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Computing with formulas
Foundation of programming (CK0030)

Francesco Corona
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FdP

! Intro to variables, objects, modules, and text formatting

! Programming with WHILE- and FOR-loops, and lists

! Functions and IF-ELSE tests

! Data reading and writing

! Error handling

! Making modules

! Arrays and array computing

! Plotting curves and surfaces
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Complex numbers
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Complex numbers

Consider the second-order (algebraic) equation x2 = 2

We know the solution
" x = ±

√
2

What if we are interested in an equation like x2 = −2?

We need to define complex numbers
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Complex numbers (cont.)

Definition

Complex numbers

A complex number is a pair of jointly written real numbers a and b

" a + ib

" a + bi

i is called the imaginary unit

" i =
√
−1

!
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Complex numbers (cont.)

Complex numbers (Cartesian representation)

Consider the set of complex numbers C = {u + jv
∣

∣u, v ∈ R} (j =
√
−1)

A complex number

z = Re(z) + Im(z)

= u + jv

Re

Im

jv

u

M

φ

z

It consists of two parts

• Real part, Re(z) = u

• Imaginary part, Im(z) = v

The complex conjugate of z

z ′ = Re(z) − j Im(z)
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Complex numbers (cont.)

Complex numbers (Polar representation)

Consider the set of complex numbers C = {u + jv
∣

∣u, v ∈ R} (j =
√
−1)

The complex number z = Re(z) + Im(z) = u + jv

We can define

Module

• M = |z | =
√
u2 + v2

Phase

• φ = arg (z) = arctan (v/u)
Re

Im

jv

u

M

φ

z

The inverse formula

• u = M cos (φ)

• v = M sin (φ) M
A
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Complex numbers (cont.)

One very important feature of the set of complex numbers

The possibility to take square roots of negative numbers

"
√
−2 =

√
2i =

√
2
√
−1

"
√
−2 = ±

√
2i
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Complex numbers (cont.)

Consider the two complex numbers u = a + bi and v = c + di

We have,

u = v (−→ a = c, b = d)

−u = −a − bi

u∗ = a − bi (complex conjugate)

u + v = (a + c) + (b + d)i

u − v = (a − c) + (b − d)i

uv = (ac − bd) + (bc + ad)i

u/v =
ac + bd

c2 + d2
+

bc − ad

c2 + d2
i

|u| =
√

a2 + b2

eiq = cos (q) + i sin (q) M
A
R
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Complex numbers (cont.)

Rules for addition/subtraction/multiplication/division of complex numbers

Rules for calculating transcendental functions of complex numbers

sin (z), cos (z), tan (z), ez , ln (z), sinh (z), cosh (z), tanh (z), · · ·

Rules for raising a complex number z = a + ib to a real power
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Complex arithmetics
Complex numbers
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Complex arithmetics

The Python language supports computation with complex numbers

In Python the imaginary unit is j (the i in mathematics)

A complex number 2− 3i is expressed as (2-3j)

• Number i is written as 1j, not just j

We study the definition of complex numbers and some simple arithmetics
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Complex arithmetics

Example

1 >>> u = 2.5 + 3j # create a complex number
2 >>> v = 2 # this is an integer
3 >>> w = u+v # complex + integer
4 >>> w
5 (4.5+3j)
6

7

8 >>> a = -2 # from two floats
9 >>> b = 0.5 #

10 >>> s1 = a+b*1j #
11 >>> s1
12 (-2+0.5 j)
13

14

15 >>> s2 = complex(a,b) # alternative way
16 >>> s2
17 (-2+0.5 j)
18

19

20 >>> s*w # complex*complex
21 (-10.5 -3.75 j)
22

23

24 >>> s/w # complex/complex
25 ( -0.25641025641025639+0.28205128205128205 j)

s (s1 and s2) is an object of type complex
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Complex arithmetics (cont.)

A complex object has functionalities for extracting real/imaginary parts

It is also possible to compute the complex conjugate

Example

1 >>> s = -2+0.5 j
2

3 >>> s.real
4 -2.0
5

6 >>> s.imag
7 0.5
8

9 >>> s.conjugate ()
10 (-2-0.5 j)
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Complex functions
Complex numbers
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Complex functions

Computing the sine of a complex number requires some extra steps

Example

1 >>> from math import sin
2

3 >>> r = sin(w)
4 Traceback (most recent call last ):
5 File "<input >", line 1, in ?
6 TypeError : can ’t convert complex to float ; use abs (z)

Function sin from math module only works with real (float) arguments

• Complex number are not valid arguments to its functions
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Complex functions

There exist a similar (mathematical) module, cmath

It contains functions that accept a complex number (object) as argument

" The functions return a complex number (object)
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Complex functions (cont.)

Example

We want to show with Python that the following identity holds true

sin (ai) = i sinh (a),

for some scalar a (say, a = 8)

We have,

1 >>> from cmath import sin , sinh
2

3

4 >>> r1 = sin (8j)
5 >>> r1
6 1490.4788257895502 j
7

8

9 >>> r2 = 1j*sinh (8)
10 >>> r2
11 1490.4788257895502 j
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Complex functions (cont.)

Mathematically, from the sine exponential formulation

sin (ix) = i

(

e−i2x − ei
2x

)

2
= i

(

ex − e−x
)

2
= i sinh (x)

!
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Complex functions (cont.)

Example

We want to show with Python that the Euler’s formula holds true

eiq = cos (q) + i sin (q),

for some scalar q (say, q = 8)

We have,

1 >>> from cmath import sin , cos , exp
2

3 >>> q = 8
4

5 >>> exp (1j*q)
6 ( -0.14550003380861354+0.98935824662338179 j)
7

8 >>> cos(q) + 1j*sin(q)
9 ( -0.14550003380861354+0.98935824662338179 j)
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Complex functions (cont.)

The complex exponential function

Consider an imaginary number z = 0 + jφ

We have,
" ejφ = cos (φ) + j sin (φ)

The exponential of an imaginary number is a complex number

• Real part, cos (φ)

• Imaginary part, sin (φ)

Euler’s formula

Relationships to write a periodic function as a sum of exponential functions

cos (φ) =
ejφ + e−jφ

2

sin (φ) =
ejφ − e−jφ

2j
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Complex and real functions
Complex numbers
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Complex and real functions

The functions in the math module do not accept complex numbers (objects)

The functions in the cmath module return complex numbers (objects)

It is useful to have smarter functions that return appropriate results

" A complex object, if the result is a complex number

" A float object, if the result is a real number
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Complex and real functions (cont.)

NumPy package has such versions of basic mathematical functions

• As those in the math module and in the cmath module

NumPy offers a unified treatment of real and complex functions

How to access these, more flexible, versions of basic mathematical functions

1 from numpy .lib.scimath import *

or

1 from scipy import *

or

1 from scitools .std import *
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Complex and real functions (cont.)

Example

Consider the problem of computing the square root of some numbers

Suppose that we want to use function sqrt in the math module

1 >>> from math import sqrt
2

3 >>> sqrt (4) # float
4 2.0
5

6 >>> sqrt (-1) # illegal
7 Traceback (most recent call last ):
8 File "<input >", line 1, in ?
9 ValueError : math domain error

10

11 >>> help (sqrt ) # help file
12 # ?sqrt
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Complex and real functions (cont.)

Suppose that we want to use function sqrt from the cmath module

1 >>> from cmath import sqrt
2

3 >>> sqrt (4) # complex
4 (2+0 j)
5

6 >>> sqrt (-1) # complex
7 1j
8

9 >>> help (sqrt ) # help file
10 # ?sqrt

Note that function sqrt from the math module is no longer available

• It has been overwritten by sqrt from the cmath module

• Function name sqrt is bounded to this new function
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Complex and real functions (cont.)

We can use, among other things, yet another version of the sqrt function

1 >>> from numpy .lib.scimath import *
2

3 >>> sqrt (4) # float
4 2.0
5

6 >>> sqrt (-1) # complex
7 1j
8

9 >>> help (sqrt ) # help file
10 # ?sqrt
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Complex and real functions (cont.)

This last sqrt function is slower than the ones from math and cmath

It returns a float object if possible, or a complex one

• Yet, it is more flexible

!
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Complex and real functions (cont.)

Example

We further illustrate a flexible treatment of both complex and real numbers

We want to compute the roots of a quadratic function

f (x) = ax2 + bx + c

for some constants a, b and c

That is, we are interested in the values of x such that f (x) = 0

" x =
− b ±

√
b2 − 4ac

2a
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Complex and real functions (cont.)

−5 0 5

0

20

40

x

f
(x

) Let a = 1, b = 4 and c = 1

We have,

f (x) = x2 + 4x + 1 = 0

1 >>> a = 1; b = 4; c = 1 # polynomial coefficients
2

3 >>> from numpy .lib.scimath import sqrt # import sqrt from numpy
4

5 >>> r1 = (-b + sqrt (b**2 - 4*a*c))/(2* a) # calculate roots
6 >>> r2 = (-b - sqrt (b**2 - 4*a*c))/(2* a)
7

8 >>> r1
9 -0.267949192431

10

11 >>> r2
12 -3.73205080757

The results, the roots, are two distinct float objects
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Complex and real functions (cont.)

Using arrow-up (⇑), we can go back to the definitions of the coefficients

" We can change them to be different numbers

" Then, we can recompute r1 and r2
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Complex and real functions (cont.)

−10 0 10
0

100

200

300

x

f
(x

) Let a = 1, b = 2 and c = 100

We have,

f (x) = x2 + 2x + 100 = 0

1 >>> a = 1; b = 2; c = 100 # polynomial coefficients
2

3 >>> r1 = (-b + sqrt (b**2 - 4*a*c))/(2* a)
4 >>> r2 = (-b - sqrt (b**2 - 4*a*c))/(2* a)
5

6 >>> r1
7 ( -1+9.94987437107 j)
8

9 >>> r2
10 ( -1 -9.94987437107 j)
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Complex and real functions (cont.)

Had we used sqrt from cmath, r1 and r2 would always be complex objects

With sqrt from math, we would not have been able to do the complex case

!
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Symbolic computing
Computing with formulas
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Symbolic computing

Python has a package SymPy for doing symbolic computing

• Equation solving, Taylor series expansion

• Symbolic integration and differentiation

• ...

Two options to perform interactive work with SymPy

• Conventional iterative shell, ipython

• Special interactive shell, isympy

isympy is installed along with SymPy itself
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Symbolic computing (cont.)

It is a good practice to explicitly import each symbol we need from SymPy

• It emphasises that those symbols come from that package

sin could mean the sine function from the math module

" It is aimed only at real numbers

sin could mean the sine function from SymPy

" It is aimed at symbolic expressions
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Differentiation and integration
Symbolic computing
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Differentiation and integration

We are interested in differentiating a function w.r.t. an independent variable

• (or an expression like y(t) = v0t −
1

2
gt2, with respect to t)

Suppose that we are then interested in integrating the answer
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Differentiation and integration (cont.)

Example

1 >>> from sympy import (
2 ... symbols , # define symbols for symbolic math
3 ... diff , # differentiate expressions
4 ... integrate , # integrate expressions
5 ... Rational , # define rational numbers
6 ... lambdify , # turn symbolic expressions into Python functions
7 ... ) # ...
8

9 >>> t, v0 , g = symbols (’t v0 g’)
10 >>> y = v0*t - Rational (1,2)*g*t**2
11

12 >>> dydt = diff (y,t)
13 >>> dydt
14 -g*t + v0
15

16 >>> # 2nd derivative acceleration : -g
17 >>> print ’acceleration :’, diff (y,t,t)
18

19 >>> y2 = integrate (dydt , t)
20 >>> y2
21 -g*t**2/2 + t*v0

!

t (v0, g) is a symbolic variable (not a float, as in numerical computing)

y (y2, y2) is a symbolic expression (not a float)
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Differentiation and integration (cont.)

symbolic expressions can be turned into ordinary numerical functions

• The lambdify command of SymPy

Example

Take the dydt expression and turn it into a Python function v(t,v0,g)

1 >>> v = lambdify ([t,v0 ,g],dydt ) # from symbolic to numerical function
2 >>> v(t=0,v0=5,g=9.81) # arguments in function v
3 5
4

5 >>> v(2,5,9.81)
6 -14.62
7

8 >>> 5 - 9.81*2 # check the previous calculation
9 -14.62

!
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Equation solving
Symbolic computing
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Equation solving

Consider an equation defined through some expression f (f) that is zero

The equation can be solved using solve(f,x)

• x (x) is the unknown in the equation
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Equation solving (cont.)

Example

We want to find the roots of the expression

y = v0t −
1

2
gt2 = 0

We have,

1 >>> from sympy import solve
2

3 >>> t, v0 , g = symbols (’t v0 g’)
4 >>> y = v0*t - Rational (1,2)*g*t**2
5

6 >>> roots = solve (y,t)
7 >>> roots
8 [0, 2*v0/g]

We can easily check the correctness of the answer

• We substitute the (values of the) roots in y

1 >>> y.subs (t, roots [0])
2 0
3

4 >>> y.subs (t, roots [1])
5 0

!
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Equation solving (cont.)

Substituting/inserting expressions (not values) f2 for f1 in expression f

" We used f.subs(f1,f2)
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Taylor series and more
Symbolic computing
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Taylor series and more

Suppose that we are interested in computing the Taylor polynomial of order
n (n) of function f (f) around some arbitrary point t0 (t0)

• The independent variable t (t)

The Taylor’s polynomial can be computed using f.series(t,t0,n)
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Taylor series and more (cont.)

Taylor expansion

The Taylor series of a real- (complex-) function f (x) that is infinitely
differentiable at a real (complex) argument x = a is the power-series

f (a) + f (1)(a)(x − a) +
f (2)(a)

2!
(x − a)2 + · · ·+

f (n)(a)

n!
(x − a)n + · · ·

=
∞
∑

n=0

f (n)(a)

n!
(x − a)n

f (n)(a) is the n-th derivative of f (x) evaluated at point x = a

n! is the factorial of n

n! =
n
∏

k=1

k , (by definition, n! = 1, for n = 0)
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Taylor series and more (cont.)

Example

Consider the two functions et and esin(t)

We are interested in their Taylor’s expansion

1 >>> from sympy import exp , sin
2

3 >>> f = exp(t)
4 >>> f.series(t,0,3)
5 1+t+t**2/2+O(t**3)
6

7 >>> f = exp(sin(t))
8 >>> f.series(t,0,8)
9 1 + t + t**2/2 - t**4/8 - t**5/15 - t**6/240 + t**7/90 + O(t**8)
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Taylor series and more (cont.)

f (t) = exp (t) ≈ 1 + t +
t2

2
+O(t3)
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Taylor series and more (cont.)

f (t) = exp [sin (t)] ≈ 1 + t +
t2

2
−

t4

8
−

t5

15
−

t6

240
+

t7

90
+O(t8)
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Taylor series and more (cont.)

The output math expressions can displayed using the syntax of LATEX

1 >>> from sympy import latex
2

3 >>> print latex (f.series(t,0,7))
4 ’1 + t + \frac {t^{2}}{2} - \frac {t^{4}}{8} -
5 \frac {t^{5}}{15} - \frac {t^{6}}{240} +
6 \mathcal{O}\left (t^{7}\ right )’

" 1 + t +
t2

2
−

t4

8
−

t5

15
−

t6

240
+O

(

t7
)

!
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Taylor series and more (cont.)

Python offers also tools to expand and simplify mathematical expressions

Example

Consider the angle sum/difference identities used in trigonometry

cos (x ± y) = cos (x) cos (y)∓ sin (x) sin (y)

sin (x ± y) = sin (x) cos (y)± sin (x) cos (y)

1 >>> from sympy import simplify , expand
2 >>> from sympy import cos
3

4 >>> x, y = symbols (’x y’)
5

6 >>> f = -sin(x)*sin(y) + cos(x)*cos(y)
7 >>> simplify (f)
8 cos(x + y) # Known trigonometric identity
9

10 >>> expand(sin(x + y), trig =True ) # Needs trigonometric hint
11 sin(x)*cos(y) + sin(y)*cos(x)

!


