}_{n_r, 2}}} \times \dots \times {\binom{N_{N_s}(t)}{\underline{S}_{n_r, N_s}}} \right]$$

CHEM-XOXO 2022

Higher-order

reactions

Higher-order reactions | Third-order

For example, consider the tri-merisation reaction

 $3\mathcal{S}_{n_s} \xrightarrow{\kappa_{n_r}} \mathcal{S}_{n'_s}$

The rate constant κ_{n_r} represents the hazard that three distinct molecules of species S_{n_s} come together simultaneously and react to produce one molecule of species $S_{n'_i}$

For a system with $N_{n_s}(t)$ molecules of S_{n_s} at time t, the number of distinct triples

 $\binom{N_{n_s}(t)}{3}$

At time t, these third-order/tri-molecular reactions have propensity function

$$\begin{split} \nu_{n_r} \left(N_{n_s}(t) \mid \kappa \right) &= \kappa_{n_r} \binom{N_{n_s}(t)}{3} \\ &= \kappa_{n_r} \frac{N_{n_s}(t)!}{3! (N_{n_s}(t) - 3)!} \\ &= \kappa_{n_r} \frac{N_{n_s}(t) \times (N_{n_s}(t) - 1) \times (N_{n_s}(t) - 2)}{6} \end{split}$$

In this case, the deterministic reaction rate is $\hat{v}_{n_r}(N(t) \mid \hat{k}_{n_r}) = \hat{k}_{n_r} \underbrace{N_{n_s}(t)N_{n_s}(t)N_{n_s}(t)}_{N_{n_s}(t)^3}$

CHEM-XOXO 2022

Higher-order reactions | Third-order (cont.)

Rather than modelling higher-order reaction, we often treat them as simple reactions Consider again the tri-merisation reaction as an example

$$3S_{n_s} \xrightarrow{\kappa_{n_r}} S_{n'_s}$$

We can, perhaps more realistically, model the process as a pair of second-order reactions

$$2\mathcal{S}_{n_s} \xrightarrow{\kappa_{n_r}^{\prime\prime}} \mathcal{S}_{n_s^{\prime\prime}}$$
$$\mathcal{S}_{n_s} + \mathcal{S}_{n_s^{\prime\prime}} \xrightarrow{\kappa_{n_r}^{\prime}} \mathcal{S}_{n_s^{\prime}}$$

Importantly, notice that the two system may be characterised by different dynamics

anetics eroth-order actions irst-order reaction

Higher-order

reactions

Higher-order

reactions

Higher-order reactions | Third-order (cont.)

Another example of tri-molecular reaction

$$\mathcal{S}_{n_s} + \mathcal{S}_{n'_s} + \mathcal{S}_{n''_s} \xrightarrow{\kappa_{n_r}} \emptyset$$

At time t, these third-order/tri-molecular reactions have propensity function

$$\nu_{n_r} \left(N_{n_s}(t) \mid \kappa \right) = \kappa_{n_r} N_{n_s}(t) \times N_{n'_s}(t) \times N_{n''_s}(t)$$

Another example of tri-molecular reaction

$$\mathcal{S}_{n_s} + \underbrace{\mathcal{S}_{n'_s} + \mathcal{S}_{n'_s}}_{2\mathcal{S}_{n'_s}} \xrightarrow{\kappa_{n_r}} \emptyset$$

At time t, these third-order/tri-molecular reactions have propensity function

$$\nu_{n_r}\left(N_{n_s}(t) \mid \kappa\right) = \kappa_{n_r} N_{n_s}(t) \times \frac{N_{n'_s}(t) \times (N_{n'_s}(t) - 1)}{2}$$

CHEM-XOXO 2022 Higher-order reactions Rate constants

Rate constants Reaction networks

Rate constants

Literature on chemical reactions is dominated by the continuous and deterministic view • Rate constants are documented as deterministic rate constants $\{k_{n_r}\}_{n_r=1}^{N_r}$

To carry out correct stochastic simulations, these constants must be properly converted

 \rightsquigarrow The rates used in simulation must reflect molecular reaction hazards

There exist relationships between stochastic and deterministic rates

• They can can be used to convert between the two forms

Rate constants (cont.) CHEM-XOXO

In a stochastic model, the amount of a species is represented by an integer (the number of molecules of that species), as (some kind of) concentration in a deterministic model

Say we want to convert concentrations $\{X_{n_s}\}$ (moles per litre) to copy-numbers $\{N_{n_s}\}$ \rightsquigarrow We need to know the volume V of the compartment (in litres)

For a concentration of X_{n_s} moles of some species S_{n_s} in a volume of V litres, we have

 $X_{n_s} \times V$ moles of \mathcal{S}_{n_s}

Because each mole contains $N_A \simeq 6.023 \times 10^{23}$ molecules of S_{n_e} , we have

 $X_{n_s} \times V \times N_A$ molecules of S_{n_s}

Rate constants

2022

CHEM-XOXO

2022

Rate constants

Rate constants (cont.)

A typical tubular cell of *Escherichia coli* is $l = 2\mu m$ long and of diameter $d = 1\mu m$ $\rightarrow 1\mu m = 1 \times 10^{-6} m$

We can compute the volume V of a bacterium

Rate constants

Higher-order reactions

$$V = \pi \left(\frac{d}{2}\right)^2 \times l$$
$$= \pi \left(\frac{1 \times 10^{-6}}{2}\right)^2 \times (2 \times 10^{-6})$$
$$= \frac{\pi}{2} \times 10^{-18} \text{m}^3$$
$$= \frac{\pi}{2} \times 10^{-15} \text{L}$$

Suppose that species S_{n_s} exists inside the cell with concentration $X_{n_s} = 10^{-5}$ M

We can compute the number of molecules of species S_{n_e} inside the cell

$$X_{n_s} \times V \times N_A = 10^{-5} \times (\pi/2) \times 10^{-15} \times (6.023 \times 10^{23})$$

\$\approx 9461\$

CHEM-XOXO

2022

Rate constants

Rate constants | Zeroth-order reaction

$$\emptyset \xrightarrow{\kappa_{n_r}} S_{n_r}$$

Consider a zeroth-order reaction (production of species S_{n_s}) for the n_r -th channel \rightsquigarrow The deterministic rate law

$$v_{n_r} \left(X^c(t) \right) = \frac{\widehat{v}_{n_r} \left(N^c(t) \right)}{\Omega}$$
$$= k_{n_r}$$

 \rightsquigarrow The deterministic rate constant k_{n_r} has dimensions $\left| \underbrace{\text{moles} \times \text{L}^{-1}}_{\text{moles}} \times \text{s}^{-1} \right|$

In a vessel of size $\Omega = V$, $k_{n_r} \times N_A \times V$ molecules S_{n_s} are produced per second

 \rightsquigarrow The stochastic rate law $\nu_{n_r}\left(N(t)\right) = \kappa_{n_r}$

 \rightarrow The stochastic rate constant κ_{n_r} has dimensions [molecules $\times s^{-1}$]

For values $\kappa_{n_r} = k_{n_r} N_A V$, the deterministic and the stochastic rate laws are equal

CHEM-XOXO 2022

Rate constants

Rate constants | First-order reaction

 $S_n \xrightarrow{\kappa_{n_r}} \emptyset$

Consider a first-order reaction (degradation of species S_{n_r}) for the n_r -th channel $\rightsquigarrow\,$ The deterministic rate law

$$v_{n_r} \left(X^c(t) \right) = \frac{\widehat{v}_{n_r} \left(N^c(t) \right)}{\Omega}$$
$$= k_{n_r} X^c_{n_s}(t)$$

- \leadsto The deterministic rate constant k_{n_r} has dimensions $\underbrace{\text{moles}\times\text{L}^{-1}}_{}\times\text{s}^{-1}$
- In a container of size $\Omega = V$, $X_{n_s}(t)$ corresponds to $N_{n_s}(t) = X_{n_s}^c(t) V N_A$ molecules
- The stochastic rate law

 $\nu_{n_r}\left(N(t)\right) = \kappa_{n_r} N_{n_s}(t)$

• The stochastic rate constant κ_{n_r} has dimensions [molecules $\times s^{-1}$]

```
For values \kappa_{n_r} = k_{n_r}, the deterministic and the stochastic rate laws are equal
```

2022 Propensity functions

CHEM-XOXO

Propensity function Reaction networks

Propensity function

CHEM-XOXO 2022

Kinetics Zeroth-order reactions First-order reaction Second-order reactions Righer-order reactions Rate constants

Propensity functions We defined the propensity function $\nu(t)$ of a certain reaction event as that function such that $\nu(t)dt$ defines the probability that that reaction occurs in the interval [t, t + dt)

For zeroth- and first-order reactions, the occurrence of events with zero or one molecule

Chemical reaction	Order	Propensity function	Units of κ
$ \begin{array}{c} \emptyset \xrightarrow{\kappa} \mathcal{A} \\ \mathcal{A} \xrightarrow{\kappa} \emptyset \end{array} $	0-th 1-st	$rac{\kappa V}{N_{\mathcal{A}}(t)\kappa}$	$\frac{\mathrm{m}^{-3}~\mathrm{sec}^{-1}}{\mathrm{sec}^{-1}}$

For second-order reactions, we require the occurrence of events involving two molecules

	1		
$\begin{array}{c} \mathcal{A} + \mathcal{B} \xrightarrow{\kappa} \emptyset \\ \mathcal{A} + \mathcal{A} \xrightarrow{\kappa} \emptyset \end{array} \qquad \qquad$	2-nd 2-nd	$N_{\mathcal{A}}(t)N_{\mathcal{B}}(t)\frac{\kappa}{V}$ $N_{\mathcal{A}}(t)\left(N_{\mathcal{A}}(t)-1\right)\frac{\kappa}{V}$	$m^3 sec^{-1}$ $m^3 sec^{-1}$

CHEM-XOXO 2022 Propensity function (cont.)

cs order

Higher-order reactions

Propensity functions For third-order reactions we require the occurrence of events involving three molecules

Chemical reaction	Order	Propensity function	Units of κ
$A + B + C \stackrel{\kappa}{\longrightarrow} \emptyset$	3 rd	$N_{\star}(t) N_{\sigma}(t) N_{\sigma}(t) \stackrel{\mathcal{K}}{}$	$m^6 \text{ soc}^{-1}$
$A + B + C \longrightarrow \emptyset$	-1u	$N_{\mathcal{A}}(t) N_{\mathcal{B}}(t) N_{\mathcal{C}}(t) \frac{1}{V^2}$	m ² sec
$\mathcal{A} + \mathcal{A} + \mathcal{B} \longrightarrow \emptyset$	3-rd	$N_{\mathcal{A}}(t) \left(N_{\mathcal{A}}(t) - 1 \right) N_{\mathcal{B}}(t) \frac{V^2}{V^2}$	m° sec
$\mathcal{A} + \mathcal{A} + \mathcal{A} \longrightarrow \emptyset$	3-rd	$N_{\mathcal{A}}(t) \left(N_{\mathcal{A}}(t) - 1 \right) \left(N_{\mathcal{A}}(t) - 2 \right) \frac{1}{V^2}$	m ^o sec ⁻¹