
User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

User input/output, error handling and modules
Part I

Foundation of programming (CK0030)

Francesco Corona

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

FdP

- Intro to variables, objects, modules, and text formatting

- Programming with WHILE- and FOR-loops, and lists

- Functions and IF-ELSE tests

/ Data reading and writing

/ Error handling

/ Making modules

/ Arrays and array computing

/ Plotting curves and surfaces

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

FdP (cont.)

Example

Consider a program to calculate the sine formula x = sin (ωt)

1 from math import sin
2

3 A = 0.1

4 w = 1
5 t = 0.6

6

7 x = A*sin(w*t)
8

9 print x

A, w and t are parameters that must be known before
the program starts performing the calculation of x

• Parameters A, w and t are thought as input data

• Consistently, x constitute the output data

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

FdP (cont.)

Here, input data are hardcoded within in the program

• Corresponding variables are explicitly set to specific values

• A=0.1, w=1, t=0.6

1 from math import sin
2

3 A = 0.1
4 w = 1
5 t = 0.6

6

7 x = A*sin(w*t)

8

9 print x

This programming style may be suitable for small programs

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

FdP (cont.)

In general, it is good practice to let the program user provide input data

• No need to modify the program itself for new sets of input data

We discuss three different ways of reading data into a program:

1 Let the user answer questions in a dialog in the terminal window

2 Let the user provide input on the command line

3 Let the user provide input data in a file

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

FdP (cont.)

Even if the program is working perfectly, wrong input data from the
user may cause the program to produce wrong answers or even crash

• Checking that input data are correct is important

• We discuss how to this using exceptions

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

FdP (cont.)

The Python environment is organised as a large collection of modules

• It is important to know how to organise your own software

• We discuss how to do this using modules themselves

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Questions and answers
User input, error handling and modules

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Questions and answers

Perhaps the simplest way of getting data into a program is trivial

1 Ask the user a question

2 Let the user type in an answer

3 Read the text in the answer into a variable in the program

This is done by calling function raw_input in Python 2.x

• Or, equivalently, function input in Python 3.x

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Keyboard input
Questions and answers

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Keyboard input

The temperature conversion from Celsius to Fahrenheit: F =
9

5
C + 32

The conventional program with variable C set explicitly in the program

1 C = 22

2 F = 9./5*C + 32
3 print F

Example

We ask the question ‘C=?’ and wait for the user to input a number

• The program can read the number and store it in a variable C

1 C = raw_input(’C=? ’)

• Python, then, waits until the user presses the Return key

The raw_input function returns the input as a string object

• Variable thus C refers to a string object

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Keyboard input (cont.)

Before use, the string must be first converted to floating-point number

• C = float(C)

1 C = raw_input(’C=? ’)
2 C = float(C)

3

4 F = 9.0/5*C + 32

5 print F

The execution of the program and the resulting dialog with the user

1 Terminal > python c2f_qa.py
2

3 C=? 21
4 69.8

The raw_input function reads the characters 21 from the keyboard

• It returns the string 21, which we refer to as variable C

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading from command line
User input and error handling

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading from command line

Programs often avoid asking questions, data are rather fetched from CL

• How can we access information on the command line in Python?

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Input from command line
Reading from command line

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Input from command line (cont.)

Example

Consider the Celsius-Fahrenheit conversion program, with the idea of
providing the Celsius input temperature as a command-line argument

• We want a program that to be executed
requires the input temperature as input

1 Terminal > python c2f_cml.py 21
2

3 69.8

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Input from command line (cont.)

Inside the program, text 21 is fetched as sys.argv[1]

1 Terminal > python c2f_cml.py 21

2

3 69.8

Definition

Module sys has a list argv containing all command-line arguments

• All ‘words’ appearing after the program name

• Here, one argument, stored in sys.argv[1]

Remark

The first element in sys.argv, sys.argv[0], is the program name

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Input from command line (cont.)

As with keyboard inputs, command-line arguments are treated as text

• sys.argv[1] refers to string object whose value here is 21

Example

1 import sys

2

3 C = float(sys.argv[1])

4 F = 9.0*C/5 + 32
5

6 print F

As we interpret the command-line argument as a number and we want
to compute with it, it is necessary to convert the string to a float object

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Input from command line (cont.)

Example

y(t) = v0t −
1

2
gt

2

1 v0 = 5

2 g = 9.81
3 t = 0.6

4 y = v0*t - 0.5*g*t**2
5

6 print y

Instead of hard-coding v0 and t, they can be read from command line

1 Terminal > python ball2_cml.py 0.6 5

2

3 1.2342

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Input from command line (cont.)

Command-line arguments are given as sys.argv[1] and sys.argv[2]

1 import sys
2

3 t = float(sys.argv[1])

4 v0 = float(sys.argv[2])
5

6 g = 9.81
7

8 y = v0*t - 0.5*g*t**2

9 print y

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Command line arguments
Reading from command line

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Command line arguments

Example

Let us code addall.py that adds all its command-line arguments

1 Terminal > python addall.py 1 3 5 -9.9

2

3 The sum of 1 3 5 -9.9 is -0.9

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Command line arguments

1 Terminal > python addall.py 1 3 5 -9.9

2

3 The sum of 1 3 5 -9.9 is -0.9

A first possible solution

1 import sys
2

3 s = 0
4 for arg in sys.argv[1:]:

5 number = float(arg) # Need to convert to float to compute
6 s += number

7

8 print ’The sum of ’,
9 for arg in sys.argv[1:]:

10 print arg , # No need to convert to float to print
11 print ’is ’, s

The command-line arguments are stored in sublist sys.argv[1:]

• Each element is a string, needs conversion to float

The output is one line, built from print statements with trailing comma

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Command line arguments (cont.)

1 Terminal > python addall.py 1 3 5 -9.9
2

3 The sum of 1 3 5 -9.9 is -0.9

An alternative, compact solution

1 import sys

2

3 s = sum([float(x) for x in sys.argv [1:]])

4

5 print ’The sum of %s is %s’ % (’ ’.join(sys.argv[1:]), s)

String list sys.argv[1:] is first converted to a list of float objects

• Then, it is passed to sum for adding the numbers

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Command line arguments (cont.)

Definition

Construction S.join(L) places the elements in list L after each other

• with string S in between

The result is a string with all the elements in sys.argv[1:] and a
space in between, which is the text shown as command line output

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Command line arguments (cont.)

Unix commands make heavy use of command-line arguments

Example

• Typing ls -s -t lists files in the current folder, and program
ls is run with two command-line arguments, -s and -t

• -s tells ls to print the file name together with the file size

• -t sorts the list according to dates of last modification

Example

• Typing cp -r my new copies folder-tree my to a new folder-tree
new by invoking program cp program with three command-line
arguments: -r (for recursive copying of files), my, and new

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Command line arguments (cont.)

Most programming languages have support for extracting the CL args

• An important rule is that CL arguments are separated by blanks

What if we want to provide a text containing blanks as CL args?

• The text containing blanks must then
appear inside single or double quotes

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Command line arguments (cont.)

Example

We demonstrate this with a program that simply prints CL args

1 import sys , pprint

2

3 pprint.pprint(sys.argv[1:])

1 Terminal > python print_cml.py 21 a string with blanks 31.3

2

3 [’21’, ’a’, ’string’, ’with ’, ’blanks ’, ’31.3’]

1 Terminal > python print_cml.py 21 "a string with blanks" 31.3
2

3 [’21’, ’a string with blanks ’, ’31.3’]

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

User text into objects
User input and error handling

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

User text into objects

It is possible to provide text with valid code as input to a program, and
turn it into objects as if the text were written directly into the program

• It is a powerful tool for letting users input expressions

The code has no knowledge of the kind of function the user is inputting

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EVAL function
User text into objects

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EVAL function

Function eval takes a string as argument and evaluates it as expression

• The result of an expression is an object

Example

1 >>> r = eval(’1+2’)
2 >>> r
3 3

4

5 >>> type(r)

6 <type ’int’>

r = eval(’1+2’) is equivalent to writing r = 1+2 directly

1 >>> r = 1+2
2 >>> r
3 3

4

5 >>> type(r)

6 <type ’int’>

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EVAL function (cont.)

Remark

Valid Python expressions stored as text in string s

can be turned into live Python code using eval(s)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EVAL function (cont.)

Example

The string to be evaluated is 2.5, which is understood as r = 2.5

1 >>> r = eval(’2.5’)

2 >>> r
3 2.5

4

5 >>> type(r)
6 <type ’float’>

Example

1 >>> r = eval(’[1, 6, 7.5]’)
2 >>> r

3 [1, 6, 7.5]
4

5 >>> type(r)

6 <type ’list’>

We can initialise a list inside quotes and use eval to create a list

object, equivalently to writing the assignment r = [1, 6, 7.5]

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EVAL function (cont.)

Example

We can make a tuple object by using tuple syntax (parentheses)

1 >>> r = eval(’(-1, 1)’)

2 >>> r
3 (-1, 1)

4

5 >>> type(r)

6 <type ’tuple’>

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EVAL function (cont.)

Example

1 >>> from math import sqrt

2 >>> r = eval(’sqrt(2)’)
3 >>> r

4 1.4142135623730951
5

6 >>> type(r)

7 <type ’float’>

This syntax is valid as long as function sqrt has been defined

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EVAL function (cont.)

A quoted string inside an expression string gives a string object

Example

1 >>> r = eval(’"math programming"’)

2 >>> r
3 ’math programming’

4

5 >>> type(r)
6 <type ’str’>

Note the use of two types of quotes:

• First double quotes mark math programming as string object

• The other set of quotes, here single quotes (but it could have
been triple single quotes), to embed the text inside a string

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EVAL function (cont.)

Remark

Irrelevant if we have single or double quotes as inner or outer quotes

• ’"..."’ is the same as "’...’", ’ and " are interchangeable as
long as a pair of either type is used consistently

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EVAL function (cont.)

Example

The next two expression strings are equivalent, although invalid

1 >>> r = eval(’math programming’)
2 >>> r = math programming

math and programming are two variables separated by a space (uh?)

1 >>> r= ’math programming’ # initialise some string r

2 >>> s= "’math programming’" # eval(s) evaluates all text in ""

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EVAL function (cont.)

So, why is the eval function so useful?

Input via raw_input or sys.argv is returned as string object

• Often, it must be converted to another type (int or float)

Sometimes, it is preferable to avoid specifying one particular type

• The eval function can then be of help

We feed the string object from the input to eval function

• Let it interpret the string and convert it to the right object

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EVAL function (cont.)

Example

Consider a simple program in which we read in two values and add them

Values could be string, float, int, list objects, and so forth

• As long as we can apply the + operator to the values

Since we do not know whether the user will input an actual string,
a float, an integer or anything else, we convert the input by eval

• The user’s syntax will determine the type

1 i1 = eval(raw_input(’Give input: ’))
2 i2 = eval(raw_input(’Give input: ’))

3

4 r = i1 + i2
5

6 print ’%s + %s is %s\nwith value %s’ % \
7 (type(i1), type(i2), type(r), r)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EVAL function (cont.)

1 Terminal > python add_input.py
2

3 Give input: 4
4 Give input: 3.1
5

6 <type ’int ’> + <type ’float ’> is
7 <type ’float ’> with value 7.1

1 Terminal > python add_input.py

2

3 Give input: [-1, 3.2]

4 Give input: [9,-2,0,0]
5

6 <type ’list ’> + <type ’list ’> is <type ’list ’>

7 with value [-1, 3.2000000000000002, 9, -2, 0, 0]

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EVAL function (cont.)

1 Terminal > python add_input.py

2

3 Give input: ’one string’

4

5 Give input: " and another string"

6

7 <type ’str ’> + <type ’str’> is <type ’str ’>
8 with value one string and another string

1 Terminal > python add_input.py

2

3 Give input: 3.2

4 Give input: [-1,10]
5

6 Traceback (most recent call last): File "add_input.py",
7 line 3, in <module> r = i1 + i2
8

9 TypeError: unsupported operand type(s) for +:
10 ’float ’ and ’list ’

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EVAL function (cont.)

This program is similar, except that it requires two CL input arguments

Example

1 import sys
2

3 i1 = eval(sys.argv[1])
4 i2 = eval(sys.argv[2])

5

6 r = i1 + i2

7 print ’%s + %s becomes %s\nwith value %s’ % \
8 (type(i1), type(i2), type(r), r)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EVAL function (cont.)

An important example on the usefulness of eval is to turn
formulas, given as input, into mathematics in the program

Example

1 from math import * # make all math functions available

2 import sys
3

4 formula = sys.argv[1]
5 x = eval(sys.argv[2])

6

7 result = eval(formula)
8 print ’%s for x=%g yields %g’ % (formula , x, result)

• Say, passed formula is 2*sin(x) + 1 and passed number is 3.14

• We get formula = 2*sin(x) + 1 and x = 3.14

1 Terminal > python eval_formula.py "2*sin(x)+1" 3.14

2

3 2*sin(x)+1 for x=3.14 yields 1.00319

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EVAL function (cont.)

1 from math import * # make all math functions available

2 import sys
3

4 formula = sys.argv[1]
5 x = eval(sys.argv[2])

6

7 result = eval(formula)
8 print ’%s for x=%g yields %g’ % (formula , x, result)

Passing sin(x) in the first CL argument requires to have sin defined

• All functions from math module are imported first

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EXEC function
User text into objects

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EXEC function

Function exec executes a string containing arbitrary code

• The string is not necessarily an expression string

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EXEC function (cont.)

Suppose the user provides a formula expression as input to the program

• The formula is available to us in the form of a string object

• We want to turn this formula into a callable Python function

Example

For formula sin(x)*cos(3*x) + x**2, we would write the function

1 def f(x):

2 return sin(x)*cos(3*x) + x**2

With exec we first construct the syntax for defining f(x) in a string

• Then, we apply exec to the string object

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EXEC function (cont.)

1 formula = sys.argv[1]

2

3 code = """
4 def f(x):

5 return %s
6 """ % formula

7 from math import * # make sure we have sin, cos, exp, ...
8 exec(code)

Think of sin(x)*cos(3*x) + x**2 as first command-line argument

• formula will hold this text, which is inserted into code string

exec(code) executes the code as if it had been written into the code

1 """
2 def f(x):

3 return sin(x)*cos(3*x) + x**2
4 """

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EXEC function (cont.)

Remark

exec can be used to turn user-provided formulas into Python functions

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EXEC function (cont.)

Example

We have some function for computing a definite integral
∫

b

a
f (x)dx

• Say, using the midpoint rule over n intervals

1 def midpoint_integration(f, a, b, n=100):

2 h = (b - a)/float(n)
3 I = 0
4 for i in range(n):

5 I += f(a + i*h + 0.5*h)
6 return h*I

We want to read the interval limits a and b, n from command line

• as well as the formula f that defines f (x)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EXEC function (cont.)

1 from math import *

2 import sys
3

4 f_formula = sys.argv[1]
5 a = eval(sys.argv[2])

6 b = eval(sys.argv[3])
7

8 if len(sys.argv) >= 5:

9 n = int(sys.argv[4])
10 else:

11 n = 200

• We import the entire math module

• We use eval when reading input for a and b

• This allows the user to provide values like 2*cos(pi/3)

Next step is to convert the f_formula for f (x) into a function g(x)

1 code = """

2 def g(x):
3 return %s
4 """ % f_formula

5

6 exec(code)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EXEC function (cont.)

Given an ordinary g(x), we ask the integration function to integrate

1 I = midpoint_integration(g, a, b, n)

2

3 print ’Integral of %s on [%g, %g] with n=%d: %g’ % \

4 (f_formula , a, b, n, I)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EXEC function (cont.)

1 def midpoint_integration(f, a, b, n=100):

2 h = (b - a)/float(n)
3 I = 0
4 for i in range(n):

5 I += f(a + i*h + 0.5*h)
6 return h*I

7

8 from math import *

9 import sys
10

11 f_formula = sys.argv[1]

12 a = eval(sys.argv[2])
13 b = eval(sys.argv[3])

14

15 if len(sys.argv) >= 5:

16 n = int(sys.argv[4])
17 else:
18 n = 200

19

20 code = """

21 def g(x):
22 return %s
23 """ % f_formula

24 exec(code)
25

26 I = midpoint_integration(g, a, b, n)
27 print ’Integral of %s on [%g, %g] with n=%d: %g’ % \

28 (f_formula , a, b, n, I)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The EXEC function (cont.)

A sample run with
∫ π/2

0
sin (x)dx

1 Terminal > python integrate.py "sin(x)" 0 pi/2

2

3 Integral of sin(x) on [0, 1.5708] with n=200: 1

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Strings into functions
User text into objects

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Strings into functions

It is handy to get a user-provided formula and turn it into a function

• The book offers a tool for this task, StringFunction

Example

1 >>> from scitools .StringFunction import StringFunction

2 >>> formula = ’exp(x)*sin(x)’
3 >>> f = StringFunction(formula) # Formula into function f(x)

1 >>> f(0)
2 0.0

3

4 >>> f(pi)

5 2.8338239229952166e-15
6

7 >>> f(log(1))

8 0.0

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Strings into functions (cont.)

Expressions involving more independent variables are also possible

Example

An example with function g(t) = Ae−at sin (ωx)

1 g = StringFunction(’A*exp(-a*t)*sin(omega*x)’,
2 independent_variable=’t’,
3 A=1, a=0.1, omega=pi, x=0.5)

First argument is the formula then the independent variable’s name

• ’x’ is default

The other parameters (A, a, ω, and x) must be specified with values

1 g.set_parameters(omega =0.1)

2 g.set_parameters(omega =0.1, A=5, x=0)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Strings into functions (cont.)

Calling g(t) works as if g were a Python function of t that
stores also parameters A, a, omega, and x, and their values

Remark

pydoc brings up more documentation on StringFunction

1 pydoc scitools .StringFunction.StringFunction

Remark

StringFunction objects are computationally
as efficient as the usual user-defined functions

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Option-value pairs
User input and error handling

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Option-value pairs

CL arguments require the user to type all arguments in a sequence

• As when calling a function with positional arguments

How to assign CL arguments the same way as keyword arguments?

Arguments would need to be associated with a name, so that
their sequence can be arbitrary, and only the arguments whose
default value is not appropriate would need to be provided

• Such CL arguments may have option-value pairs

• With option/value is some name/valuepair for the argument

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Option-value pairs (cont.)

Example

Consider the location s(t) of an object at time t, given initial position
s = s0 at t = t0 with initial velocity v0, and constant acceleration a

s(t) = s0 + v0t +
1

2
at

2

The formula requires four input variables

• s0, v0, a, and t

Program location.py takes four options

• -s0, -v0, -a, and -t

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Option-value pairs (cont.)

1 Terminal > python location .py --t 3 --s0 1 --v0 1 --a 0.5

• The sequence of option-value pairs is arbitrary

• All options have a default value (no need to
specify all options on the command line)

• All inputs should have sensible default values

Let s0 = 0, v0 = 0, a = 1 and t = 1 by default, and only change t

1 Terminal > python location .py --t 3

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Example

1 # Set default values
2 s0 = v0 = 0; a = t = 1

3

4 import argparse
5 parser = argparse .ArgumentParser()

6 parser.add_argument(’--v0’, ’--initial_velocity’, type=float ,
7 default =0.0, help=’initial velocity ’,

8 metavar =’v’)
9 parser.add_argument(’--s0’, ’--initial_position’, type=float ,

10 default =0.0, help=’initial position ’,

11 metavar =’s’)
12 parser.add_argument(’--a’, ’--acceleration’, type=float ,

13 default =1.0, help=’acceleration’,
14 metavar =’a’)

15 parser.add_argument(’--t’, ’--time’, type=float , default =1.0,
16 help=’time’, metavar =’t’)
17 args = parser.parse_args()

18

19 s0 = args.s0; v0 = args.v0; a = args.a; t = args.t

20 s = s0 + v0*t + 0.5*a*t**2
21

22 print """

23 An object, starting at s=%g at t=0 with initial
24 velocity %s m/s, and subject to a constant

25 acceleration %g m/s**2, is found at the
26 location s=%g m after %s seconds .

27 """ % (s0, v0, a, s, t)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The ARGPARSE module
Option-value pairs

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The ARGPARSE module

Python has module argparse for parsing option-value pairs

The use of argparse consists of three steps

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The ARGPARSE module (cont.)

First, a parser object must be created

1 import argparse
2 parser = argparse .ArgumentParser()

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The ARGPARSE module (cont.)

Second, the various command-line options are defined

1 parser.add_argument(’--v0’, ’--initial_velocity’, type=float ,
2 default =0.0, help=’initial velocity ’,
3 metavar=’v’)

4

5 parser.add_argument(’--s0’, ’--initial_position’, type=float ,

6 default =0.0, help=’initial position ’,
7 metavar=’s’)

8

9 parser.add_argument(’--a’, ’--acceleration’, type=float ,
10 default =1., help=’acceleration’,

11 metavar=’a’)
12

13 parser.add_argument(’--t’, ’--time’, type=float , default =1.0,
14 help=’time’, metavar =’t’)

First arguments to parser.add_argument is a set of names/options

• Names/options to be associated with an input parameter

Optional arguments are type, a default value, a help string, and
a name (metavar) for the value of the argument in a usage string

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The ARGPARSE module (cont.)

Remark

The argparse module automatically allows for an option -h

or -help that prints a usage string for all the registered options

Remark

By default, type is str, the default value is None, the help string is
empty, metavar is the option/name in upper case without dashes (‘-’)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The ARGPARSE module (cont.)

Third, we must read the command line arguments and interpret them

1 args = parser.parse_args()

Thru the args object, values of registered parameters are extracted

• args.v0

• args.s0

• args.a

• args.t

Remark

Parameter’s name is set by the first option to parser.add_argument

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The ARGPARSE module (cont.)

Example

1 parser.add_argument(’--initial_velocity’, ’--v0’, type=float ,
2 default =0.0, help=’initial velocity ’)

The initial velocity value will thus appear as args.initial_velocity

We can the add the dest keyword to specify where the value is stored

1 parser.add_argument(’--initial_velocity’, ’--v0’, dest=’V0’,
2 type=float , default =0.0,
3 help=’initial velocity ’)

args.V0 retrieves the value of the initial velocity

Remark

If no default value is provided, default is None

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

The ARGPARSE module (cont.)

Example

The example is completed by either evaluating s

1 s = args.s0 + args.v0*t + 0.5*args.a*args.t**2

or, by introducing new variables to match math ...

1 s0 = args.s0; v0 = args.v0; a = args.a; t = args.t

2 s = s0 + v0*t + 0.5*a*t**2

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Math expressions as values
Option-value pairs

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Math expressions as values

Values on command line involving mathematical symbols and
functions, say -v0 ’pi/2’, pose a problem with the code

The argparse module will try to do float(’pi/2’)

• pi is an undefined name

Changing type=float to type=eval is required to interpret pi/2

• eval(’pi/2’) fails too, as pi is not
defined inside the argparse module

There are various remedies for this problem

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Math expressions as values (cont.)

Write a function for converting a string value to the desired object

Example

1 def evalcmlarg(text):
2 return eval(text)
3

4 parser.add_argument(’--s0’, ’--initial_position’,
5 type=evalcmlarg , default =0.0,

6 help=’initial position ’)

This way, eval is executed in the programmer’s namespace,
where (hopefully) pi or other symbols are imported

Explicit type conversion through a user-provided conversion function

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

1 """

2 As location .py, with function to interpret CL strings via eval
3 """
4 s0 = v0 = 0; a = t = 1 # Set default values

5

6 from math import *

7 def evalcmlarg(text):
8 return eval(text)

9

10 import argparse
11 parser = argparse .ArgumentParser()

12 parser.add_argument(’--v0’, ’--initial_velocity’, default =0.0,
13 type=evalcmlarg , help=’initial velocity ’)

14 parser.add_argument(’--s0’, ’--initial_position’, default =0.0,
15 type=evalcmlarg , help=’initial position ’)
16 parser.add_argument(’--a’, ’--acceleration’, default =1.0,

17 type=evalcmlarg , help=’acceleration’)
18 parser.add_argument(’--t’, ’--time’, type=evalcmlarg ,

19 default =1.0, help=’time’)
20 example = "--s0 ’exp(-4.2)’ --v0 pi/4"

21 args = parser.parse_args()
22

23 s0 = args.s0; v0 = args.v0; a = args.a; t = args.t

24 s = s0 + v0*t + 0.5*a*t**2
25

26 print """
27 An object, starting at s=%g at t=0 with initial velocity
28 %s m/s, and subject to a constant acceleration %g m/s**2,

29 is found at the location s=%g m after %s seconds .
30 """ % (s0, v0, a, s, t)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Math expressions as values (cont.)

More sophisticated conversions are possible

Example

Say s0 is specified in terms of a function of some parameter p

s0 = (1− p
2)

String -s0 can be used and StringFunction turns it into function

1 def toStringFunction4s0(text):

2 from scitools .std import StringFunction
3 return StringFunction(text , independent_variable=’p’)

4

5 parser.add_argument(’--s0’, ’--initial_position’,

6 type=toStringFunction4s0, default =’0.0’,
7 help=’initial position ’)

A CL argument -s0 ’exp(-1.5) + 10(1-p**2)’ results in args.s0

being a StringFunction object, to be evaluated for some p value

1 s0 = args.s0
2 p = 0.05
3 ...

4 s = s0(p) + v0*t + 0.5*a*t**2

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Math expressions as values (cont.)

An alternative is to perform the correct conversion of
values after the parser object has read the values

We treat argument types as strings in parser.add_argument calls

• We replace type=float by setting type=str

• (which is also the default choice of type)

Remark

The approach requires specification of default values as strings (say ’0’)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Math expressions as values (cont.)

Example

1 parser.add_argument(’--s0’, ’--initial_position’, type=str,

2 default=’0’, help=’initial position ’)
3

4 ...
5

6 from math import *

7 args.v0 = eval(args.v0)
8 # or

9 v0 = eval(args.v0)
10 s0 = StringFunction(args.s0, independent_variable=’p’)

11 p = 0.5
12

13 ...

14

15 s = s0(p) + v0*t + 0.5*a*t**2

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Data from file
User input, error handling and modules

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Data from file

Data into a program from CL, or Q/A in terminal works for small data

• Otherwise, input data must be fetched from files

The task is to understand how programs are used read and write files

Remark

Before letting a program read the file, we must know the file format

• The structure of the text influences the
set of statements needed to read the file

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Data from file (cont.)

Example

Suppose we have recorded some measurement data in a file data.txt

• Read measurements in data.txt, find the average, print it

We start by viewing the content of file data.txt

• Load the file into a text editor or viewer

Unix/Mac: emacs, vi/vimm, more/less, pico/nano

Windows/DOS: WordPad, NotePad++, type

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Data from file (cont.)

What we see is a column with numbers

1 21.8

2 18.1
3 19
4 23

5 26
6 17.8

Read the column of numbers into a list

• Compute their average

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading line-by-line
Data from file

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading line-by-line

Before the content of a file is read, the file must be first opened

1 infile = open(’data.txt’, ’r’)

The action creates a file object, here stored in the variable infile

• Second argument to open function, string ’r’,
tells that we want to open the file for reading

After the file is read, file object must be closed (infile.close())

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading line-by-line

Remark

A file can be opened for writing, by providing ’w’ as the second argument

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading line-by-line

1 21.8

2 18.1
3 19
4 23

5 26
6 17.8

The basic technique for reading the file content is line-by-line

1 infile = open(’data.txt’, ’r’)

2

3 for line in infile:
4 # do something with line

The line variable is a string object holding the current line in file

• The FOR-loop that loops over the lines in the file
has the same syntax as when we go through a list

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading line-by-line

1 infile = open(’data.txt’, ’r’)
2

3 for line in infile:
4 # do something with line

The file object infile can be understood as a collection of elements
(lines in a file) and the FOR-loop visits these elements in a sequence

• At every pass, the line variable refers to one line

Remark

It is useful to do a print line inside the loop, if something goes wrong

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading line-by-line

Instead of reading line-by-line, we can load all lines into a list of strings

1 infile = open(’data.txt’, ’r’)
2

3 lines = infile.readlines()

Remark

The lines = infile.readlines() statement is equivalent to

1 lines = []
2 for line in infile:

3 lines.append(line)

or to the list comprehension

1 lines = [line for line in infile]

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading line-by-line (cont.)

Example

Load the file into list lines, and compute the average of the numbers

A straightforward sum of all numbers on all lines, returns an error

1 infile = open(’data.txt’, ’r’)
2

3 lines = infile.readlines()
4

5 mean=0

6 for number in lines:
7 mean = mean + number

8

9 mean = mean/len(lines)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading line-by-line (cont.)

1 TypeError: unsupported operand type(s) for +: ’int’ and ’str’

lines holds each line (number) as a string, not as float or int

1 infile = open(’data.txt’, ’r’)

2

3 lines = infile.readlines()

4

5 mean = 0

6 for line in lines:
7 number = float(line) # Convert each line to float
8 mean = mean + number

9

10 mean = mean/len(lines)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading line-by-line (cont.)

Example

A complete version of the code

1 infile = open(’data.txt’, ’r’)

2

3 lines = []

4 for line in infile:
5 print line
6 lines.append(line)

7 infile.close()
8 print lines

9

10 mean = 0

11 for line in lines:
12 number = float(line)
13 mean = mean + number

14 mean = mean/len(lines)
15 print mean

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading line-by-line (cont.)

Remark

Summing numbers is common, Python has function sum for the task

• sum operates on lists of floats, not on strings

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading line-by-line (cont.)

Example

We use list comprehension to convert all elements in lines into floats

1 mean = sum([float(line) for line in lines])/len(lines)

An alternative implementation loads the lines into a list of floats directly

1 infile = open(’data.txt’, ’r’)
2 numbers = [float(line) for line in infile.readlines()]

3 infile.close()
4

5 mean = sum(numbers)/len(numbers)

6 print mean

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Alternative reading
Data from file

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Alternative reading

It may seem confusing to see that a problem is often solved by many
alternative sets of statements, this is in the nature of programming

Several solutions to a programming task must be judged and one that
is either compact, easy to understand, and/or easy to extend is chosen

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Alternative reading (cont.)

To deal with files, modern Python code uses the with statement

1 with open(’data.txt’, ’r’) as infile:
2 for line in infile:

3 # process line

which is equivalent to writing the snippet

1 infile = open(’data.txt’, ’r’)
2 for line in infile:
3 # process line

4 infile.close()

When using the with statement, there is no need to close the file

• Shorter code and better handling of errors if problems

• The syntax differs from the classical open-close pattern

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Alternative reading (cont.)

Remark

Remembering to close a file is (was) key in programming

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Alternative reading (cont.)

A WHILE-loop can read a file line by line using infile.readline()

1 while True:

2 line = infile.readline ()
3 if not line:

4 break
5 # process line

The call infile.readline() returns a string containing text

• The text is the content of the current line in the file

infile.readline() returns an empty string at the end of file

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Alternative reading (cont.)

The WHILE-loop runs forever, as the condition is always True

• Inside the loop, we test if line is False, and it is False
when we reach the EOF, because line is an empty string

• When line is False, the break statement breaks the loop and
the program flow goes to the statement after the WHILE-block

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Alternative reading (cont.)

Example

Computing the average can now be done in yet another way

1 infile = open(’data.txt’, ’r’)

2

3 mean = 0

4 n = 0
5

6 while True:

7 line = infile.readline ()
8

9 if not line:
10 break

11

12 mean += float(line)
13 n += 1

14

15 mean = mean/float(n)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Alternative reading (cont.)

infile.read() reads a whole file, returns the text as string object

Example

An interactive session illustrates the use and result of infile.read()

1 >>> infile = open(’data.txt’, ’r’)
2 >>> filestr = infile.read()

3 >>> filestr
4 ’21.8\ n18.1\n19\n23\n26\n17.8\n’

5

6 >>> print filestr
7 21.8

8 18.1
9 19

10 23
11 26
12 17.8

• filestr dumps the string with newlines as \n characters

• print filestr is a prettyprint without quotes and with newlines

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Alternative reading (cont.)

String objects have many useful functions for extracting information

filestr.split() splits the string into words (separated
by blanks or a previously defined sequence of characters)

The ‘words’ in this file are the numbers in data.txt

Example

1 >>> words = filestr .split()

2 >>> words
3 [’21.8’, ’18.1’, ’19’, ’23’, ’26’, ’17.8’]

4

5 >>> numbers = [float(w) for w in words]
6 >>> mean = sum(numbers)/len(numbers)

7

8 >>> print mean

9 20.95

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Alternative reading (cont.)

More compactly, ...

Example

1 infile = open(’data.txt’, ’r’)

2 numbers = [float(w) for w in infile.read().split()]
3 mean = sum(numbers)/len(numbers)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading text and numbers
Data from file

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading text and numbers

Many data files contain a mixture of text and numbers

Example

The file rainfall.dat from World Climate (click me) is an example

1 Average rainfall (in mm) in Rome: 1188 months btw 1782 n 1970
2 Jan 81.2
3 Feb 63.2

4 Mar 70.3
5 Apr 55.7

6 May 53.0
7 Jun 36.4
8 Jul 17.5

9 Aug 27.5
10 Sep 60.9

11 Oct 117.7
12 Nov 111.0

13 Dec 97.9
14 Year 792.9

http://www.worldclimate.com/cgi-bin/data.pl?ref=N41E012+2100+1623501G1

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading text and numbers (cont.)

How can we read the rainfall data in this file and store
the information in lists suitable for further analysis?

1 Average rainfall (in mm) in Rome: 1188 months btw 1782 n 1970

2 Jan 81.2
3 Feb 63.2

4 Mar 70.3
5
6 Dec 97.9

7 Year 792.9

A straightforward solution

1 Read the file, line by line

2 For each line, split the line into words

3 Store the first word (month) in one list object

4 Store second word (average rainfall) in another list object

Elements in the second list objects need be float objects

• If we want to compute with them

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading text and numbers (cont.)

1 ##
2 def extract_data(filename): #

3 #
4 infile = open(filename , ;’r’) #
5 infile.readline () # skip the first line #

6 months = [] #
7 rainfall = [] #

8 #
9 for line in infile: #

10 words = line.split() #
11 months.append(words [0]) # words [0]: month #
12 rainfall .append(float(words [1])) # words [1]: rainfall #

13 infile.close() #
14 #

15 months = months [:-1] # Drop the "Year" entry #
16 annual_avg = rainfall [-1] # Store the annual average #
17 rainfall = rainfall [:-1] # Redefine to contain monthly data #

18 #
19 return months , rainfall , annual_avg #

20 ##
21

22 months, values , avg = extract_data(’rainfall .dat’)
23

24 print ’The average rainfall for the months:’

25 for month , value in zip(months , values):
26 print month , value

27 print ’The average rainfall for the year:’, avg

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading text and numbers (cont.)

The first line in the file is a comment line, of no interest to us

• We read this line by infile.readline()

• We do not store the content in any object

The FOR-loop over lines in the file then starts from second line

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading text and numbers (cont.)

1 Average rainfall (in mm) in Rome: 1188 months btw 1782 n 1970

2 Jan 81.2
3 Feb 63.2
4 Mar 70.3

5

6

7

8 Dec 97.9

9 Year 792.9

We store all data as 13 elements in the months and rainfall lists

Thereafter, we manipulate these list objects a bit

• months must contain the name of the 12 months only

• rainfall should contain the corresponding pluviosity

Annual average is removed from rainfall, stored in a separate variable

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading text and numbers (cont.)

1 Average rainfall (in mm) in Rome: 1188 months btw 1782 n 1970
2 Jan 81.2

3 Feb 63.2
4 Mar 70.3
5

6
7

8 Dec 97.9
9 Year 792.9

Remark

1 ...
2

3 months = months [:-1] # Drop the "Year" entry #

4 annual_avg = rainfall [-1] # Store the annual average #
5 rainfall = rainfall [:-1] # Redefine to contain monthly data #

6

7 ...

The -1 index corresponds to the last element of a list, and the slice
:-1 picks out all elements from beginning to the last element, excluded

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Reading text and numbers (cont.)

Shorter code, months and rainfall values are stored in a nested list

1 ##

2 def extract_data(filename): #
3 #
4 infile = open(filename , ’r’) #

5 #
6 infile.readline () # skip the first line #

7 #
8 data = [line.split() for line in infile] #
9 annual_avg = data[-1][1] #

10 data = [(m, float(r)) for m, r in data[:-1]] #
11 #

12 infile.close() #
13 #

14 return data , annual_avg #
15 ##

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Data to file
User input, error handling and modules

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Data to file

Writing data to file is comparably easier

There is one main function to pay attention to, outfile.write(s)

• It writes string s to a file handled by the file object outfile

Unlike print, outfile.write(s) does not append a newline character

• If string s is meant to appear on a single line in the file and s does
not already contain a trailing newline character, it must be added

• It is often needed to add a newline character

1 outfile .write(s + ’\n’)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Data to file (cont.)

File writing is a matter of constructing strings containing the text we
want to have in the file and for each such string call outfile.write

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Data to file (cont.)

Remark

Writing to a file requires the file object f to be opened for writing

1 # write to new file , or overwrite file:

2 outfile = open(filename , ’w’)
3

4 # append to the end of an existing file:
5 outfile = open(filename , ’a’)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Writing a table
Data to file

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Writing a table

Example

We want to write to file a nested list with tabular data

1 [[0.75, 0.29619813 , -0.29619813, -0.75],
2 [0.29619813 , 0.11697778 , -0.11697778, -0.29619813],
3 [-0.29619813, -0.11697778, 0.11697778 , 0.29619813] ,

4 [-0.75, -0.29619813, 0.29619813 , 0.75]]

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Writing a table (cont.)

1 data = [[0.75, 0.29619813 , -0.29619813, -0.75],

2 [0.29619813 , 0.11697778 , -0.11697778, -0.29619813],
3 [-0.29619813, -0.11697778, 0.11697778 , 0.29619813] ,

4 [-0.75, -0.29619813, 0.29619813 , 0.75]]
5

6 outfile = open(’tmp_table.dat’, ’w’)

7

8 for row in data:

9 for column in row:
10 outfile .write(’%14.8f’ % column)
11 outfile .write(’\n’)

12 outfile .close()

We iterate through the rows (first index) in the list, for each row,
we iterate thru column values (second index) and write them to file

• At the end of each row, we insert a newline character

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Writing a table (cont.)

1 0.75000000 0.29619813 -0.29619813 -0.75000000
2 0.29619813 0.11697778 -0.11697778 -0.29619813

3 -0.29619813 -0.11697778 0.11697778 0.29619813
4 -0.75000000 -0.29619813 0.29619813 0.75000000

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Writing a table (cont.)

To obtain this embellished result, add some statements to the program

1 column 1 column 2 column 3 column 4
2 row 1 0.75000000 0.29619813 -0.29619813 -0.75000000

3 row 2 0.29619813 0.11697778 -0.11697778 -0.29619813
4 row 3 -0.29619813 -0.11697778 0.11697778 0.29619813
5 row 4 -0.75000000 -0.29619813 0.29619813 0.75000000

For the column headings, the number of columns must be known

• This is also the length of the rows

1 ncolumns = len(data[0])

2 outfile .write(’ ’)
3

4 for i in range(1, ncolumns +1):

5 outfile .write(’%10s ’ % (’column %2d’ % i))
6 outfile .write(’\n’)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Writing a table (cont.)

Nested printf construction: the text to be inserted is a printf string

We could also have written the text as ’column ’ + str(i), then
the length of the string would depend on the number of digits in i

Remark

The printf constructions is recommended for tabular output formats

• This gives automatic padding of blanks so that the width of the
output strings remains the same

The tuning of the widths is commonly done by trial-and-error

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Writing a table (cont.)

To add the row headings, we need a counter over the row numbers

1 row_counter = 1
2 for row in data:

3 outfile .write(’row %2d’ % row_counter)
4 for column in row:
5 outfile .write(’%14.8f’ % column)

6 outfile .write(’\n’)
7 row_counter += 1

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Writing a table (cont.)

1 data = [[0.75, 0.29619813 , -0.29619813, -0.75],
2 [0.29619813 , 0.11697778 , -0.11697778, -0.29619813],
3 [-0.29619813, -0.11697778, 0.11697778 , 0.29619813] ,

4 [-0.75, -0.29619813, 0.29619813 , 0.75]]
5

6 outfile = open(’tmp_table.dat’, ’w’)
7

8 ncolumns = len(data[0])
9 outfile .write(’ ’)

10 for i in range(1, ncolumns +1):

11 outfile .write(’%10s ’ % (’column %2d’ % i))
12 outfile .write(’\n’)

13

14 row_counter = 1
15 for row in data:

16 outfile .write(’row %2d’ % row_counter)
17 for column in row:

18 outfile .write(’%14.8f’ % column)
19 outfile .write(’\n’)

20 row_counter += 1
21

22 outfile .close()

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Writing a table (cont.)

Iterate over the indexes of the list, as an alternative

1 for i in range(len(data)):
2 outfile .write(’row %2d’ % (i+1))

3 for j in range(len(data[i])):
4 outfile .write(’%14.8f’ % data[i][j])
5 outfile .write(’\n’)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Standard input and output

as file objects
Data to file

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Standard input and output as file objects

Reading input from keyboard was based on function raw_input

The keyboard is treated as a file

• It is referred to as standard input, stdin

The print command is used to print onto the terminal screen

The terminal is treated as a file

• It is referred to as standard output, stdout

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Standard input and output as file objects (cont.)

Remark

All-purpose languages allow reading from stdin and writing to stdout

Reading and writing can be done with two types of tools

• File-like objects: sys.stdin and sys.stdout

• Special tools, raw_input and print

File-like objects behave as file objects, need no open/close

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Standard input and output as file objects (cont.)

For input from keyboard, the two statements are equivalent

Example

1 s = raw_input(’Give s:’)

1 print ’Give s: ’,

2 s = sys.stdin.readline ()

The trailing comma in print statements avoids
the newline added by default to the output string

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Standard input and output as file objects (cont.)

Example

Similarly, the two statements are equivalent

1 s = eval(raw_input(’Give s:’))

1 print ’Give s: ’,
2 s = eval(sys.stdin.readline ())

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Standard input and output as file objects (cont.)

For output to the terminal window, the two statements are equivalent

Example

1 print s

1 sys.stdout.write(s + ’\n’)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Standard input and output as file objects (cont.)

It is handy to have access to stdin and stdout as file objects

Example

Suppose you have a function

• It reads data from a file object, infile

• It writes data to a file object, outfile

A sample function, x2f, may take the form

1 def x2f(infile , outfile , f):

2 for line in infile:
3 x = float(line)

4 y = f(x)
5 outfile .write(’%g\n’ % y)

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Standard input and output as file objects (cont.)

This function works with all types of files infile, including web pages

• With sys.stdin as infile and/or sys.stdout as outfile,
function x2f works with standard input and/or output

• Without sys.stdin and sys.stdout, code using raw_input and
print would be needed to deal with standard input and output

Remark

This single function deals with all file media in a unified way

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Standard input and output as file objects (cont.)

There is also something called standard error

• Usually, this is the terminal window

• As standard output

Programs can distinguish between writing ordinary output
to standard output and error messages to standard error

In Python, standard error is a file-like object, sys.stderr

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Standard input and output as file objects (cont.)

An application of sys.stderr is to report errors

Example

1 if x < 0:
2 sys.stderr.write(’Illegal value of x’); sys.exit(1)

A message to sys.stderr is alternative to print or raising an exception

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Standard input and output as file objects (cont.)

Redirecting standard input, output, and error

Remark

Standard output from some program prog can be redirected to a
file output instead of screen, by using the ‘greater than’ sign (’>’)

1 Terminal > prog > output

prog can be any program, also code run as python myprog.py

Remark

Similarly, output to the medium called standard error can be redirected

1 Terminal > prog &> output

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Standard input and output as file objects (cont.)

Error messages are normally written to standard error

Example

• An example from a terminal session on a Unix machine

1 Terminal > ls bla-bla1 bla-bla2
2 ls: cannot access bla-bla1: No such file or directory

3 ls: cannot access bla-bla2: No such file or directory
4

5 Terminal > ls bla-bla1 bla-bla2 &> errors

6

7 Terminal > cat errors # print the file errors

8 ls: cannot access bla-bla1: No such file or directory
9 ls: cannot access bla-bla2: No such file or directory

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Standard input and output as file objects (cont.)

Remark

Even when a program reads from standard input (keyboard), we can
redirect the standard input to be from a file (say, with name input)

• Such that the program reads from this file instead of keyboard

1 Terminal > prog < input

Remark

Combinations are also possible

1 Terminal > prog < input > output

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Standard input and output as file objects (cont.)

The redirection of standard output, input, and error does not work for
Python programs executed with the run command inside IPython

• It only works with programs that are executed directly in the
operating system in a terminal window, or with the same
command prefixed with an exclamation mark (!) in the IPython

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Standard input and output as file objects (cont.)

In a Python program, we can also let standard input, standard
output, and standard error work with ordinary files instead

1 sys_stdout_orig = sys.stdout

2 sys.stdout = open(’output ’, ’w’)
3

4 sys_stdin_orig = sys.stdin

5 sys.stdin = open(’input’, ’r’)

• Any print statement will write to the output file

• Any raw_input call will read from the input file

User input/output,
error handling and

modules
Part I

UFC/DC
FdP - 2017.1

Questions and answers

Keyboard input

Reading from CL

Input from command line

Command line arguments

User text into objects

The EVAL function

The EXEC function

Strings into functions

Option-value pairs

The ARGPARSE module

Math expressions as values

Data from file

Reading line-by-line

Alternative reading

Reading text and numbers

Data to file

Writing a table

stdin and stout

Standard input and output as file objects (cont.)

Remark

Without storing the original sys.stdout and sys.stdin objects

in new variables, these objects would get lost in the redefinition

We would not be able to reach the common
standard input and output in the program

	Questions and answers
	Keyboard input

	Reading from CL
	Input from command line
	Command line arguments

	User text into objects
	The EVAL function
	The EXEC function
	Strings into functions

	Option-value pairs
	The ARGPARSE module
	Math expressions as values

	Data from file
	Reading line-by-line
	Alternative reading
	Reading text and numbers

	Data to file
	Writing a table
	stdin and stout

