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Discrete to continuous simulation

The stochastic simulation of reaction systems and its variations are discrete methods

In discrete simulations, we determined or estimated the mean and variance of process

 Those statistics were used to coarsely characterise full distributions

 (Needed because often those distributions are not fully known)

We now approximate the jump process (N (t))t�0 with a continuous process (N c(t))t�0

• In principle, simulating (a path from) the continuous process should be faster

We consider a process whose expected values change with time

 We will say that the process is drifting

We consider a process whose (co)variance changes with time

 We will say that the process is di↵using

We use these concepts to develop an intuitive notion of stochastic di↵erential equation
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From discrete-state to continuous-state stochastic simulations
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Drift and di↵usion

We start by describing drift and di↵usion, locally, for a reactive system with (N (t))t�0

N (t) = N (t = 0) + SZ (t)

Given a system in state N (t) at time t , we know the copy-number at time t +�t

N (t +�t)
| {z }

Ns⇥1

= N (t)
| {z }
Ns⇥1

+ S|{z}
Ns⇥Nr

[Z (t +�t)� Z (t)]
| {z }

Nr⇥1
| {z }

Ns⇥1

We relate increments in copy-numbers with increments in reaction counts, in time

�N (t) = N (t +�t)�N (t)

= S [Z (t +�t)� Z (t)]

= S�Z (t)

We consider the increment process (�N (t))t�0 in the copy-numbers, in [t , t +�t)

• �N (t) is a random variable that we are interested to determine
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Drift and di↵usion (cont.)

The copy-number increment is a linear combination of reaction-count increments

2

66666664

�N1(t)
...

�Nnr (t)
...

�NNr (t)

3

77777775

| {z }
�N (t)
| {z }

N(t+�t)�N(t)

=

2

66666664

S1,1 · · · S1,nr · · · S1,Nr

...
. . .

...
. . .

...
Sns ,1 · · · Sns ,nr · · · Sns ,Nr

...
. . .

...
. . .

...
SNs ,1 · · · SNs ,nr · · · SNs ,Nr

3

77777775

| {z }
S
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�Z1(t)
...

�Znr (t)
...

�ZNr (t)

3

77777775

| {z }
�Z (t)
| {z }

Z(t+�t)�Z(t)
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Drift and di↵usion (cont.)

�N (t)
| {z }
Ns⇥1

= N (t +�t)
| {z }

Ns⇥1

�N (t)
| {z }
Ns⇥1

Given a system in state N (t) = n(t) at time t , we define the short-term (local) drift

E

2

64�N (t) | N (t) = n(t)
| {z }

Ns⇥1

3

75

| {z }
Ns⇥1

= E

2

64�N (t)
| {z }
Ns⇥1

3

75

n(t)
| {z }

Ns⇥1

=
⌦
�N (t)
| {z }
Ns⇥1

↵
n(t)

| {z }
Ns⇥1

Local drift is the change of the mean value of the process during interval [t , t +�t)
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Drift and di↵usion (cont.)

�N (t)
| {z }
Ns⇥1

= N (t +�t)
| {z }

Ns⇥1

�N (t)
| {z }
Ns⇥1

Given a system in state N (t) = n(t) at time t , we define the short-term (local) di↵usion

E

2

666666666666664

0

BBBBBBBB@

�N (t)
| {z }
Ns⇥1

�
⌦
�N (t)

↵
n(t)

| {z }
Ns⇥1

| {z }
Ns⇥1

1

CCCCCCCCA

0

BBBBBBBB@

�N (t)
| {z }
Ns⇥1

�
⌦
�N (t)

↵
n(t)

| {z }
Ns⇥1

| {z }
Ns⇥1

1

CCCCCCCCA

T

| {z }
1⇥Ns

3

777777777777775

n(t)
| {z }

Ns⇥Ns

= E
h
�N (t)�N (t)T

i

n(t)

=
⌦
�N (t)�N (t)T

↵
n(t)

Local di↵usion is the change of the covariance of the process during interval [t , t +�t)
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Drift and di↵usion (cont.)

We start by characterising individual short-time (�t) reaction-count increments�Znr (t)

Given the state n(t), we determined the waiting time Snr until the next reaction Rnr

The probability that reaction Rnr does not occur in the next interval �t

• (Provided no other reactions occur and the state does not change)

P [Snr > �t | N (t) = n(t)] = exp

2

664� hnr (n(t))| {z }
rate/propensity

�t

3

775

Taking the Taylor expansion around the short interval �t , we get

P [Snr > �t | N (t) = n(t)] = exp [�hnr (n(t))�t ]

= 1� hnr (n(t))�t (neglecting h.o.t.)
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Drift and di↵usion (cont.)

P [Snr > �t | N (t) = n(t)] = 1� hnr (n(t))�t

The probability of occurrence of a reaction Rnr in �t is the complementary probability

P [Snr  �t | N (t) = n(t)] = hnr (n(t))�t

For vanishingly small intervals, it is improbable that a reaction occurs more than once
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Drift and di↵usion (cont.)

P [Snr  �t | N (t) = n(t)] = hnr (n(t))

Let us consider the probability of two occurrences of reaction Rnr during [t , t +�t)

• The occurrence of Rnr in [t , t + ↵�t) and another Rnr in [t + ↵�t , t +�t)

• (↵ 2 (0, 1) joins the time of the two non-overlapping events)

We can write

P [Snr  ↵�t | N (t) = n(t)]
| {z }

hnr (n(t))↵�t

⇥P [Snr  (1� ↵)�t) | N (t) = n(t) + S�,nr ]| {z }
hnr (n(t)+S�,nr )(1�↵)�t

= 0
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Drift and di↵usion (cont.)

While the system is in state N (t) = n(t), the probability of one single reaction Rnr

P [Snr  �t | N (t) = n(t)] = hnr (n(t))�t

This is also the probability of a unit increment in the reaction-count of reaction Rnr

P [Znr (t +�t)� Znr (t) = 1 | N (t) = n(t)] = hnr (n(t))�t

Given state n(t), the distribution of reaction-count increments �Znr (t) in [t , t +�t)

P [�Znr = �znr | N (t) = n(t)] =

8
><

>:

hnr (n(t))�t , �znr = 1

1� hnr (n(t))�t , �znr = 0

0, �znr > 1
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Drift and di↵usion (cont.)

P [�Znt = �znr | N (t) = n(t)] =

8
><

>:

hnr (n(t))�t , �znr = 1

1� hnr (n(t))�t , �znr = 0

0, �znr > 1

For a vanishingly small �t , copy-numbers and propensities remain virtually constant

 As changes in propensity are negligible, reactions events in �t are independent

The probability P [�Znr = �znr | N (t) = n(t)] of that a certain number of reactions
fired in the interval �t is, by definition, well approximated by a Poisson distribution

• (Given that the probability for a reaction event remained constant)

Propensities hnr (N (t)) only depend on non-negative integer powers of copy-numbers

• Copy-numbers practically never change by more than two, per reaction event

The number of occurring reactions needs be much smaller than copy-numbers
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Drift and di↵usion (cont.)

The (conditional) expected value of short-term Poissonian reaction-count increments

⌦
�Znr (t)

↵
n(t)

=
X

�znr 2{0,1,>1}
�znr P [�Znt = �znr | N (t) = n(t)]

= hnr (n(t))�t

Similarly, for its variance we have

D

0

BBB@
�Znr (t)�

⌦
�Znr (t)

↵
n(t)

| {z }
�Znr (t)

1

CCCA

2

E

n(t)
= hnr (n(t))�t

The propensity hnr (n(t)) is interpreted as a mean conversion rate, given N (t) = n(t)
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Drift and di↵usion (cont.)

Short-term reaction-count increments {�Znr (n(t))}
Nr
nr=1 follow a Poisson distribution

 Jointly, �Z (t) = (�Z1(t), . . . ,�ZNr (t)) is a collection of Poisson variables

 The component variables can be assumed to be mutually independent

• (Reasonably, as reactions progress independently during �t)

Let h (n(t)) = (h1 (n(t)) , . . . , hNr (n(t)))
T be the vector collecting the propensities

The mean vector and the covariance matrix for the reaction-count increments,

⌦
�Z (t)

↵
n(t)

= h (n(t))�t

D
�Z (t)�Z (t)T

E

n(t)
=

2

64

h1 (n(t)) · · · 0
...

. . .
...

0 · · · hNr (n(t))

3

75�t

= HD (n(t))�t

The non-diagonal elements of the covariance matrix are all zero

• Reactions {Rnr } progress independently during �t
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The chemical Langevin equation

The short-time drift is the (conditional) expectation of the reaction-count increment
⌦
�N (t)

↵
n(t)

To determine the short-time drift, we have the relation

�N (t) = S�Z (t)

Taking conditional expectations, we get
⌦
�N (t)

↵
n(t)

= S
⌦
�Z (t)

↵
n(t)

= S h (n(t))�t
| {z }

=

2

66666664

S1,1 · · · S1,nr · · · S1,Nr

...
. . .

...
. . .

...
Sns ,1 · · · Sns ,nr · · · Sns ,Nr

...
. . .

...
. . .

...
SNs ,1 · · · SNs ,nr · · · SNs ,Nr

3

77777775

2

66666664

h1 (n(t))
...

hnr (n(t))
...

hNr (n(t))

3

77777775

| {z }
hS (n(t))

�t

Vector hS (n(t)) is the drift per unit time, or drift rate, with components

hSns (n(t)) =
NrX

nr=1

Sns ,nr hnr (n(t))
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The chemical Langevin equation (cont.)

Similarly, for the short-term di↵usion we can write

D
�N (t))�N (t))T

E

n(t)
=

⌦
�N (t)�N (t)T

↵
n(t)

�
⌦
�N (t)

↵
n(t)

⌦
�N (t)

↵T
n(t)

= S

h⌦
�Z (t)�Z (t)T

↵
n(t)

�
⌦
�Z (t)

↵
n(t)

⌦
�Z (t)

↵T
n(t)

i
S
T

= S

D
�Z (t))�Z (t)T )

E

n(t)
S
T

= S [HD (n(t))�t ]ST

= S [HD (n(t))]ST

| {z }
B(n(t))

�t

Matrix B (n(t)) is the di↵usion per unit time, or di↵usion rate, with elements

Bns ,n0
s
(n(t)) =

NrX

nr=1

Sns ,nr Sn0
s ,nr

hnr (n(t))
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The chemical Langevin equation (cont.)

We have expressions for the mean reaction-count and mean copy-number increments

⌦
�Z (t)

↵
n(t)

= h (n(t))�t

⌦
�N (t)

↵
n(t)

= hS (n(t))�t

Individually, reaction-count increment �Znr (t) of reaction Rnr is a Poisson variable

• Conditional on the state being n(t), the expected value of the variable

⌦
�Znr (t)

↵
n(t)

= hnr (n(t))�t

A Poissonian variable can be well approximated by a variable with a normal distribution

• The larger the parameter of the Poisson variable, the better the approximation

• (This parameter is also the mean and the variance of the distribution)
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The chemical Langevin equation (cont.)

Let �t be large enough for mean reaction-count increment h�Znr (t)in(t) to be large

 hnr (n(t))�t � 1

This condition is practically verified for systems with su�ciently large copy-numbers

Under these conditions, �Znr (n(t)) can be approximated by a normal variable

• The mean and the variance remain the same for each reaction

�Znr (n(t)) ⇠ N
⇣
hnr (n(t))�t , (hnr (n(t))�t)1/2

⌘
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The chemical Langevin equation (cont.)

�Znr (n(t)) ⇠ N

0

B@hnr (n(t))�t
| {z }

µ

, (hnr (n(t))�t)1/2
| {z }

�

1

CA

It is well-known that a normal variable N (µ,�) can be written as the sum of its mean
µ and the standard normal variable N (0, 1) multiplied by its standard deviation �

N (µ,�) = µ+ �N (0, 1)

From approximating the reaction-count increment of reaction Rnr as a normal variable,

�Znr (n(t)) = hnr (n(t))�t + [hnr (n(t))�t ]1/2 Nnr (0, 1)

= hnr (n(t))�t
| {z }
Deterministic

+

2

64hnr (n(t))
1/2

| {z }
Deterministic

3

75
p
�tNnr (0, 1)| {z }
Stochastic

p
�tNnr (0, 1) is a Wiener increment �Wnr (t) of a univariate Brownian motion Wnr (t)

p
�tN (0, 1) = Wnr (t +�t)�Wnr (t)| {z }

�Wnr (t)
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The chemical Langevin equation (cont.)

Jointly, the independent reaction-count increments {�Znr (n(t))}
Nr
nr=1 take the form

�Z (n(t)) =

2

64

h1 (n(t))�t

...
hNr (n(t))�t

3

75+

2

664

p
h1 (n(t))�t · · · 0

...
. . .

...
0 · · ·

p
hNr (n(t))�t

3

775N (0, INr )

=

2

64

h1 (n(t))�t

...
hNr (n(t))�t

3

75

| {z }
Deterministic

+

2

664

h1 (n(t))
1/2 · · · 0

...
. . .

...

0 · · · hNr (n(t))
1/2

3

775

| {z }
Deterministic

p
�tN (0, INr )| {z }
Stochastic

p
�tN (0, INr ) is a Wiener increment�WR(t) of multivariate Brownian motionsWR(t)

p
�tN (0, INr ) = WR(t +�t)�WR(t)

| {z }
�WR(t)
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The chemical Langevin equation (cont.)

�Znr (n(t)) = hnr (n(t))�t +
h
hnr (n(t))

1/2
ip

�tNnr (0, 1)

When considering the copy-number increment of the ns -th species, we have

�Nns (t) = Nns (t +�t)�Nns (t)| {z }
Sns ,��Z(n(t))

=
NrX

nr=1

Sns ,nr [Znr (t +�t)� Znr (t)]

=
NrX

nr=1

Sns ,nr�Znr (t)

=
NrX

nr=1

Sns ,nr

h
hnr (n(t))�t + hnr (n(t))

1/2
p
�tNnr (0, 1)

i

=
NrX

nr=1

Sns ,nr [hnr (n(t))�t ] +
NrX

nr=1

Sns ,nr

h
hnr (n(t))

1/2
p
�tNnr (0, 1)

i
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The chemical Langevin equation (cont.)

Jointly, the independent copy-number increments {�Nns (n(t))}
Ns
ns=1 take the form

�N (n(t)) = S|{z}
Ns⇥Nr

h (n(t))
| {z }
Nr⇥1

| {z }
hS (·)

�t + S|{z}
Ns⇥Nr

HD (n(t))
| {z }

Nr⇥Nr| {z }
DR(·)

p
�tN (0, INr )| {z }

�WR(t)

= hS (n(t))
| {z }

Ns⇥1

�t +DR (n(t))
| {z }

Ns⇥Nr

�WR(t)
| {z }

Nr⇥1

We can now set �t = dt , �N (n(t)) = dN c(t) and replace
p
dtN (0, INr ) with dWR(t)

dN c(t) = hS (N c(t)) dt +DR (N c(t)) dWR(t)

This is the chemical Langevin equation (CME)

 An Itô stochastic di↵erential equation
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The chemical Langevin equation (cont.)

dN c(t) = hS (N c(t)) dt +DR (N c(t)) dWR(t)

By dividing by dt , the equation can be written in the equivalent ‘white-noise form’1

dN c(t)

dt
= hS (N c(t)) +DR (N c(t))

dWR(t)

dt

The Nr elements of process

✓
dWR(t)

dt

◆

t�0

are independent Gaussian processes

1Expressions of this form are not precise because the solution (Nc(t))t�0 are usually not
di↵erentiable and the left-hand-side is not well defined.
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The chemical Langevin equation (cont.)

It is also possible to derive an alternative form of the chemical Langevin equation

 A form with independent Brownian motions �Wns (t) for each species

Increments �N (t) in copy-number are combinations of Gaussian variables �Z (t)

�N (t) = S�Z (t)

Therefore, also process (�N (t))t�0 is a Gaussian process with Ns elements

The copy-number increment �N (t) is a Gaussian variable,

�N (t) =
⌦
�N (t)

↵
n(t)

+
D
�N (t)�N (t)T

E1/2

n(t)
N (0, INs )

A square root M 1/2 of a square matrix M is the matrix such that M = M
1/2

�
M

1/2
�T
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The chemical Langevin equation (cont.)

�N (n(t)) =
⌦
�N (t)

↵
n(t)

+
D
�N (t)�N (t)T

E1/2

n(t)
N (0, INs )

We derived the expression for the short-time drift

⌦
�N (t)

↵
n(t)

= Sh (n(t))�t

= hS (n(t))�t

Similarly, for the short time di↵usion

D
�N (t)�N (t)T

E

n(t)
= S [HD (n(t))]ST�t

= B (n(t))�t

After substituting, we get

�N (n(t)) = hS (n(t))�t + [B (n(t))�t ]1/2 N (0, INs )

= hS (n(t))�t
| {z }

Ns⇥1

+B (n(t))1/2
| {z }

Ns⇥Ns| {z }
DS (·)

p
�tN (0, INs )

The square root DS = B
1/2 can be computed from the eigenvalue decomposition of B
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The chemical Langevin equation (cont.)

�N (n(t)) = hS (n(t))�t +DS (n(t))
p
�tN (0, INs )| {z }

�WS (t)

p
�tN (0, INs ) is a Wiener increment�WS (t) of multivariate Brownian motionsWS (t)

p
�tN (0, INs ) = WS (t +�t)�WS (t)| {z }

�WS (t)

We can now set �t = dt , �N (n(t)) = dN c(t) and replace
p
dtN (0, INs ) with dWS (t)

dN c(t) = hS (N c(t)) dt +DS (N c(t)) dWS (t)

This is another chemical Langevin equation (CME)

• Another Itô stochastic di↵erential equation
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The chemical Langevin equation (cont.)

dN c(t) = N (t + t)�N (t)

= hS (N c(t)) dt +DR (N c(t)) dWR(t)

= hS (N c(t)) dt +DS (N c(t)) dWS (t)

For any initial condition N
c(0) = N

c
0 , the solutions to the SDEs are stochastic processes

Generating sample paths from the stochastic di↵erential equations is relatively fast

 The first equation requires Nr random numbers

 The second one requires Ns random numbers

The choice between the two depends by the number of reactions relative to species
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The chemical Langevin equation (cont.)

It was pointed out that noise in a jump process is ‘internal’ (inherent to the mechanism
by which the state evolves) and cannot be dissociated from its equations of motion

In contrast, the noise in the chemical Langevin equation (and in other continuous
Markov processes) seems ‘external’ (independent corrections to the deterministic drift)

• (Though Gillespie claims that the source is internal)

The chemical Langevin equation is not without limitations

• They generally predict negative concentrations

• (Though, with small probability)

Some other common shortcomings encountered in practice

• May not exhibit multi-stability, when present

• Inaccurate for systems far from equilibrium
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From discrete-state to continuous-state stochastic simulations



CHEM-LV03

2022

Discrete to
continuous

Drift and diffusion

Chemical Langevin
equations

Brownian
motions

Brownian motion

A standard Brownian motion (or Wiener process) is a stochastic process (W (t))t�0

• The process starts at zero,
W (t = 0) = 0

• For any t , s � 0,
W (t + s)�W (t) ⇠

p
sN (0, 1)

That is,

⌦
(W (t + s)�W (t))

↵
= 0

⌦
(W (t + s)�W (t)) (W (t + s)�W (t))T

↵
= s

• For any 0  t1 < t2 < t3 < t4,

(W (t2)�W (t1)) ? (W (t4)�W (t3))

That is, ⌦
(W (t4)�W (t3)) (W (t2)�W (t1))

T ↵
= 0

It can be understood as an idealisation of a rapidly varying and irregular functionW (t)
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Brownian motion (cont.)

Like Poisson processes, Brownian motions have stationary and independent increments

• The sample paths of Poissonian motions are discontinuous functions of t

• The sample paths of Brownian motions are continuous functions of t

All the finite-dimensional distributions (W (t1), . . . ,W (tN )) of (W (t))t�0 are Gaussian

 (W (t))t�0 is a Gaussian process

The expectation function, for all t > 0

⌦
W (t)

↵
= µW (t)

= 0

The covariance function, for any s  t

D
(W (t)� µW (t)) (W (s)� µW (s))T

E
= cov(t , s)

= min (t , s)

= s

The sample paths of a Brownian motion are nowhere di↵erentiable functions of t


