
Exercise 1. Consider the Lognormal function $f(x|\mu,\sigma)$ with parameters μ and σ and $x \in (0,\infty)$

$$f(x|\mu,\sigma) = \underbrace{\frac{1}{\sqrt{2\pi\sigma^2}}}_{a} \underbrace{\frac{1}{x}}_{b} \exp\left\{-\underbrace{\frac{1}{2\sigma^2}}_{c} \left[\underbrace{\log(x) - \mu}_{d}\right]^2\right\} = a(\sigma)b(x)\exp\left[-c(\sigma)d(x|\mu)^2\right]. \tag{1}$$

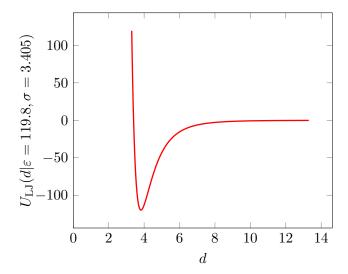
The piece of code below was developed to evaluate the Lognormal at x=100, for $\mu=4$ and $\sigma=1$

```
from math import sqrt, pi, exp, log

mu = 4
sigma = 1
x = 100

a = 1/sqrt(2*pi*sigma**2)
b = 1/x.
c = 1/2*sigma**2
d = (log(x)-mu)**2

f = a*b*exp(-c*d**2)


print ' %.16f ' % f
```

The result seems wrong (see plot), explain why and show how to fix the code accordingly. Write a program my_lognorm.py (or a code snippet in a notebook) with a working version of the code.

Exercise 2. The Lennard-Jones potential is a simple pair-wise potential between two identical particles that is often used to describe Van der Walls forces between rare-gas atoms

$$U_{\rm LJ}(d|\varepsilon,\sigma) = 4\varepsilon \left[\left(\sigma/d \right)^{12} - \left(\sigma/d \right)^{6} \right], \tag{2}$$

 ε denotes the depth of the potential well, σ is the finite distance at which the inter-particle potential is zero and d denotes the distance between the particles.

Write a program my_lj.py (or a code snippet in a notebook) for evaluating the function $U_{\rm LJ}(d|\varepsilon,\sigma)$ at $d \in \{0,1,2,3,4,8,16\}$, when the function parameters are $\varepsilon = 119.8$ [energy] and $\sigma = 3.405$ [nm]. [Hint]: To verify the correctness of the obtained results, you could use the plot of the function.