Exercise A.1. For a given function $f(x)$, the integral $\int_{a}^{b} f(x) \mathrm{d} x$ computed using the formula

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x \approx h\left[\frac{1}{2} f\left(x_{0}\right)+\sum_{i=1}^{n-1} f\left(x_{i}\right)+\frac{1}{2} f\left(x_{n}\right)\right] \tag{1}
\end{equation*}
$$

is approximated by n trapezoids of equal width h.
Write a Python function that takes any f, a and b, and n as inputs and returns the approximation.
Solution: We write a Python function trapz.py with variables corresponding to the notation

```
def trapz(f, a, b, n):
    h = float (b-a)/n
    result = 0.5*f(a) + 0.5*f(b) # 1st and 3rd term between brackets
    for i in range(1, n):
        result += f(a + i*h) # Loop through index i (2nd term)
    result *= h # Final multiplication
    return result
```

The function can be tested as follows

```
>>> from trapz import trapz
>>> from math import exp
>>> v = lambda t: 3*(t**2)*exp(t**3)
>>> n = 4
>>> num_int = trapz(v, 0, 1, n)
>>> num_int
    1.9227167504675762
```

Exercise A.2.

Solution:

