User input/output,
error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Handling errors
Exception handling

Raising exceptions

User input/output, error handling and modules
Part 1l
Foundation of programming (CK0030)

Francesco Corona

User input/output,

error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Exception handling

FdP

® Intro to variables, objects, modules, and text formatting
® Programming with WHILE- and FOR-loops, and lists
® Functions and IF-ELSE tests

® Data reading and writing
® Error handling
® Making modules

® Arrays and array computing

® Plotting curves and surfaces

Handling errors

User input, error handling and modules

User input/output,

error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Handling errors
Exception handlin
Raisin,

Handling errors

import sys

C = float(sys.argv[1])
F = 9.0%C/5 + 32

print F

Suppose we forget to provide a command-line argument to c2f_cml.py

Terminal > c2f_cml.py
Traceback (most recent call last):
File "c2f_cml.py", line 2, in 7
C = float(sys.argvI[1])
IndexError: list index out of range

Python aborts the program and shows an error message containing
e The line where the error occurred
e The type of error (IndexError)

e An explanation of what the error is

User input/output,

error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Handling errors
Exception handling

Raising exceptions

Handling errors (cont.)

import sys

C = float(sys.argv[1l])
F = 9.0%C/5 + 32
print F

From this info we deduce that index 1 of sys.argv is out of range

Terminal > c2f_cml.py
Traceback (most recent call last):
File "c2f_cml.py", line 2, in 7
C = float(sys.argv[1])
IndexError: list index out of range

As there are no command-line arguments, sys.argv has one element
e The program name itself

e The only valid index is 0

User input/output,
error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Handling errors
Exce,

Rais

Handling errors (cont.)

For an experienced coder this error message
is clear enough to indicate what is wrong

For others it would be more helpful if wrong usage could be detected
by the program and a description of correct operation could be printed

The question is how to detect the error inside the program

User input/output, Handling errors (cont.)

error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

The problem in the execution is that sys.argv does not contain two
elements (program name, as always, and a command-line argument)

Handling errors

We can test on the length of sys.argv to detect wrong usage

o if len(sys.argv) is less than 2, info on C is missing

A new version of the program, c2f _cml_if.py, starts with an IF test

if len(sys.argv) < 2:
print ’You failed to provide Celsius degrees’\
’as input on the command line!’

sys.exit (1) # abort because of error

F = 9.0%xC/5 + 32
print ’%gC is %.1fF’ % (C, F)

User input/outpur, Handling errors (cont.)
error handling and

modules

Part 11

UFC/DC
FdP - 2017.1

Handling errors
Exception handling

Raising exc

sys.exit is used to abort execution and show an error code
e Any non-zero argument means the program aborted due to error
e The precise value of the argument does not matter

e Here, we choose it to be 1

If no errors are found, we can still use sys.exit(0) to abort it

User input/output,

error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Handling errors

Handling errors (cont.)

The modern way of handling errors in a code is to try to execute some
statements, and if something goes wrong, the program can detect this
and jumps to a set of statements that handle the erroneous situation

e The Try-Except construction

The relevant TRY-EXCEPT construction reads

try:
<try-block statements>
except:
<except-block statements>

If the attempt goes wrong in the TRY block, an exception is raised

o The execution jumps directly to the EXCEPT block

Exception handling

Handling errors

User input/output,

error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Exception handling
Raising exceptions

Exception handling

To clarify the idea of exception handling, consider a TRY-EXCEPT block
to handle a problem with the Celsius-Fahrenheit conversion program

e A wrong call lacking a command-line argument

import sys

try:
C = float(sys.argvI[1])
except:

print ’You failed to provide Celsius degrees’\
’as input on the command line!’
sys.exit (1) # abort

F = 9.0%xC/5 + 32
print ’%gC is %.1fF’ % (C, F)

If an argument is missing, indexing sys.argv[1] raises an exception
e The program jumps directly to the EXCEPT block
e The float is not called, and C is not initialised
In the EXCEPT block, info about exception is given and code executed

o We print a message and abort the program

User input/output,
error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Exception handling

Raising exceptions

Exception handling (cont.)

If the command-line argument is provided, the TRY block is executed
successfully, the program neglects the EXCEPT block and continues

Terminal > c2f_cml_exceptl.py
You failed to provide Celsius degrees
as input on the command line!

Terminal > c2f_cml_exceptl.py 21
21C is 69.8F

User input/output,

error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Exception handling

Raising exceptions

Exception handling (cont.)

Consider the assignment

C = float(sys.argvl[1])

There are two typical errors associated with this statement
e sys.argv[1] is illegal indexing when no CL arguments are given

e String sys.argv[1] can not be converted into a float object

Python detects both these errors and raises an exception
e An IndexError exception in the first case

o A ValueError exception in the second case

User inpu/output Exception handling (cont.)
S
Part 11

UFC/DC
FdP - 2017.1

Exception handling

e e In the program, we jump to the EXCEPT block and issue the same
exact message, regardless of what went wrong in the TRY block

I import sys

2 try:
; C = float(sys.argv[1])
except:

5 print ’You failed to provide Celsius degrees’\
6 ’as input on the command line!’
7 sys.exit (1) # abort

9o F = 9.0%xC/5 + 32
10 print ’%gC is %.1fF’ % (C, F)

User inpu/output Exception handling (cont.)
S
Part 11

UFC/DC
FdP - 2017.1

Exception handling

Raising exceptions

When we provide a command-line argument, but write it wrongly, the
program jumps to the EXCEPT block and prints a misleading message

Terminal > c2f_cml_exceptl.py 21C
You failed to provide Celsius degrees
as input on the command line!

User inpu/output Exception handling (cont.)
S
Part 11

UFC/DC
FdP - 2017.1

o A solution to this could be to branch into different EXCEPT blocks
xception handling . . . 3
F D — depending on what type of exception was raised in the TRY block

import sys

try:

4 € = float(sys.argv[1])

5 except IndexError:

6 print ’Celsius degrees must be supplied on the command line’
7 sys.exit (1) # abort execution

s except ValueError:

9 print ’Celsius degrees must be a pure number, ’\

10 ‘not "%s"’ % sys.argv[1]

11 sys.exit (1)

3 F = 9.0%C/5 + 32
1 print ’%gC is %.1fF’ % (C, F)

User input/output,

error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Exception handling

Raising exceptions

Exception handling (cont.)

Now, if we fail to provide a command-line argument, an IndexError
occurs and we tell the user to write the C value on the command-line

Terminal > c2f_cml_exceptl.py 21C
Celsius degrees must be supplied on the command line

If the float object generation fails, because the CL has wrong syntax,
a ValueError exception is raised and we branch into a second EXCEPT
block and explain that the form of the given number is wrong

Terminal > c2f_cml_exceptl.py 21C
Celsius degrees must be a pure number, not "21C"

User input/output, Exception handling (cont.)

error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Exception handling

Some programming languages (Fortran, C, C++, and Perl,
for example) allow list indices outside the legal index values

e Such unnoticed errors can be hard to find

>>> data = [1.0/i for i in range(1,10)]

>>> datal[9]
IndexError: list index out of range

Python always stops a program when an invalid index is encountered

e Unless the exception is handled explicitly, by the coder

User input/output, Exception handling (cont.)
error handling and

modules

Part 11

UFC/DC
FdP - 2017.1

Exception handling _

R Converting a string object into a float object fails and gives a
ValueError exception, if the string is not an integer or a real number

>>> C = float(’21 C?)

ValueError: invalid literal for float(): 21 C

Trying to use an uninitialised variable gives a NameError exception

>>> print a

NameError: name ’a’ is not defined

User input/output, Exception handling (cont.)
error handling and

modules

Part 11

UFC/DC
FdP - 2017.1

Exception handling

Raising exceptions Division by zero raises a ZeroDivisionError exception

>>> 3.0/0

ZeroDivisionError: float division

Writing a Python keyword illegally or performing a Python grammar
error leads to a SyntaxError exception

>>> forr d in data:

forr d in data:

SyntaxError: invalid syntax

User input/output, Exception handling (cont.)
error handling and

modules

Part 11

UFC/DC
FdP - 2017.1

Exception handling
Raising exceptions

Try and multiply a string by a number

>>> ’a string’*3.14
TypeError: can’t multiply sequence by non-int of type ’float’

The TypeError exception is raised because the object types
involved in the multiplication are incompatible (str and float)

User input/output, Exception handling (cont.)
error handling and

modules

Part 11

UFC/DC
FdP - 2017.1

Exception handling
Raising exceptions

>>> ’--"%10 # ten double dashes = 20 dashes

>>> [1, 2, 3]*n
Gly By &y iy 2y 8y il Ay &y iy 2y 6l

>>> [0]*n
fo, o, o, ol

Raising exceptions

Handling errors

User input/output,

error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Raising exceptions

Raising exceptions

When an error occurs in your program, you can either print a message
and use sys.exit (1) to abort execution, or you can raise an exception

e The latter (raising an exception) task is easy

Write raise E(message), where E can be a known exception
type and message refers to a string explaining what is wrong

. e ValueError if some variable value is wrong
Often E is)))
e TypeError if some variable type is wrong

It is also possible to define own exception types

Exceptions can be raised from any place in a code

User input/output,

error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Raising exceptions

Raising exceptions (cont.)

The next code shows how to test for exceptions and abort execution

try:
C = float(sys.argvI[1])
except IndexError:
print ’Celsius degrees must be supplied on the command line’
sys.exit (1) # abort execution
except ValueError:
print ’Celsius degrees must be a pure number, ’\
‘not "%s"’ % sys.argv[1]
sys.exit (1)

F = 9.0%xC/5 + 32
print ’%gC is %.1fF’ % (C, F)

e e Raising exceptions (cont.)

error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Exception handling

Raising exceptions

At times we see that an exception may not happen, if it happens ...

e We want a more precise error message to help the user

This can be done by raising a new exception in an EXCEPT-block

e To provide the desired exception type and message

User input/output,

error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Exception hanc

Raising exceptions

Raising exceptions (cont.)

Another application of raising exceptions with tailored
error messages arises when input data are invalid

The reading of C and handling of errors are in a separate function

HURAABHBRBABHBRBABHBRRABHBRRARH BB BARHBBRARAHBRAR AR B AR AR BRARSH
def read_C(): #
try: #
C = float(sys.argvl[1]) #
except IndexError: #
raise IndexError\ #
(’Celsius degrees must be supplied on command line’) #
except ValueError: #
raise ValueError\ #
(’Celsius degrees must be a pure number, ’\ #
‘not "%s"’ % sys.argv[1]) # C is read correctly as a #

number, but can have

wrong value

if C < -273.15: #
raise ValueError(’C=Y%g is a non-physical value!’ % C) #
return C #
HURAABHBABABHBRBABHBRBARHBRBARH BB BABHBBRARAHBRAR AR B AR AR BRARAH

There are two ways of using the read_C function

User input/output,
error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Exception handling

Raising exceptions

Raising exceptions (cont.)

The simplest of which is to call the function

C = read_C()

Wrong input will now lead to a raw dump of exceptions

Terminal > c2f_cml_v5.py
Traceback (most recent call last):
File "c2f_cml4.py", line 5, in ?
raise IndexError\
IndexError: Celsius degrees must be supplied on command line

New users get confused with raw output from exceptions, words like
Traceback, raise, and IndexError make little sense to the newbie

e e Raising exceptions (cont.)

error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Exception handling

Raising exceptions A more user-friendly output can be obtained by calling the read_C
function inside TRY-EXCEPT blocks, check for IndexError or
ValueError, and write the exception message in formatted form

This way, the programmer takes complete control of
how the code behaves when errors are encountered

try:

C = read_CQ)

except Exception as e:

print e # exception message
sys.exit (1) # terminate execution

User input/output, Raising exceptions (cont.)
error handling and

modules

Part 11

UFC/DC
FdP - 2017.1

Exception handling

Raising exceptions Exception is a name for all exceptions, e is an exception object

o Pretty print of the exception message from print e

To test more specifically for two exception types we can expect from
read_C, instead of Exception we write (ValueError, IndexError)

1 try:

> C = read_C()

5 except (ValueError, IndexError) as e:
print e # exception message
sys.exit (1) # terminate execution

After the TRY-EXCEPT blocks, we do F = 9*C/5 + 32 and print out F

User input/output,

error handling and
modules
Part 11

UFC/DC
FdP - 2017.1

Exception handlin

Raising exceptions

Raising exceptions (cont.)

We test the program'’s behaviour when the input is wrong and right

Terminal > c2f_cml.py
Celsius degrees must be supplied on the command line

Terminal > c2f_cml.py 21C
Celsius degrees must be a pure number, not "21C"

Terminal > c2f_cml.py -500
C=-500 is a non-physical value!

Terminal > c2f_cml.py 21
21C is 69.8F

The program deals with wrong input by writing an informative message

e Execution is terminated, without annoying behaviour

User input/output, Raising exceptions (cont.)
error handling and

modules

Part 11

UFC/DC
FdP - 2017.1

Scattered IF-tests with sys.exit calls are bad coding style

it el o Compared to the use of nested exception handling

Raising exceptions

It is a good practice to limit abortion in the main program only

The reason is that the functions can be re-used nevertheless

e The error can be dealt with differently

This coding style is considered the best way of dealing with errors, so
we suggest to apply exceptions for handling potential errors in the code

	Handling errors
	Exception handling
	Raising exceptions

