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SDEs | Informal definition

Consider the evolution of some variable z(t) € R according to a differential equation

dz(t)

5 = f(z(t),t), with f: R x [0,00) = R

Given the initial condition z(¢ = 0) = zp, we solve the ordinary differential equation
® The solution (z(t)):>o exists if f is a ‘well-behaved’ function

® (Conditions for existence and uniqueness can be stated)

We can formally re-write the ordinary differential equation
do(t) = f (2(t), £) dt
The infinitesimal change of variable x during [t, ¢t + dt)

z(t+dt) — z(t) = dz(t)
= f(z(t),t)dt

To solve the equation, we have the simple recursion

z(t+dt) =z(t) + f (z(t), t)dt

SDEs | Informal definition (cont.)

z(t+dt) = z(t) + f (z(t),t)dt

To compute the solution of the ODE, we consider a small time interval of duration At
z(t + At) = z(t) + f (z(t),t) At

Then, given some initial condition z(0) = zp, we have the collection {z(kAt)} X

z(0 + 1At) = z(0At) + f (z(0AL),0At) At
z(0 4+ 2At) = z(1At) + f (x(1At), 1At) At

z(0 4+ kAt) = z(kAt) + f (z(kAL), kKAL) At

The iterative scheme is the (explicit) Euler’s method to approximate ODE’s solutions

® The approximation gets better, the smaller the duration of the interval At
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SDEs | Informal definition (cont.)

We can use an informal definition of a stochastic differential equation (SDE) as an
ordinary differential equation with an additional term describing stochastic fluctuations

X(t+At) = X(6) + £ (X (), ) At + g (X (1), 1) VAN (0, 1)

additional term

We have the deterministic functions

f:RxJ[0,8) =R
g:Rx[0,8) =R
Function g (-) characterises the strength of the additive stochastic term, scaled by v/ At

Normally distributed numbers with zero-mean and unit-variance are easily simulated

§(t) ~N(0,1)

In terms of the Wiener increment A W (t) of the standard Brownian motion W(t),

X(t+At) = X(t) + f(X(t),t) At 4+ g (X (), t) VALE(t)
N——

AW (L)

SDEs | Informal definition (cont.)

Given an initial condition z (0) ~ p (X (0)), a £(0) ~ N (0,1), and small interval At

z(0 4+ 1At) = z(0At) + f (z(0At),0At) + g (z(0AL),0At) VALE(0AL)
—_— —

AW (0At)
2(0 4 2At) = 2(1A¢E) + f (2(1AL), 1AL) + g (z(1AL), IAL) VALE(1AL)

N———
AW (1AL)

z(0 + kAL) = z(kAL) + f (z(kAL), kAL) + g (z(kAt), KAL) VALE(kAL)
N——

AW (KAL)

As a result of a single realisation of the recursion, we get the collection {z(kAt)}X |

® The realisation scheme is the Euler-Maruyama method for simulating SDEs
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SDEs | Informal definition (cont.)

X(t+dt) = X(8) + f (X (1), 1) dt + g (X(2), ¢) Vdt&(t)
——
AW (t)
That is,
AX(8) = £ (X (1), £)dt + g (X(2), 1) dW (1)
The solution of the differential equation is s stochastic process (X ()); >¢
t t
X() =X+ [ F(a(s)s)ds+ [ g(a(s).s)dW.
0 0

Both function f (-,-) and g (-, -) are continuous functions of z and ¢

SDEs | Informal definition (cont.)

t t
X(0) = X () + [ f(a(e)s)ds+ [ g(als),s)dW,
0 0
We can re-write the solution of the stochastic differential equation using summations,

X(t) = X(0)+ lim > f(X(t,;),t,;)AtHAnrgo > g (X(sp),sh) AW,
K o<t <t FTE 0<sp <t

We introduced two partitions {t;}_ and {s;}/_, of the [0, t] interval,

tg ety the1 -t gy tk_1- ti
S~~~ N N—— ~~
0 Aty Aty t
80 81 ...... sk—]_ ... Sk 8k+1 ...... sK—l .. SK
~~ —— ~~
0 Asy, Asy, t

We introduced two interval points ¢, € Aty and s; € Asy,

e < t, < tiyq

s < 53 < Skt

We also used AWy, = W (s +1) — W(sy)
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SDEs | Informal definition (cont.)

X(t)=X(0)+ Jim =3 f(X(5),t) At + Jim > g (X(sp), ) AWy,

'5]94)0
0<t, <t 0<s <t

. J/

~
A stochastic process I(g(-,-),t)

For At — 0, the first sum converges to the Riemann integral regardless of 15]’C € Aty

t
o [ ds
0

For Asj — 0, the value of the second sum may depend on the choice of s; € As;,

SDEs | Informal definition (cont.)

We can verify the dependence of the second integral on the actual choice of s; € Asy,

Consider the following integral

t
/W(s)dWsﬁ lim Z W (s;,) AW,
0

A
500 ot
Introduce a partition {s;}X_, of [0, t],
SO 81 ------ Sk—l ... Sk 8k+1 ------ SK—l SK
~ —_—— = ~
0 Asy, Asy, t

Introduce the points s; € Asy,
sk < sp < Spy1

Again, we set
AWy = W(sk +1) — W(sg)
We will consider three separate cases
® 5. = sy
® s; such that Wy = (W14 w,, )/2
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SDEs | Informal definition (cont.)

t
/()W(s)dWs:Alsilcni)O > W(sp)AW,,
0<sp <t

Case I: s, = sy,

t .
</0 Wdes> = <A;;nl>00<szllc<t W(s,’c)AWsk>

= < lim S W(s,g)AWsk>

K

-1
= lim W (s, ) AWs
<Ask—)05k:0 k>

K—1

= <Asl;icnl>0 Z_jo W (s) (W (sp, + 1) = W(sp)))
s =
K—1

1 1
<A;;g05§0 [g(ww T+ W) = (Wl 1) = W) | (Wsg + 1) = W(s)))

1 . K1, 5 1 ‘ K—1 )
= ;< Aillcm—’OSkX::1 [W (sp +1) — W (Sk)]> - ;< A;Lm_)OSkX::O [W(sp + 1) — W(sp)] >

= w2y - (w2 !
_2(<W 1) — (W?(0))) ¢

=0

SDEs | Informal definition (cont.)

t
/W(s)dWsz Hm Y W(sp)AWs,
0

Asp—0
FTE 0<sp <t

Case IIIL: s; such that Wy = (Wep+14+w,,)/2

K—1

<A§i§051€z=:o (W, +1) = W(sp)) (Wsp, +1) = W(sp)))

</Ot WSdWs>

K—-1

S (W + 1% = wisp?))

1
2 As—0 s, =0

= (W) - ()

t

2
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definition
We show that there are different definitions of the stochastic integral
Definition ¢
S I (g('7 ')7 t) = / g (X(S)v 8) dWs
0
There are two main types of definition of the stochastic integral
® The It6 integral
D Sllf = Sk
® The Stratonovich integral
5], such that g (X(s}), sf) = 1/2[g (X (s4), s%) + g (X (st + 1), 54 + 1)]
CHEMLLVO3 SDEs | Informal definition (cont.)
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Accordingly, we also have two interpretations of the stochastic differential equation

® The It6 equation

dX(t) = f(X(t),t)dt + g (X (), 1) dW(¢)
® The Stratonovich equation

AX (1) = f (X (t), t)dt + g (X (£),t) o dW (1)

The Stratonovich equation is equivalent to the Itd6 equation of the form

199 (X(1),1)

dX (1) = | £ (X0, 1) + 5

g (X(¢),t)| dt + g (X (1), ) dW(2)
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SDEs | Informal definition (cont.)

For the somewhat general case of N, It stochastic differential equations, we have

dXi(t) = fi (X1(2),.. .,XNI(t), t)ydt + g1 (X1(t),.. .,XNI(t), t)dWi(t)

dXn, (1) = fn, (X1(2), .-, XN, (1), t)dt + gn, (X1(2),-.., XN, (2),t) dWn, (%)

Equivalently, in computational form

AX1(t) = fi (Xi(t),.., X, (£),t) At + g1 (X1 (2), ..., Xn, (), t) VALEL(L)
AW (t)

AXy (t) = fn, (X1(8), ..., Xn, (8),8) At + gy, (X1(t), ..., XN, (1), t) VAtEN, (1)

————
AWNx(t)
SDEs | Informal definition (cont.)
In matrix form, for X (t) = (X1(t),..., Xn,(t)) we have
AXU(DT A X)) g1 (X(1), ) 0] AL 0
: = : At + : NT ], _
AXp, (t) N, (X(t),1) gn, (X(t),1) 0 0o - At
N - y N g y —— N - y
N, x1 N, %1 Ny %1 Ny X Ny

Note that the number of N; of independent unit normals was constructed to be equal
to the number N, of process components, though nothing precludes the case Ny # N,
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SDEs | Informal definition (cont.)

For the more general case of N, It6 equations and N Brownian motions, we have

N,
dX1(t) = A (X (@), ) dt+ D> g1my (X(2), 1) d Wi, (£)
nE=1
- .
dXn, (1) = fr, (X(0), 1) dt+ > g, my (X(8),8) d Wy (1)
nE=1

Equivalently, in computational form

N,
AX1(t) =f (X(), ) At+ > g1my (X(2),t) VALEL(2)
—_——

e INVAO)
Ny,
AXN, (1) = fr, (X0, 8) At + > gn,,m, (X (1), 1) VAN, (1)
np=1 ——
AWy, (1)
SDEs | Informal definition (cont.)
In matrix form, for X (t) = (X1(¢),..., Xn,(t)) we have
AXy(t) S (X (1), 1)
2 S I Y
AXn, (1) N, (X(1),1)
Ny x1
g1,1 (X (1),1¢) g1,n,, (X (1), 1) 0 At -+ 0
+ f f N S
gN,,1 (X(t)7t) 9N, ,Ny, (X(t)7t) 0 0 At
N - . —_— ~ -— .
Ng X Ny, N x1 Ng X N,

That is,
dX(t) = f(X(¢),t)dt + G (X(t), t) N (0,dtly,)
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N,
Definition dXn, (8) = fa, (X (), 8)dt+ D gng,my (X(8),8) AWy (2)
Derivation ’I’Lk:l
The ngz-th It6 equation is the standard-form Langevin equation for the Markov process
The corresponding Stratonovich equation,
Ogng,my (X (1), t)
dXn, (t) = | fu. (X(£),8) + 5 Z Z an, Gng,my, (X (1), 1) | dt
+ Z G, (X (1), £) d Wi (1)
TLk—
CHEM-LV03
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dX(t) = f(X(¢),t)dt + g (X (¢),t) dW (t)

Derivation

Let f(X(t),t) =0 and g (X (t),t) = 1, we get the stochastic differential equation

X(t+dt) = X(t) +dW(t)

Using the informal treatment, we get the associated computational definition

X(t+ At) = X(t)+ VAL £(¢)
~~
N(0,1)

We consider a time interval At = 1073 and an initial condition X (0) = 0

CHEM-LV03
2022

Let Mx (t) be the expected value of X (t)

Mx (t) = (X(t))

Let Vx(t) be the variance of X (t)

Examples

Definition

Vi (t) = ( (X () — Mx(£))?)
= (X(1)%) — Mx(t)?

From X (t 4+ At) = X (t) + VAté(t), we have

Mx (t + At) = (X (t) + VALE(t))
= (X(1)) + (VA1)
= (X(t)) + VAL (&(1))

——
=0

= (X(¥))
= Mx(t)

Because X (0) = 0, we have that (X (0)) = 0 and thus My (0) = 0 and also Mx (¢) =0
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SDEs | Examples (cont.)

From X (¢t + At) = X(t) + VAt{(t), we also have

Vx (t+ At) = ((X(t + At) — Mx(t + At))?)
= (X(t+ At)?) — Mx (t + At)?
= (X(t+At)?) — Mx()?
=0
= (X(t + At)?)
= { (X(t) + \/Eg(t))2>
= (X (1) + 2X (t)VALE(L) + Ate(t)?)
= (X (1)) + 2({X () )VAL(£(t)) +At (£(1)?)
N——

——
=0 =1

= (X(t)*) + At
= (X (¢)%) — Mx(t)® + At
= Vx(t)—l—At

Because X (0) = 0, we have that Vx (0 =0 and thus also Vx(t) =0

SDEs | Examples (cont.)

We have that both expected value and variance of (X (¢));>o do not depend on At

® [t can be shown that higher-order moments are also independent of At
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Consider a diffusing particle whose position in time is (X (¢), Y (¢), Z(t)) for t > 0

Examples

We will show that the position at time (¢ + dt) is related to position at time ¢

e X (¢ +dt) = X (8) + (2D) /2 dWa (¢)
Y(t+dt) = Y(t) + (2D)2 dW,(¢)

Z(t + dt) = Z(t) + (2D)2 d W, (¢)

Quantities d Wy (t), dWy(t), and d W (t) are increments of Brownian motions

Quantity D = 10~% mmZ?sec™! is the diffusion constant

Using the informal treatment, we get the associated computational definitions
X(t+ At) = X(t) + (2D)Y2 VALEL (1)
Y(t+ AL = Y(t) + (2D)"/2 VAL, (1)
Z(t + At) = Z(t) + (2D)V/2 VALE(t)
We consider an interval At = 10~2 and initial condition (X (0), Y (0), Z(0)) = (0,0, 0)
[
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e dX (t) = f(X(t),t)dt + g (X(t),t)dW(t)

Derivation
Let f (X (t),t) =1 and g (X(¢),t) = 1, we get the stochastic differential equation

X(t+dt) = X(t) +dt +dW(t)

Using the informal treatment, we get the associated computational definition

X(t+At) = X(t) + At + VAt £(1)
~~
N(0,1)

We consider a time interval At = 1073 and an initial condition X (0) = 0
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SDEs | Examples (cont.)

Let Mx (t) be the expected value of X (t)
Mx (t) = (X (1))
Let Vx(t) be the variance of X (t)

Vx(t) = ((X(t) — Mx())*)
= (X(t)*) — Mx (1)

From X (t 4+ At) = X(t) + At + VAtE(t), we have

Mx (t + At) = (X (t) + At + VAE(t))
= (X (1)) + (At) +{(VALE(t))
——

At
= (X(t)) + At + VAL {£(t))
=0
= (X(t))+ At
= Mx(t) + At

Because X (0) = 0, we have that (X (0)) = 0 and thus Mx (0) = 0 and also Mx (¢) =t

SDEs | Examples (cont.)

From X (t 4+ At) = X(t) + At + VAtE(t), we have

Vy(t) =t
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The Fokker-Planck equation

Stochastic differential equations

Fokker-Planck equation

Consider a system that evolves according to an It6 stochastic differential equation

dX(t) = f(X(t), 1) + g (X (), t) dW(2)

We let the probability density function of the process be p(z, t)

The probability that z < X (¢) < z 4 dz is thus p(z, t)dz, at ¢

/ p(z,t)dz =1
Q=R

We can determine p(z,t) empirically, after computing a large number of realisations

® The fraction of realisations that arrived at [z,z + Az] at t =1

It is possible to determine the equation of motion for the probability density p(z, t)
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Fokker-Planck equation (cont.)

dX(t) = f(X(1), 1) + g (X (1), t) dW(2)

It can be shown that density p(z, t) evolves according to a partial differential equation

op(z,t) 2

9t  Oz2 (%QQ(ac, t)p(z, t)) - g (f (z, t)p(z, 1))

This partial differential equation is the Fokker-Planck or Kolmogorov forward equation

It useful to understand the PFE as a master equation for certain process (X (t)),~q
® Any Markov processes whose individual jumps are very small

® (Sample paths of (X (t)),~, are continuous functions of t)

Fokker-Planck equation (cont.)

z 2
ap(at’ D _ ;2 (%QQ(x,t)p(x,t)) —g(f(fﬂ;t)p(m,t))

, N J/

~ -~

Diffusion Drift

The FP/KF equation is a convection—diffusion equation for the transfer of probability
~~ The first term has been called the ‘transport-’, ‘convection-’, or ‘drift-’ term

~~ The second term has been called the ‘diffusion-’ or ‘fluctuation-’ term

The FPE is a continuity equation for the probability density

Op(z,t) _aJ (z,1)

ot oz
The Fickian probability flux J (z, t)

0
T (@0 = f (1) p(e 1) — 52 (9.2, 1) p(z, 1)
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op(z,t) _8J (z,t)
Definition 8t - 8:1:

Derivation

An equilibrium steady-state solution corresponds to the conditions
ot
J(z,t) =0

This leads to a first-order ODE for the equilibrium density pgs(z)

f(z) pss(z) — %8%(9 (z) pss(z)) =0

— Fokker-Planck equation (cont.)
2022

dX(t) = f(X(1), 1) + g (X (1), t) dW(2)

Definition For the special case of f (z,t) =0 and g (z,t) = 1, we get the differential equation

Derivation

dX (¢) = dW(¢)

The associated Fokker-Planck equation is the diffusion equation

op(z,t)  10%p(z,t)
ot 2 92x2

For the Fickian probability flux J (z, t), we get

7,0 = 2 2 (o, 1)
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Fokker-Planck equation (cont.)

At equilibrium, the steady-state solution for the probability density p(z)

1 U COIN
pss(z) = C exp / 2 dz (C>0)
92 (z) [ o g%(z')
Constant C' is whatever number makes pgg integrate to one

~ 1 N ICO AN
“= </szz:u<< @) " [/0 I D

Fokker-Planck equation | Derivation

How to derive the equation of motion for the probability density function p(z,t)?

op(z,t)  &° <1

ot  9z2 292(:1:, t)p(z, t)) - % (f(z,t)p(z, 1))

We let p(z, t|y, s)dz be the probability that X (t) € [z, z + dz], given X (s) =y

Given X (s) = y, the probability that X (¢t + At) € [z,2z + Az] is p(z,t + At|y, s)dz
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Def Y X () z
efinition
o ~~ ’ ‘
Derivation S - ot ot At ..

We are interested in the probability that X moves from y at time s, to z at t + At

We sum the probabilities of all possible paths through intermediate points z(t)

p(z,t+ At |y,s) = / p(z,t+ At | z,t)p(z,t | y,s)dz

T

To derive the Fokker-Planck equation, we consider a vanishingly small At

CHEMLVO3 Fokker-Planck equation | Derivation (cont.)
2022

Pt At ys) = [ p(at+ At |2, 0p(st |, 5)do

xT
Definition

Derivation

To proceed, we firstly multiply both sides by some smooth function ¢ : 2, — R

Pzt + At |y, 8)p(z) = / Pz, t+ At | 2, )p(2)p(z, t | y, s)da

x

The integrating over €2, and rearranging, we get

[ pteatinoees= [ [ pt+at]a et v 5)dods
Q. Qp JQyp

- [ [/ p(2,t+ At | 3, 0)p(=)dz| p(z, t | y, 5)da
o, L/,
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Function ¢(-) is chosen to be any arbitrary smooth function over the domain

Definition

Thus, it has a Taylor’s expansion about any point zg € 2,

— 1dp(z)
kKl dz

Derivation

p(z) =

(- 20)F
k=0 Z=20

= (a0) + ¢/ (20)(z — 20) + 6" (20)(z — )" +

We expand ¢(-) about point z € 2, and truncate, to get

o(2) % (&) + ¢ (2)(z — ) + 5" (@)= — )

CHEMLVO3 Fokker-Planck equation | Derivation (cont.)
2022

Substituting, we get

/ P,y + At | y, $)p(z)dz

Qg
— [ | [ plet+ Atla,0) ¢z) dz| plo,tly, 5)do
Derivation QI Q N~
| Taylor
[ ’ ” (z —z)?
Q, LVQ

Rearranging, we get

S~

p(z,t+ At |y, s)p(z)dz
Q

- I/Qz |:/Qz p(z)p(z,t + At | z, t)dz] p(z,t|y,s)dz
/Qg; |:/Qw o' (z)(z — 2)p(z, t + At | z, t)dz] p(z,t|y,s)dx
)

1" (Z — 33)2
+ ¢l(2) = p(z t+ At |z, t)dz| p(z, 1|y, s)dz
Q. L/,

%_
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Further rearranging terms, we get

/ p(z,t + At | y, 8)p(z)da
Q

x

= /Qz [(p(w)/g p(z,t + At | a:,t)dz] p(z,t|y,s)dz

xT

[ [r@ [ ot n o]

Definition

Derivation

[ |5 [ o ofa e At 00z ] g,

We recognise the following identity,

/ p(z,t+ At | z,t)dz =1
Qg

CHEMLVO3 Fokker-Planck equation | Derivation (cont.)
2022

/ p(z,t+ At |y, s)e(z)dx

x

Detinition / o(z) / p(z,t+ At | z,t)dz| p(z,t |y, s)dz
Derivation Qz
1
+/ [cp (z —z)p(z,t + At | z, t)dz] p(z,t|y,s)dx
Qz
1 2
530 Z_x) p(z,t+At|x,t)dz p(I,t|y,8)dx
Qm

We also recognise another identity,

/‘@—xm@¢+Aﬂ%ﬂM:4X@+An—mo>
Qg S~~~

z

We need the expected displacement,

X(t+ At) — z(t) = Ax(t)
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Using the It stochastic differential equation, we get

X(t+Ab) —a(t) = f (2(1), 1) At + g (2(1), 1) AW (1)

-~

Az(t)

Definition

Derivation

For the expected displacement, we get
(Az(t)) = (f (z(t),t) At + g (x(t), t) AW(t))
= (f (z(t),t) At) + (g (z(t),t) AW (2) )
——
VALE(L)

S/

~

g9(x(t),t)x0

= f(z(t),t) At

Thus, for the integral we have

/Q (2 — 2)p(z, t + At | 7, 8)dz = f (z(t), £) At

CHEMLVO3 Fokker-Planck equation | Derivation (cont.)
2022

/ p(z,t+ At |y, s)p(x)dx

T

Definition = / QO(LC)/ p(z, t+ At | x, t)dz p(m,t | Y, S)d$
Derivation Q

xT x
N J/

-

=1

@) [ (= op(et+ At w00z | plast | y,s)da
x Qx

L :f(x(:r)at)At

(1
[ ]3¢7@ [ = opte 4 At a0z plost] g, 9)da
Q Qa

We recognise one last identity for the squared displacement

/ (z—2)p(z,t + At | z,t)dz = (| X(t+At)—z(t) ]| )
Qg ~~

z



CHEMLVO3 Fokker-Planck equation | Derivation (cont.)

Using again the stochastic differential equation, we have

X(t+At) = a(t) = f (a(1), 1) At + g (2(1), 1) AW (1)

Aa(t)

For the expected squared displacement, we get

((Az(1)?) = ((f (m(t), t) At + g (z(t), ) AW (£))?)

Definition

Derivation

= ((f (=(£), 1) A ) + ((2f (m(2), 1) At) | g (x(2), t) AW (2) | )
~ —~ v N——
F(z(t),t)2At2 VATE(L)

(. J/

2f<x<t>,t>g<£>,t>m3/2 x1
+{ (g (z(t), t) AW(t))*)
g(w(t),t)‘g XAtx1

=g (z(t),t)% At + O(At?)

Thus, for the integral we have

/ (z—z)?p(z,t + At | z, t)dz = g (z(t), )% At

T

CHEMLVO3 Fokker-Planck equation | Derivation (cont.)
2022

/ p(z,t + At | y, s)p(z)dz
Qg

Definition

Derivation — / SD(x) / p(z, t+ At | Z, t)dz p(iE, t | Y, S)dx
Qy Q2

[\ J/
v~

=1

(@) [ = aple e+ At 2,0)dz| pla.t | y.s)de
Qg

J/

L :f(m(;;at)At

1
2¢(@) [ (= 0)?pe 0+ At 2,0z plat |, 5)do
Qg

J/

v~

=g(z(t),t)2At
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After substituting those integrals, we get

[ pat+atlyse@do= [ le@1pt] v5)ds

Qg T
Definition

Derteation n / [0 (2)f (x(t), t) AL] p(a, t | y, 5)dz

Qg

+ [ ) Bso”(a»g(m(t),tf At| p(a, t] y,5)da

After some manipulations, we get

/ p(o, t+ At | y, 5)p(z)ds = / p(z,t |y, s)p()da
Qg

xT

+at [ ¢ @f (@(0) )p(at | v 5)da

T

At / Ew"(m)g (@(), )| p(a, t | 3, 5)da

Qg

CHEMLLV0S Fokker-Planck equation | Derivation (cont.)
2022

Reordering some terms, we get

Definition / p(x, t + At ’ y, S) _ p(x7 t | y, S) ()O(x)dx
Derivation Qm At
2
gl(z,t
— [ v@r @ty [ o@D |y
Then, integrating by parts
/ p(x,t+At|y,s)—p(w,t|y,s) _
p(z)dz =
Q. At
9(z, t)?

- [ etorgr Gl oot vz [ e@ s (25 piot10,0)) o

2
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Definition

Derivation

Fokker-Planck equation | Derivation (cont.)

Collecting terms and joining the integrals, we get

0:/9 (p(x)X{_p(m,t+At|y,Asi—p(x,Hy,s)
2 T 2
- o Gptl o)+ 5 (L5 pe 119 ao)

As the function ¢(+) is arbitrary (non-zero), the term within brackets must be zero

p(:c,t—l—At]y,s)—p(x,ﬂy,s) —
At

2 z.t)2
6(542_ (f (2, t)p(z, t |y, 5))

(a1 0 0
ox? 2 PAZ: 1Y oz

Taking the limit At — 0, we obtain the Fokker-Planck equation

EiG@ﬁ
Ox2 2

(et v8) = ot 19:5)) = 5= (e Op(at [ 1,)



