

Dimerisation, with production Stochastic analysis and simulation of reactive and diffusive systems

Francesco Corona (¬_¬)

∕ ▲

Aalto University

Chemical and Metallurgical Engineering School of Chemical Engineering

CHEM-LV-03 2022 $\begin{array}{ccc} 2\mathcal{A} \rightarrow \emptyset \ \mathrm{and} \\ \emptyset \rightarrow \mathcal{A} \end{array}$

CHEM-LV-03 2022

 $\begin{array}{ccc} 2\mathcal{A} \rightarrow \ensuremath{\,\emptyset} \end{array} & \ensuremath{\mathrm{and}} \\ \ensuremath{\emptyset} \rightarrow \ensuremath{\,\mathcal{A}} \end{array} & \ensuremath{\mathrm{and}} \end{array}$

Dimerization, with production

- We consider a certain chemical species \mathcal{A} in a container of volume V and two reactions
- The dimerisation of species \mathcal{A} coupled by the production of the same species

$$2\mathcal{A} \xrightarrow{\kappa_1/V} \emptyset$$
$$\emptyset \xrightarrow{\kappa_2} \mathcal{A}$$

The propensity function for dimerisation

$$\nu_1 \left(N_{\mathcal{A}}(t) \mid \kappa_1 \right) = \frac{\kappa_1}{V} \left[N_{\mathcal{A}}(t) \times \left(N_{\mathcal{A}}(t) - 1 \right) \right]$$

The propensity function for production

$$\nu_2\left(N_{\mathcal{A}}(t) \mid \kappa_2\right) = \kappa_2 V$$

The dimerisation reaction is second order and the production reaction is zeroth-order

• Overall, the system is second-order

The combined propensity function

$$\nu\left(N_{\mathcal{A}}(t) \mid \kappa_{1}, \kappa_{2}\right) = \nu_{1}\left(N_{\mathcal{A}}(t) \mid \kappa_{1}\right) + \nu_{2}\left(N_{\mathcal{A}}(t) \mid \kappa_{2}\right)$$

CHEM-LV-03

2022

Master equation

 $2\mathcal{A} \to \emptyset$ and $\emptyset \to \mathcal{A}$ Master equation

Master equation

Dimerization | Master equation

Let $\mathbb{P}_{n_{\mathcal{A}}}(t)$ denote the probability that $n_{\mathcal{A}}$ molecules of \mathcal{A} are in the system at time t• Let Δt be a small interval such that in $[t, t + \Delta t)$ only one reaction occurs

 $2\mathcal{A} \xrightarrow{\kappa_1/V} \emptyset$ $\emptyset \xrightarrow{\kappa_2} \mathcal{A}$

There are three way that may lead to have $n_{\mathcal{A}}(t + \Delta t)$ molecules of \mathcal{A}

• One dimension reaction $\mathcal{A} + \mathcal{A} \rightarrow \emptyset$ occurred in $[t, t + \Delta t)$

 $n_{\mathcal{A}}(t + \Delta t)$ was $n_{\mathcal{A}}(t + \Delta t) + 2$

This occurs with probability $\kappa_1/V[(n_A + 2)(n_A + 1)]$

• One production reaction $\emptyset \to \mathcal{A}$ occurred in $[t, t + \Delta t)$ occurred

 $n_{\mathcal{A}}(t + \Delta t)$ was $n_{\mathcal{A}}(t + \Delta t) - 1$

This occurs with probability $\kappa_2 V$

• No reaction occurred in $[t, t + \Delta t)$

 $n_{\mathcal{A}}(t + \Delta t)$ was $n_{\mathcal{A}}(t + \Delta t)$

This occurs with probability $1 - [\kappa_1/V [(n_A + 2)(n_A + 1)] + \kappa_2 V]$

Dimerisation, with production | Master equation (cont.)

For $n_{\mathcal{A}} = 2$, we get

After combining the probabilities for all possible reaction events, we get the balance

$$2\mathcal{A} \to \emptyset$$
 and
 $\emptyset \to \mathcal{A}$
Master equation

CHEM-LV-03

2022

CHEM-LV-03

2022

Master equation

$$\mathbb{P}_{n_{\mathcal{A}}}(t+\Delta t) = \mathbb{P}_{n_{\mathcal{A}}}(t) \times \left[1 - \frac{\kappa_{1}}{V} n_{\mathcal{A}} (n_{\mathcal{A}} - 1) \Delta t - \kappa_{2} V \Delta t\right]_{\text{No reaction}} + \mathbb{P}_{n_{\mathcal{A}} + 2}(t) \times \frac{\kappa_{1}}{V} (n_{\mathcal{A}} + 2) (n_{\mathcal{A}} + 1) \Delta t$$
Dimerisation
$$+ \mathbb{P}_{n_{\mathcal{A}} - 1}(t) \times \kappa_{2} V \Delta t + \mathbb{P}_{\text{roduction}}$$
(1)

Manipulating terms, we get the change $\Delta \mathbb{P}_{n_{\mathcal{A}}}(t)$ in probability over the interval Δt

$$\frac{\mathbb{P}_{n_{\mathcal{A}}}(t+\Delta t)-\mathbb{P}_{n_{\mathcal{A}}}(t)}{\Delta t} = \frac{\kappa_{1}}{V}(n_{\mathcal{A}}+2)(n_{\mathcal{A}}+1)\mathbb{P}_{n_{\mathcal{A}}+2}(t)\pm 0\times\mathbb{P}_{n_{\mathcal{A}}+1}(t) - \left[\frac{\kappa_{1}V}{n_{\mathcal{A}}}(n_{\mathcal{A}}+1)-\kappa_{2}V\right]\mathbb{P}_{n_{\mathcal{A}}}(t)+\kappa_{2}V\mathbb{P}_{n_{\mathcal{A}}-1}(t)$$
(2)

CHEM-LV-03 2022

Master equation

Dimerisation, with production | Master equation (cont.)

In the limit of a vanishing Δt , we get the chemical master equation for $n_{\mathcal{A}} = 1, 2, \ldots$

$$\frac{\mathrm{d}\mathbb{P}_{n_{\mathcal{A}}}(t)}{\mathrm{d}t} = \frac{\kappa_{1}}{V} (n_{\mathcal{A}} + 2) (n_{\mathcal{A}} + 1) \mathbb{P}_{n_{\mathcal{A}} + 2}(t) \pm 0 \times \mathbb{P}_{n_{\mathcal{A}} + 1}(t) - \left[\frac{\kappa_{1} V}{n_{\mathcal{A}}} (n_{\mathcal{A}} + 1) - \kappa_{2} V\right] \mathbb{P}_{n_{\mathcal{A}}}(t) + \kappa_{2} V \mathbb{P}_{n_{\mathcal{A}} - 1}(t)$$
(3)

For $n_{\mathcal{A}} = 0$, we get

$$\begin{aligned} \frac{\mathrm{d}\mathbb{P}_{0}(t)}{\mathrm{d}t} &= \frac{\kappa_{1}}{V}(2)\left(1\right)\mathbb{P}_{2}(t) \pm 0 \times \mathbb{P}_{1}(t) - \left[\frac{\kappa_{1}}{V} \times 0 \times (1) - \kappa_{2}V\right]\mathbb{P}_{0}(t) + \kappa_{2}V\mathbb{P}_{-1}(t) \\ &= 2\frac{\kappa_{1}}{V}\mathbb{P}_{2}(t) + \kappa_{2}V\mathbb{P}_{0}(t) \end{aligned}$$

For $n_{\mathcal{A}} = 1$, we get

$$\frac{\mathrm{d}\mathbb{P}_{1}(t)}{\mathrm{d}t} = \frac{\kappa_{1}}{V}(3)(2)\mathbb{P}_{3}(t) \pm 0 \times \mathbb{P}_{2}(t) - \left[\frac{\kappa_{1}}{V} \times 1 \times (2) - \kappa_{2}V\right]\mathbb{P}_{1}(t) + \kappa_{2}V\mathbb{P}_{0}(t)$$
$$= 6\frac{\kappa_{1}}{V}\mathbb{P}_{3}(t) - \left[2\frac{\kappa_{1}}{V} - \kappa_{2}V\right]\mathbb{P}_{1}(t) + \kappa_{2}V\mathbb{P}_{0}(t)$$

Dimerisation, with production Master equation (cont.)	
am (4)	
$\frac{\mathrm{dr}_{n_{\mathcal{A}}}(t)}{\mathrm{d}t} = \frac{\kappa_{1}}{V}(n_{\mathcal{A}}+2)\left(n_{\mathcal{A}}+1\right)\mathbb{P}_{n_{\mathcal{A}}+2}(t) \pm 0 \times \mathbb{P}_{n_{\mathcal{A}}+1}(t)$	
$-\left[\frac{\kappa_1}{V}n_{\mathcal{A}}\left(n_{\mathcal{A}}+1\right)-\kappa_2 V\right]\mathbb{P}_{n_{\mathcal{A}}}(t)+\kappa_2 V\mathbb{P}_{n_{\mathcal{A}}-1}(t)$	(4)

One more component equations of the chemical master equation

$$\frac{\mathrm{d}\mathbb{P}_{2}(t)}{\mathrm{d}t} = \frac{\kappa_{1}}{V}(4)(3)\mathbb{P}_{4}(t) \pm 0 \times \mathbb{P}_{3}(t) - \left[\frac{\kappa_{1}}{V} \times 2 \times (3) - \kappa_{2} V\right]\mathbb{P}_{2}(t) + \kappa_{2} V\mathbb{P}_{1}(t)$$
$$= 12\frac{\kappa_{1}}{V}\mathbb{P}_{4}(t) - \left[6\frac{\kappa_{1}}{V} - \kappa_{2} V\right]\mathbb{P}_{2}(t) + \kappa_{2} V\mathbb{P}_{1}(t)$$

Statistics

$2\mathcal{A} \to \emptyset$ and $\emptyset \to \mathcal{A}$ Statistics

Dimerisation, with production | Statistics

We can use the master equation to determine the statistics of the process $(N_{\mathcal{A}}(t))_{t\geq 0}$ At a point t in time, we can determine the expected value of the process

$$E[N_{\mathcal{A}}(t)] = \sum_{n_{\mathcal{A}}=0}^{\infty} n_{\mathcal{A}} \mathbb{P}_{n_{\mathcal{A}}}(t)$$
$$= M_{\mathcal{A}}(t)$$

The expected mismatch with the expected value of the process at time t

$$\mathbb{E}\left[\left(n_{\mathcal{A}}(t) - M_{\mathcal{A}}(t)\right)^{2}\right] = \sum_{n_{\mathcal{A}}=0}^{\infty} \left[n_{\mathcal{A}} - M_{\mathcal{A}}(t)\right]^{2} \mathbb{P}_{n_{\mathcal{A}}}(t)$$
$$= V_{\mathcal{A}}(t)$$

For this system, these statistics can only be determined as numerical approximations

• Infinite sums and only empirical $\mathbb{P}_{n_{\mathcal{A}}}(t)$ from simulations

CHEM-LV-03 2022

Statistics

Dimerisation, with production | Statistics (cont.)

We discus an approach based on generating functions used to determine $\mathbb{P}_{n_{\mathcal{A}}}(\infty) = \pi_{n_{\mathcal{A}}}$ • Probability generating functions are also known as discrete Laplace transforms

We use generating functions to determine steady-state statistics $M_{\mathcal{A}}(\infty)$ and $V_{\mathcal{A}}(\infty)$

CHEM-LV-03 2022

Statistics

CHEM-LV-03

2022

Statistics

Dimerisation, with production | Statistics (cont.)

A probability generating function (PGF) is a function $G: [-1,1] \times (0,\infty) \to \mathbb{R}$

$$G(x,t) = \sum_{n=0}^{\infty} x^n \mathbb{P}_n(t)$$

Variable t only indexes functions and variables

_

For the specific reaction system, we consider random variable $N = N_{\mathcal{A}}(t)$ at time t

$$G(x,t) = \sum_{n_{\mathcal{A}}=0}^{\infty} x^{n_{\mathcal{A}}} \mathbb{P}_{n_{\mathcal{A}}}(t)$$

Take the first derivative of the probability generating function with respect to x, _

$$\begin{split} \frac{\partial G(x,t)}{\partial x} &= \frac{\partial}{\partial x} \left[\sum_{n_{\mathcal{A}}=0}^{\infty} x^{n_{\mathcal{A}}} \mathbb{P}_{n_{\mathcal{A}}}(t) \right] \\ &= \sum_{n_{\mathcal{A}}=0}^{\infty} \frac{\partial}{\partial x} \left[x^{n_{\mathcal{A}}} \mathbb{P}_{n_{\mathcal{A}}}(t) \right] \\ &= \sum_{n_{\mathcal{A}}=0}^{\infty} \underbrace{n_{\mathcal{A}} x^{n_{\mathcal{A}}-1}}_{n_{\mathcal{A}}=0} \mathbb{P}_{n_{\mathcal{A}}}(t) \end{split}$$

_

Statistics

Dimerisation, with production | Statistics (cont.)

$$\begin{aligned} \frac{\partial G(x,t)}{\partial x} &= \sum_{n_{\mathcal{A}}=0}^{\infty} n_{\mathcal{A}} x^{n_{\mathcal{A}}-1} \mathbb{P}_{n_{\mathcal{A}}}(t) \\ &= \underbrace{(0) \times x^{0-1} \times \mathbb{P}_{n_{\mathcal{A}}=0}(t)}_{n_{\mathcal{A}}=0} + \sum_{n_{\mathcal{A}}=1}^{\infty} n_{\mathcal{A}} x^{n_{\mathcal{A}}-1} \mathbb{P}_{n_{\mathcal{A}}}(t) \\ &= \sum_{n_{\mathcal{A}}=1}^{\infty} n_{\mathcal{A}} x^{n_{\mathcal{A}}-1} \mathbb{P}_{n_{\mathcal{A}}}(t) \end{aligned}$$

After substituting x = 1, we get the expected value $M_{\mathcal{A}}(t)$ of the copy number $N_{\mathcal{A}}(t)$

$$\frac{\partial G(x,t)}{\partial x}\Big|_{x=1} = \sum_{n_{\mathcal{A}}=1}^{\infty} n_{\mathcal{A}} \underbrace{(x=1)^{n_{\mathcal{A}}-1}}_{=1} \mathbb{P}_{n_{\mathcal{A}}}(t)$$
$$= \sum_{\substack{n_{\mathcal{A}}=0}}^{\infty} n_{\mathcal{A}} \mathbb{P}_{n_{\mathcal{A}}}(t)$$
$$= \underbrace{\sum_{\substack{n_{\mathcal{A}}=0\\M_{\mathcal{A}}(t)}}^{\infty} n_{\mathcal{A}} \mathbb{P}_{n_{\mathcal{A}}}(t)}_{M_{\mathcal{A}}(t)}$$

CHEM-LV-03 2022

Dimerisation, with production | Statistics (cont.)

CHEM-LV-03

2022

Statistics

Statistics

Take the second derivative of the probability generating function with respect to x,

$$\begin{split} \frac{\partial^2 G(x,t)}{\partial x^2} &= \frac{\partial}{\partial x} \left[\frac{\partial G(x,t)}{\partial x} \right] \\ &= \frac{\partial}{\partial x} \left[\sum_{n_{\mathcal{A}}=1}^{\infty} n_{\mathcal{A}} x^{n_{\mathcal{A}}-1} \mathbb{P}_{n_{\mathcal{A}}}(t) \right] \\ &= \sum_{n_{\mathcal{A}}=1}^{\infty} \frac{\partial}{\partial x} \left[n_{\mathcal{A}} \underbrace{x^{n_{\mathcal{A}}-1}}_{n_{\mathcal{A}}} \mathbb{P}_{n_{\mathcal{A}}}(t) \right] \\ &= \sum_{n_{\mathcal{A}}=1}^{\infty} n_{\mathcal{A}} \underbrace{\left(n_{\mathcal{A}}-1 \right) x^{n_{\mathcal{A}}-2}}_{n_{\mathcal{A}}} \mathbb{P}_{n_{\mathcal{A}}}(t) \end{split}$$

CHEM-LV-03 2022

Statistics

$$\frac{\partial^2 G(x,t)}{\partial x^2} = \sum_{n=1}^{\infty} n_{\mathcal{A}} \left(n_{\mathcal{A}} - 1 \right) x^{n_{\mathcal{A}} - 2} \mathbb{P}_{n_{\mathcal{A}}}(t)$$

Dimerisation, with production | Statistics (cont.)

$$=\underbrace{(1)(1-1)x^{1-2}\mathbb{P}_{n_{\mathcal{A}}=1}(t)}_{n_{\mathcal{A}}=1} + \sum_{n_{\mathcal{A}}=2}^{\infty} n_{\mathcal{A}}(n_{\mathcal{A}}-1)x^{n_{\mathcal{A}}-2}\mathbb{P}_{n_{\mathcal{A}}}(t)$$
$$=\sum_{n_{\mathcal{A}}=2}^{\infty} n_{\mathcal{A}}(n_{\mathcal{A}}-1)x^{n_{\mathcal{A}}-2}\mathbb{P}_{n_{\mathcal{A}}}(t)$$

After substituting x = 1, we get the expected value of the quantity $[N_{\mathcal{A}}(t) - M_{\mathcal{A}}(t)]^2$

$$\frac{\partial^2 G(x,t)}{\partial x^2}\Big|_{x=1} = \sum_{n_{\mathcal{A}}=2}^{\infty} n_{\mathcal{A}} (n_{\mathcal{A}}-1) \underbrace{(x=1)^{n_{\mathcal{A}}-2}}_{=1} \mathbb{P}_{n_{\mathcal{A}}}(t)$$
$$= \sum_{n_{\mathcal{A}}=2}^{\infty} n_{\mathcal{A}} (n_{\mathcal{A}}-1) \mathbb{P}_{n_{\mathcal{A}}}(t)$$
$$= \sum_{n_{\mathcal{A}}=0}^{\infty} n_{\mathcal{A}} (n_{\mathcal{A}}-1) \mathbb{P}_{n_{\mathcal{A}}}(t)$$

Dimerisation, with production | Statistics (cont.)

$$V_{\mathcal{A}}(t) = \sum_{n_{\mathcal{A}}=0}^{\infty} n_{\mathcal{A}}^{2} \mathbb{P}_{n_{\mathcal{A}}}(t) - M_{\mathcal{A}}(t)^{2}$$

We derived earlier the general equation for the evolution of the process' variance $V_{\mathcal{A}}(t)$

After some algebraic manipulations, we get

$$V_{\mathcal{A}}(t) = \sum_{n_{\mathcal{A}}=0}^{\infty} n_{\mathcal{A}}^{2} \mathbb{P}_{n_{\mathcal{A}}}(t) - M_{\mathcal{A}}(t)^{2}$$

=
$$\sum_{n_{\mathcal{A}}=0}^{\infty} n_{\mathcal{A}} (n_{\mathcal{A}}-1) \mathbb{P}_{n_{\mathcal{A}}}(t) + \underbrace{M_{\mathcal{A}}(t)}_{\partial x} - \underbrace{M_{\mathcal{A}}(t)^{2}}_{\partial x} \left(\frac{\partial G(x,t)}{\partial x}\Big|_{x=1}\right)^{2}$$

Mean and variance processes can be determined from the derivatives of G(x, t) at x = 1

Statistics

Dimerisation, with production | Statistics (cont.)

We can also use the generating function at x = 0 to determine probabilities $\mathbb{P}_{n_{\mathcal{A}}}(t)$

 $G(x,t) = \sum_{n_{\mathcal{A}}=0}^{\infty} x^{n_{\mathcal{A}}} \mathbb{P}_{n_{\mathcal{A}}}(t)$

After substituting x = 0 in G(x, t), we get

$$G(x = 0, t) = \sum_{n_{\mathcal{A}}=0}^{\infty} (0)^{n_{\mathcal{A}}} \mathbb{P}_{n_{\mathcal{A}}}(t)$$
$$= (0)^{0} \mathbb{P}_{0}(t) + \sum_{n_{\mathcal{A}}=1}^{\infty} \underbrace{(0)^{n_{\mathcal{A}}}}_{=0} \mathbb{P}_{n_{\mathcal{A}}}(t)$$
$$= 1 \times \mathbb{P}_{0}(t)$$

That is,

$$\mathbb{P}_0(t) = \left. G(x,t) \right|_{x=0}$$

Dimerisation, with production | Statistics (cont.)

 $2\mathcal{A} \rightarrow \emptyset$ and $\emptyset \rightarrow \mathcal{A}$ Master equation Statistics

CHEM-LV-03 2022

$$\frac{\partial G(x,t)}{\partial x} = \sum_{n_{\mathcal{A}}=1}^{\infty} n_{\mathcal{A}} x^{n_{\mathcal{A}}-1} \mathbb{P}_{n_{\mathcal{A}}}(t)$$

After substituting
$$x = 0$$
 in $\frac{\partial G(x, t)}{\partial x}$, we get

$$\frac{\partial G(x, t)}{\partial x}\Big|_{x=0} = \sum_{n_{\mathcal{A}}=1}^{\infty} n_{\mathcal{A}}(0)^{n_{\mathcal{A}}-1} \mathbb{P}_{n_{\mathcal{A}}}(t)$$

$$= (1)(0)^{1-1} \mathbb{P}_{1}(t) + \sum_{n_{\mathcal{A}}=2}^{\infty} n_{\mathcal{A}} \underbrace{(0)^{n_{\mathcal{A}}-1}}_{=0} \mathbb{P}_{n_{\mathcal{A}}}(t)$$

$$= 1 \times 1 \times \mathbb{P}_{1}(t)$$

That is,

$$\mathbb{P}_1(t) = \frac{\partial G(x,t)}{\partial x}\Big|_{x=0}$$

CHEM-LV-03 2022

 $2\mathcal{A} \to \emptyset$ and $\emptyset \to \mathcal{A}$ Master equation Statistics

$$\frac{\partial^2 G(x,t)}{\partial x^2} = \sum_{n_{\mathcal{A}}=2}^{\infty} n_{\mathcal{A}} \left(n_{\mathcal{A}} - 1 \right) x^{n_{\mathcal{A}}-2} \mathbb{P}_{n_{\mathcal{A}}}(t)$$

After substituting
$$x = 0$$
 in $\frac{\partial^2 G(x,t)}{\partial x^2}$, we get

$$\frac{\partial^2 G(x,t)}{\partial x^2}\Big|_{x=0} = \sum_{n_{\mathcal{A}}=2}^{\infty} n_{\mathcal{A}} (n_{\mathcal{A}} - 1) (0)^{n_{\mathcal{A}}-2} \mathbb{P}_{n_{\mathcal{A}}}(t)$$

$$= (2) (2-1) (0)^{2-2} \mathbb{P}_2(t) + \sum_{n_{\mathcal{A}}=3}^{\infty} n_{\mathcal{A}} (n_{\mathcal{A}} - 1) \underbrace{(0)^{n_{\mathcal{A}}-2}}_{=0} \mathbb{P}_{n_{\mathcal{A}}}(t)$$

$$= 2 \times 1 \times 1 \times \mathbb{P}_2(t)$$

That is,

$$\mathbb{P}_2(t) = \frac{1}{2} \frac{\partial^2 G(x,t)}{\partial x^2} \Big|_{x=0}$$

 $\mathfrak{l} \to \emptyset$ and $o \mathcal{A}$

CHEM-LV-03 2022

Statistics

Dimerisation, with production | Statistics (cont.)

For higher-order derivatives, we get

$$\mathbb{P}_{0}(t) = \frac{1}{0!}G(x,t)\Big|_{x=0}$$
$$\mathbb{P}_{1}(t) = \frac{1}{1!}\frac{\partial G(x,t)}{\partial x}\Big|_{x=0}$$
$$\mathbb{P}_{2}(t) = \frac{1}{2!}\frac{\partial^{2}G(x,t)}{\partial x^{2}}\Big|_{x=0}$$
$$\mathbb{P}_{3}(t) = \frac{1}{3!}\frac{\partial^{3}G(x,t)}{\partial x^{3}}\Big|_{x=0}$$
$$\cdots = \cdots$$

By induction, we can write

$$\mathbb{P}_{n_{\mathcal{A}}}(t) = \frac{1}{n_{\mathcal{A}}!} \frac{\partial^{n_{\mathcal{A}}} G(x,t)}{\partial x^{n_{\mathcal{A}}}} \Big|_{x=0}$$

Dimerization | **Probability** generating function

 $2\mathcal{A} \rightarrow \emptyset$ and $\emptyset \rightarrow \mathcal{A}$ Master equation Statistics In order to proceed, we have to determine the probability generating function G(x, t)We start by multiplying the individual components of the master equation by x^{n_A}

$$\frac{\mathrm{d}\mathbb{P}_{n_{\mathcal{A}}}(t)}{\mathrm{d}t} = \frac{\kappa_{1}}{V}(n_{\mathcal{A}}+2)(n_{\mathcal{A}}+1)\mathbb{P}_{n_{\mathcal{A}}+2}(t)\pm 0\times\mathbb{P}_{n_{\mathcal{A}}+1}(t) \\ -\left[\frac{\kappa_{1}}{V}n_{\mathcal{A}}(n_{\mathcal{A}}+1)-\kappa_{2}V\right]\mathbb{P}_{n_{\mathcal{A}}}(t)+\kappa_{2}V\mathbb{P}_{n_{\mathcal{A}}-1}(t)$$

That is, for all $n_{\mathcal{A}} = 0, 1, \ldots$ we write

$$\begin{aligned} x^{n_{\mathcal{A}}} \frac{\mathrm{d}\mathbb{P}_{n_{\mathcal{A}}}(t)}{\mathrm{d}t} &= x^{n_{\mathcal{A}}} \frac{\kappa_{1}}{V} (n_{\mathcal{A}}+2) \left(n_{\mathcal{A}}+1\right) \mathbb{P}_{n_{\mathcal{A}}+2}(t) \pm x^{n_{\mathcal{A}}} \times 0 \times \mathbb{P}_{n_{\mathcal{A}}+1}(t) \\ &- x^{n_{\mathcal{A}}} \left[\frac{\kappa_{1}}{V} n_{\mathcal{A}} \left(n_{\mathcal{A}}+1\right) - \kappa_{2} V \right] \mathbb{P}_{n_{\mathcal{A}}}(t) + x^{n_{\mathcal{A}}} \kappa_{2} V \mathbb{P}_{n_{\mathcal{A}}-1}(t) \end{aligned}$$

CHEM-LV-03 2022

Dimerization | **Probability generating function (cont.)**

 $\stackrel{\rightarrow}{\rightarrow} \emptyset \ {
m and} \ \stackrel{\rightarrow}{\rightarrow} \mathcal{A}$

Statistics

$$x^{n_{\mathcal{A}}} \frac{\mathrm{d}\mathbb{P}_{n_{\mathcal{A}}}(t)}{\mathrm{d}t} = x^{n_{\mathcal{A}}} \frac{\kappa_{1}}{V} (n_{\mathcal{A}} + 2) (n_{\mathcal{A}} + 1) \mathbb{P}_{n_{\mathcal{A}} + 2}(t) \pm x^{n_{\mathcal{A}}} \times 0 \times \mathbb{P}_{n_{\mathcal{A}} + 1}(t) - x^{n_{\mathcal{A}}} \left[\frac{\kappa_{1}}{V} n_{\mathcal{A}} (n_{\mathcal{A}} + 1) - \kappa_{2} V \right] \mathbb{P}_{n_{\mathcal{A}}}(t) + x^{n_{\mathcal{A}}} \kappa_{2} V \mathbb{P}_{n_{\mathcal{A}} - 1}(t)$$

Summing over $n_{\mathcal{A}}$ and rearranging terms, we get

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{n_{\mathcal{A}}=0}^{\infty} x^{n_{\mathcal{A}}} \mathbb{P}_{n_{\mathcal{A}}}(t) = \frac{\kappa_{1}}{V} \sum_{n_{\mathcal{A}}=0}^{\infty} x^{n_{\mathcal{A}}} \left(n_{\mathcal{A}}+2\right) \left(n_{\mathcal{A}}+1\right) \mathbb{P}_{n_{\mathcal{A}}+2}(t)$$
$$-\frac{\kappa_{1}}{V} \sum_{n_{\mathcal{A}}=0}^{\infty} x^{n_{\mathcal{A}}} n_{\mathcal{A}} \left(n_{\mathcal{A}}-1\right) \mathbb{P}_{n_{\mathcal{A}}}(t) - \kappa_{2} V \sum_{n_{\mathcal{A}}=0}^{\infty} x^{n_{\mathcal{A}}} \mathbb{P}_{n_{\mathcal{A}}}(t)$$
$$+ \kappa_{2} V \sum_{n_{\mathcal{A}}=0}^{\infty} x^{n_{\mathcal{A}}} \mathbb{P}_{n_{\mathcal{A}}-1}(t)$$

CHEM-LV-03 2022

 $\begin{array}{l} 2\mathcal{A} \to \emptyset \ \text{and} \\ \emptyset \to \mathcal{A} \\ \\ \text{Master equation} \\ \\ \text{Statistics} \end{array}$

Dimerization | **Probability** generating function (cont.)

$$\begin{split} \frac{\partial}{\partial t} \underbrace{\sum_{n_{\mathcal{A}}=0}^{\infty} x^{n_{\mathcal{A}}} \mathbb{P}_{n_{\mathcal{A}}}(t)}_{G(x,t)} &= \frac{\kappa_{1}}{V} \underbrace{\sum_{n_{\mathcal{A}}=2}^{\infty} x^{n_{\mathcal{A}}-2} \left(n_{\mathcal{A}}\right) \left(n_{\mathcal{A}}-1\right) \mathbb{P}_{n_{\mathcal{A}}+2}(t)}_{\frac{\partial^{2} G(x,t)}{\partial x^{2}}} \\ &- \frac{\kappa_{1}}{V} x^{2} \underbrace{\sum_{n_{\mathcal{A}}=2}^{\infty} x^{n_{\mathcal{A}}-2} n_{\mathcal{A}} \left(n_{\mathcal{A}}-1\right) \mathbb{P}_{n_{\mathcal{A}}}(t)}_{\frac{\partial^{2} G(x,t)}{\partial x^{2}}} - \kappa_{2} V \underbrace{\sum_{n_{\mathcal{A}}=0}^{\infty} x^{n_{\mathcal{A}}} \mathbb{P}_{n_{\mathcal{A}}}(t)}_{G(x,t)}}_{\frac{\partial^{2} G(x,t)}{\partial x^{2}}} + \kappa_{2} V x \underbrace{\sum_{n_{\mathcal{A}}=0}^{\infty} x^{n_{\mathcal{A}}} \mathbb{P}_{n_{\mathcal{A}}}(t)}_{G(x,t)}}_{G(x,t)} \end{split}$$

That is,

$$\frac{\partial G(x,t)}{\partial t} = \frac{\kappa_1}{V} \left(1-x^2\right) \frac{\partial^2 G(x,t)}{\partial x^2} + \kappa_2 V \left(x-1\right) G(x,t)$$

2022 $2\mathcal{A} \to \emptyset \text{ and}$ $\emptyset \to \mathcal{A}$

Statistics

CHEM-LV-03

Dimerization | **Probability** generating function (cont.)

$$\frac{\partial G(x,t)}{\partial t} = \frac{\kappa_1}{V} \left(1-x^2\right) \frac{\partial^2 G(x,t)}{\partial x^2} + \kappa_2 V \left(x-1\right) G(x,t)$$

This yields a partial differential equation for the probability generating function G(x, t) \rightsquigarrow To solve it, we need to specify initial and boundary conditions

The initial condition G(x, t = 0) can be obtained by using $\mathbb{P}_{n_A}(t = 0)$, to get

$$G(x,t=0) = \sum_{n_{\mathcal{A}}=0}^{\infty} x^{n_{\mathcal{A}}} \mathbb{P}_{n_{\mathcal{A}}}(t=0)$$

For the first G(x = 1, t) of the two boundary conditions, we have

$$G(1,t) = \underbrace{\sum_{n_A=0}^{\infty} \mathbb{P}_{n_A}(t)}_{=1}$$

For the second boundary condition G(x = -1, t), we have

$$G(-1, t) = G(-1, 0) \exp(-2\kappa_2 V t)$$

Dimerization | **Statistics** (cont.)

Statistics

CHEM-LV-03

2022

We can use the stationary probability distribution function $G_{SS}: [-1,1] \to \mathbb{R}$ to determine the stationary probability distribution π_{n_A} and statistics $M_{\mathcal{A}}(\infty)$ and $V_{\mathcal{A}}(\infty)$

For the stationary probability generating function, we can use the definition

$$G(x, t = \infty) = \lim_{t \to \infty} G(x, t)$$
$$= \lim_{t \to \infty} \left[\sum_{n_{\mathcal{A}}=0}^{\infty} x^{n_{\mathcal{A}}} \mathbb{P}_{n_{\mathcal{A}}}(t) \right]$$
$$= \sum_{n_{\mathcal{A}}=0}^{\infty} \lim_{t \to \infty} \left[x^{n_{\mathcal{A}}} \mathbb{P}_{n_{\mathcal{A}}}(\infty) \right]$$
$$= \sum_{n_{\mathcal{A}}=0}^{\infty} x^{n_{\mathcal{A}}} \pi_{n_{\mathcal{A}}}$$
$$= G_{SS}(x)$$

Dimerization | **Statistics** (cont.)

Statistics

CHEM-LV-03

2022

We can use the identities derived earlier to determine the statistics at steady-state

$$M_{\mathcal{A}}(\infty) = \frac{\partial G_{\rm SS}(x=1)}{\partial x}$$
$$V_{\mathcal{A}}(\infty) = \frac{\partial^2 G_{\rm SS}(x=1)}{\partial x^2} + M_{\mathcal{A}}(\infty) - M_{\mathcal{A}}^2(\infty)$$

For the stationary distribution, for all $n_{\mathcal{A}} = 0, 1, \ldots$, we have the PDE

$$\pi_{n_{\mathcal{A}}} = \frac{1}{n_{\mathcal{A}}!} \frac{\partial^{n_{\mathcal{A}}} G_{\mathrm{SS}}(x=0)}{\partial x^{n_{\mathcal{A}}}}$$

CHEM-LV-03 2022

Dimerization | **Probability** generating function (cont.)

Statistics

To determine the stationary probability generating function $G_{SS}(x)$, we have

$$\frac{\partial G(x,t)}{\partial t} = \frac{\kappa_1}{V} \left(1 - x^2\right) \frac{\partial^2 G(x,t)}{\partial x^2} + \kappa_2 V \left(x - 1\right) G(x,t)$$
$$= 0$$

By algebraic manipulation, we get the ordinary differential equation

$$\frac{\partial G_{\rm SS}(x)}{\partial x^2} = \frac{\kappa_2 V^2}{\kappa_1} \frac{1}{1+x} G_{\rm SS}(x)$$

Using modified Bessel functions $I_1(\cdot)$ and $K_1(\cdot)$ and integration constants C_1 and C_2 ,

$$G_{\rm SS}(x) = C_1 \sqrt{1+x} \underbrace{I_1\left(2\sqrt{\frac{\kappa_2 \, V^2(1+x)}{\kappa_1}}\right)}_{I_1(\cdot)} + C_2 \sqrt{1+x} \underbrace{K_1\left(2\sqrt{\frac{\kappa_2 \, V^2(1+x)}{\kappa_1}}\right)}_{K_1(\cdot)}$$

Dimerization | **Statistics** (cont.)

Coefficients C_1 and C_2 can be determined from boundary conditions on G_{SS} at $x = \pm 1$

Statistics

CHEM-LV-03

2022

$$C_1 = \left[\sqrt{2} \underbrace{I_1 \left(2\sqrt{\frac{2k_2 V^2}{k_1}} \right)}_{I_1(\cdot)} \right]$$
$$C_2 = 0$$

Substituting, we get

Dimerization | **Statistics** (cont.)

Statistics

Taking the first derivative with respect to x to obtain $M_{\mathcal{A}}(\infty)$, we get

Dimerization | **Statistics** (cont.) CHEM-LV-03 2022

Statistics

Taking the second derivative with respect to x, we get

$$\frac{\partial^2 G_{\rm SS}(x=1)}{\partial x^2} = \frac{\kappa_2}{2\kappa} V^2$$

After substituting to obtain $V_{\mathcal{A}}(\infty)$, we get

$$V_{\mathcal{A}}(\infty) = \underbrace{\frac{\kappa_2}{2\kappa_1}V^2}_{\frac{2\kappa_1}{2\kappa_1} + M_{\mathcal{A}}(\infty) - M_{\mathcal{A}}(\infty)^2}_{\frac{\partial^2 G_{\rm SS}(x=1)}{\partial x^2}}$$

CHEM-LV-03 2022

Statistics

Dimerization | Statistics (cont.)

Let $X_{\mathcal{A}}(t) = N_{\mathcal{A}}(t)/V$ be the concentration of species \mathcal{A} in the system at some time t

The deterministic reaction rate

$$\frac{\mathrm{d}X_{\mathcal{A}}(t)}{\mathrm{d}t} = -2k_1X_{\mathcal{A}}(t)^2 + k_2$$

Multiplying by V, we get

$$\frac{\mathrm{d}N_{\mathcal{A}}(t)}{\mathrm{d}t} = -2\frac{k_1}{V}N_{\mathcal{A}}(t)^2 + k_2 V$$

The deterministic solution $(N_{\mathcal{A}}(t))_{t>0}$ from $X_{\mathcal{A}}(0) = 0$ is not equal to $(\mathbb{E}[M_{\mathcal{A}}(t)])_{t>0}$

For $k_1/V = 0.005 \text{sec}^{-1}$ and $k_2 V = 1 \text{sec}^{-1}$, the steady state concentration

$$\overline{A}_{ss} = \underbrace{V\sqrt{\frac{k_2}{2k_1}}}_{10}$$

$$\neq \underbrace{M_{\mathcal{A}}(\infty)}_{10.13}$$

The result can be verified also by simulation using the empirical mean of the process

EM-LV-03 2022	Dime
Ø and	
equation ics	

rization | Statistics (cont.)

Statis

СН

Deterministic differential equations are not necessarily solved by the stochastic mean

 \rightsquigarrow Deterministic solutions do not provide information about fluctuations

CHEM-LV-03 2022