Matrícula (First-name Last-name)

CK0030: Homework A

Exercise A.1. For a given function f(x), the integral $\int_a^b f(x) dx$ computed using the formula

$$\int_{a}^{b} f(x) dx \approx h \Big[\frac{1}{2} f(x_0) + \sum_{i=1}^{n-1} f(x_i) + \frac{1}{2} f(x_n) \Big],$$
(1)

is approximated by n trapezoids of equal width h. Write a Python function that takes any f, a and b, and n as inputs and returns the approximation.

Solution: We write a Python function trapz.py with variables corresponding to the notation

```
1 def trapz(f, a, b, n):
2 h = float(b-a)/n
3 result = 0.5*f(a) + 0.5*f(b) # 1st and 3rd term between brackets
4 for i in range(1, n):
5 result += f(a + i*h) # Loop through index i (2nd term)
6 result *= h # Final multiplication
7 return result
```

The function can be tested as follows

```
1 >>> from trapz import trapz
2 >>> from math import exp
3 >>> v = lambda t: 3*(t**2)*exp(t**3)
4 >>> n = 4
5 >>> num_int = trapz(v, 0, 1, n)
6 >>> num_int
7 1.9227167504675762
```

Exercise A.2.

...

Solution:

...