
M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Loops and lists
Foundation of programming (CK0030)

Francesco Corona

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

FdP

- Intro to variables, objects, modules, and text formatting

/ Programming with WHILE- and FOR-loops, and lists

/ Functions and IF-ELSE tests

/ Data reading and writing

/ Error handling

/ Making modules

/ Arrays and array computing

/ Plotting curves and surfaces

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

FdP (cont.)

We discuss how repetitive tasks in a program are automated by loops

We introduce a new type of object, the list objects

• For storing and processing collections of data

• (with a specific order)

Loops and lists, with functions/routines and IF-tests (soon)

• The fundamental programming foundation

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops
Loops and lists

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops

Example

We are interested in printing out a temperature conversion table

1 -20 -4.0

2 -15 5.0

3 -10 14.0

4 -5 23.0

5 0 32.0

6 5 41.0

7 10 50.0

8 15 59.0

9 20 68.0

10 25 77.0

11 30 86.0

12 35 95.0

13 40 104.0

; Degree Celsius in the first column of the table

; Corresponding Fahrenheits in the second one

The formula for converting C degrees Celsius to F degrees Fahrenheit

F =
9

5
C + 32

We already know how to evaluate the formula for one single value of C

• We could repeat the statements as many times as required

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

We can repeatedly write the whole command

• (c2f_table_repeat.py)

1 C = -20; F = 9.0/5*C + 32; print C, F

2 C = -15; F = 9.0/5*C + 32; print C, F

3 C = -10; F = 9.0/5*C + 32; print C, F

4 C = -5; F = 9.0/5*C + 32; print C, F

5 C = 0; F = 9.0/5*C + 32; print C, F

6 C = 5; F = 9.0/5*C + 32; print C, F

7 C = 10; F = 9.0/5*C + 32; print C, F

8 C = 15; F = 9.0/5*C + 32; print C, F

9 C = 20; F = 9.0/5*C + 32; print C, F

10 C = 25; F = 9.0/5*C + 32; print C, F

11 C = 30; F = 9.0/5*C + 32; print C, F

12 C = 35; F = 9.0/5*C + 32; print C, F

13 C = 40; F = 9.0/5*C + 32; print C, F

We used three statements per line in the code

• For compacting the layout

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

We can run this program and show how the output looks like on screen

1 -20 -4.0

2 -15 5.0

3 -10 14.0

4 -5 23.0

5 0 32.0

6 5 41.0

7 10 50.0

8 15 59.0

9 20 68.0

10 25 77.0

11 30 86.0

12 35 95.0

13 40 104.0

The output of the code suffers from a rather primitive text formatting

; This can quickly be changed by replacing print C, F

; Use a print statement based on printf formatting

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

1 C = -20; F = 9.0/5*C + 32; print C, F

2 C = -15; F = 9.0/5*C + 32; print C, F

3

4 ...

5 ...

6

7 C = 40; F = 9.0/5*C + 32; print C, F

The major problem with this code is that identical statements are repeated

• It is boring and dumb to write repeated statements

• (Imagine many more C and F values in the table)

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

All computer languages have constructs to efficiently express repetition

• One of the ideas behind a computer is to automate repetitions

Such constructs are called loops

We have two variants in Python

; WHILE-loops

; FOR-loops

Most programs make an extensive use of loops

• It is fundamental to learn the concept

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops
WHILE loops

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

A WHILE-loop is a type of loop used to repeat a set of statements

• It repeats as long as a some condition is verified (true)

To illustrate this loop, we use the temperature table

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops

Example

The task is to generate the rows of the table, both C and F values

F =
9

5
C + 32

1 -20 -4.0

2 -15 5.0

3 -10 14.0

4 -5 23.0

5 0 32.0

6 5 41.0

7 10 50.0

8 15 59.0

9 20 68.0

10 25 77.0

11 30 86.0

12 35 95.0

13 40 104.0

C values start at −20 and they are incremented by 5

• This process is repeated, as long as C ≤ 40

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

1 -20 -4.0

2 -15 5.0

3

4

5

6

7 40 104.0

For each C value, we must first compute the corresponding F value

F =
9

5
C + 32

Then, we write out (print to screen) the two temperatures

For cosmetics, we would also like add a line of dashes (- -)

• One above and one below the table

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

1 -20 -4.0

2 -15 5.0

3

4

5

6

7 40 104.0

The list of tasks to be done can be summarised

1 Print line with dashes

2 Let C = −20

3 WHILE C ≤ 40:

; Let F = 9/5C + 32
; Print C and F
; Increment C by 5

4 Print line with dashes

This is the algorithm of our programming task

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

1 Print line with dashes

2 Let C = −20 (and ∆C = 5)

3 WHILE C ≤ 40:

; Let F = 9/5C + 32
; Print C and F
; Increment C by (some ∆C =) 5

4 Print line with dashes

Converting a detailed algorithm into a functioning code is often easy

1 print ’------------------ ’ # table heading

2 C = -20 # start value for C

3 dC = 5 # increment of C in loop

4 while C <= 40: # loop heading with condition

5 F = (9.0/5)*C + 32 # 1st statement inside loop

6 print C, F # 2nd statement inside loop

7 C = C + dC # 3rd statement inside loop

8 print ’------------------ ’ # end of table line (after loop)

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

The block of statements is executed at each pass of the WHILE-loop

• It must be indented

1 print ’------------------ ’ # table heading

2

3 C = -20 # start value for C

4 dC = 5 # increment of C in loop

5

6 while C <= 40: # loop heading with condition

7

8 F = (9.0/5)*C + 32 # 1st statement inside loop

9 print C, F # 2nd statement inside loop

10 C = C + dC # 3rd statement inside loop

11

12 print ’------------------ ’ # end of table line (after loop)

The block is three lines, and all must have the same indentation

• Our choice of indentation is one space

• (Usually, it is four space)

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

1 print ’------------------ ’ # table heading

2

3 C = -20 # start value for C

4 dC = 5 # increment of C in loop

5

6 while C <= 40: # loop heading with condition

7

8 F = (9.0/5)*C + 32 # 1st statement inside loop

9 print C, F # 2nd statement inside loop

10 C = C + dC # 3rd statement inside loop

11

12 print ’------------------ ’ # end of table line (after loop)

Consider the first statement with same indentation as the while line

• (Here, the final print statement)

This line marks the end of the loop

• It is executed after the loop

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

What if in the code we also indent the last line one space?

1 print ’------------------ ’ # table heading

2 C = -20 # start value for C

3 dC = 5 # increment of C in loop

4

5 while C <= 40: # loop heading with condition

6 F = (9.0/5)*C + 32 # 1st statement inside loop

7 print C, F # 2nd statement inside loop

8 C = C + dC # 3rd statement inside loop

9 print ’------------------ ’ # end of table line (after loop)

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

Remark

Do not forget the colon (:) at the end of the while line

1 ...

2

3 while C <= 40: # loop heading with condition

4 ...

5 ...

6

7 ... # after the loop

The colon marks the beginning of the indented block of statements

; The colon marks the loop, it is essential

Remark

A heading ending with colon, followed by an indented block of statements

; There are other similar program constructions in Python

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

It is absolutely necessary to understand what is going on in a program

; One should be able to simulate a program by ‘hand’

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

Step 1

1 print ’------------------ ’ # table heading

2

3 C = -20 # start value for C

4 dC = 5 # increment of C in loop

5

6 while C <= 40: # loop heading with condition

7 F = (9.0/5)*C + 32 # 1st statement inside loop

8 print C, F # 2nd statement inside loop

9 C = C + dC # 3rd statement inside loop

10

11 print ’------------------ ’ # end of table line (after loop)

First, we define a start value for the sequence of Celsius temperatures

1 C = -20

2 dC = 5

We also define the increment dC to be added to C inside the loop

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

Step 2

1 print ’------------------ ’ # table heading

2

3 C = -20 # start value for C

4 dC = 5 # increment of C in loop

5

6 while C <= 40: # loop heading with condition

7 F = (9.0/5)*C + 32 # 1st statement inside loop

8 print C, F # 2nd statement inside loop

9 C = C + dC # 3rd statement inside loop

10

11 print ’------------------ ’ # end of table line (after loop)

Then, we enter/define the loop condition to be satisfied C <= 40 (Line 6)

• The first time, as C is -20, we have that C <= 40 is true

• (This is equivalent to C ≤ 40 verified)

Condition is true, we enter the loop and execute all indented statements

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

Step 3a

1 print ’------------------ ’ # table heading

2

3 C = -20 # start value for C

4 dC = 5 # increment of C in loop

5

6 while C <= 40: # loop heading with condition

7 F = (9.0/5)*C + 32 # 1st statement inside loop

8 print C, F # 2nd statement inside loop

9 C = C + dC # 3rd statement inside loop

10

11 print ’------------------ ’ # end of table line (after loop)

Condition is true, we enter the loop and execute all indented statements

• We compute F corresponding to the current C value (−20)

• We print temperatures (print C, F, no formatting)

• We increment C (−20) by dC (5)

• (What’s the value of C?)

Thereafter, we may enter the loop again

• The second pass

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

Step 3b

To decide whether to re-enter the loop, we must check condition C <= 40

• C <= 40 is still true

• C is now -15

1 print ’------------------ ’ # table heading

2 C = -20 # start value for C

3 dC = 5 # increment of C in loop

4

5 while C <= 40: # loop heading with condition

6 F = (9.0/5)*C + 32 # 1st statement inside loop

7 print C, F # 2nd statement inside loop

8 C = C + dC # 3rd statement inside loop

9

10 print ’------------------ ’ # end of table line (after loop)

We execute the statements in the indented loop block

We conclude those computations with C equal -10

• It is less than or equal to 40

We thus re-execute the block

-20, -15, -10, · · ·, 35, 40, · · ·

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

-20, -15, -10, · · ·, 35, 40, · · ·

This procedure is repeated until C is updated from 40 to 45

Step 4

When we test C <= 40, condition is no longer true

• The loop is therefore terminated

1 print ’------------------ ’ # table heading

2 C = -20 # start value for C

3 dC = 5 # increment of C in loop

4

5 while C <= 40: # loop heading with condition

6 F = (9.0/5)*C + 32 # 1st statement inside loop

7 print C, F # 2nd statement inside loop

8 C = C + dC # 3rd statement inside loop

9

10 print ’------------------ ’ # end of table line (after loop)

Step 5

We proceed with the next statement, same indentationas while statement

; We execute the final print statement

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

Remark

Consider the following statement used in the code

1 C = C + dC

Mathematically, the statement is wrong

• Yet, it is valid computer code

Computationally, we first evaluate the expression on RHS of equality sign

• Then, we let variable on the LHS ‘refer’ to the result of this evaluation

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

1 C = C + dC

C and dC are int objects, the operation C+dC returns a new int object

• The assignment C = C + dC bounds it to the name C

Note that, before the assignment, C was already bound to an int object

This object is automatically destroyed when C is bound to the new object

• There are no longer names (variables) referring to the old object

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

WHILE loops (cont.)

Remark

Incrementing the value of a variable/object is often done in computer codes

• There is short-hand notation for this and related operations

1 C += dC # equivalent to C = C + dC

The idea can be extended to other operators

1 C -= dC # equivalent to C = C - dC

2

3 C *= dC # equivalent to C = C*dC

4

5 C /= dC # equivalent to C = C/dC

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Boolean expressions
WHILE loops

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Boolean expressions

1 print ’------------------ ’ # table heading

2 C = -20 # start value for C

3 dC = 5 # increment of C in loop

4

5 while C <= 40: # loop heading with condition

6 F = (9.0/5)*C + 32 # 1st statement inside loop

7 print C, F # 2nd statement inside loop

8 C = C + dC # 3rd statement inside loop

9

10 print ’------------------ ’ # end of table line (after loop)

The condition C <= 40 returned either true (True) or false (False)

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Boolean expressions (cont.)

There exist other comparisons are also useful and commonly used

1 C == 40 # C equals 40

2 C != 40 # C does not equal 40

3 C >= 40 # C is greater than or equal to 40

4 C > 40 # C is greater than 40

5 C < 40 # C is less than 40

Not only comparisons between numbers can be used to set conditions

• Any expression with boolean (True or False) value can be used

• Such expressions are known as logical/boolean expressions

The keyword not can be inserted in front of a boolean expression

• It will changes its value

; (True to False)

; (False to True)

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Boolean expressions (cont.)

Example

Suppose that we want to evaluate the output of not C == 40

We first check C == 40, and then not (C == 40)

• For C = 1, the statement C == 40 is False

; not changes the value, False into True

If C == 40 were True, not C == 40 would be False

It is considered easier to read C != 40 rather than not C == 40

• The two boolean expressions are equivalent

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Boolean expressions (cont.)

As in math, Boolean expressions can be combined with and and/or or

• The goal is to form new, compound, boolean expressions

Example

1 while x > 0 and y <= 1:

2 print x, y

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Boolean expressions (cont.)

Definition

Let cond1 and cond2 be two expressions

• Valued either True or False

Consider the compound boolean expression (cond1 and cond2)

• It is True only if both the conditions cond1 and cond2 are True

The compound boolean expression (cond1 or cond2)

• It is True only if at least one condition, cond1 or cond2, is True

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Boolean expressions (cont.)

Example

1 >>> x = 0; y = 1.2

2

3 >>> x >= 0 and y < 1

4 False

5

6 >>> x >= 0 or y < 1

7 True

8

9 >>> x > 0 or y > 1

10 True

11

12 >>> x > 0 or not (y > 1)

13 False

14

15 >>> -1 < x <= 0 # -1 < x and x <= 0

16 True

17

18 >>> not (x > 0 or y > 0)

19 False

The not applies to the value of the boolean expression inside parentheses

• x > 0 is False, y > 0 is True

The combined expression with or is True, and not turns the value to False

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Boolean expressions (cont.)

Commonly used boolean values in Python are the classic True and False

• We can also use 0 (False) and any non-zero integer (True)

All objects in Python can be evaluated in a boolean sense

• All objects are True, except for False itself, zero numbers, and empty
strings, lists, and dictionaries

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Boolean expressions (cont.)

Example

1 >>> s = ’some string’ # some string

2 >>> bool (s)

3 True

4

5 >>> s = ’’ # empty string

6 >>> bool (s)

7 False

8

9 >>> L = [1, 4, 6] # some list (soon)

10 >>> bool (L)

11 True

12

13 >>> L = [] # empty list

14 >>> bool (L)

15 False

16

17 >>> a = 88.0 # a scalar

18 >>> bool (a)

19 True

20

21 >>> a = 0.0 # a zero

22 >>> bool (a)

23 False

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Summation
WHILE loops

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Summation

Example

Power series for sine

We can approximate the sine function using a polynomial

sin (x) = x −
x3

3!
+

x5

5!
−

x7

7!
+ · · ·

=
∞∑

k=0

(−1)k x2k+1

(2k + 1)!

(1)

We used the factorial expressions

• 3! = 3 · 2 · 1

• 5! = 5 · 4 · 3 · 2 · 1

• 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1

• · · ·

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Summation (cont.)

sin (x) = x −
x3

3!
+

x5

5!
−

x7

7!
+ · · · =

∞∑

k=0

(−1)k x2k+1

(2k + 1)!

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Summation (cont.)

An infinite number of terms would be needed for the equality to hold true

sin (x) ≈ x −
x3

3!
+

x5

5!
−

x7

7!
+ · · ·

With a finite number of terms, we obtain an approximation

The approximation is well suited for computation

• (powers and four arithmetic operations)

sin (x) = x −
x3

3!
+

x5

5!
−

x7

7!
+ · · · =

∞∑

k=0

(−1)k x2k+1

(2k + 1)!

Say, we want to compute the summation for powers up to N = 25

• Typing each term is a tedious job

Clearly, this task should be automated by a loop

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Summation (cont.)

We are interested in computing the summation by a while loop in Python

sin (x) ≈ x
︸︷︷︸

s(k=1)

−
x3

3!

︸ ︷︷ ︸

s(k=3)

+
x5

5!

︸ ︷︷ ︸

s(k=5)

−
x7

7!

︸ ︷︷ ︸

s(k=7)

+ · · ·+
xN

N !

︸ ︷︷ ︸

s(k=N)

What do we need?

A counter, say k

• It runs through odd numbers from 1 up to some maximum power N

• (1, 3, 5, · · · , N)

A summation variable, say s

• It accumulates the terms, one at a time as they get computed

• At each pass, we compute a new term and add it to s

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Summation (cont.)

The sign of each term in the summation alternates

sin (x) ≈ x
︸︷︷︸

s(k=1)

−
x3

3!

︸ ︷︷ ︸

s(k=3)

+
x5

5!

︸ ︷︷ ︸

s(k=5)

−
x7

7!

︸ ︷︷ ︸

s(k=7)

+ · · ·+
xN

N !

︸ ︷︷ ︸

s(k=N)

We use a sign variable, say sign

• It changes between -1 and +1 at each pass of the loop

Remark

math.factorial(k) can be used to compute k ! for some integer k

k ! = k(k − 1)(k − 2) · · · 2 · 1

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Summation (cont.)

Let x = 1.2

sin (x) ≈ x
︸︷︷︸

s(k=1)

−
x3

3!
+

x5

5!
−

x7

7!
+ · · ·+

xN

N !

1 x = 1.2 # assign some value

2 N = 25 # maximum power in sum

3

4 k = 1 # initialise the counter

5 s = x # initialise the sum

6 sign = 1.0 # set the sign

7

8 import math # needed to access the factorial

9

10 while k < N:

11 sign = - sign

12 k = k + 2

13

14 term = sign * x**k / math .factorial (k)

15

16 s = s + term

17 print ’sin (%g) = %g (approximation with %d terms)’ % (x, s, N)

The loop is first entered, k = 1 < 25 = N (1 < 25 implies k < N)

; The statement holds True

; We enter the loop block

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Summation (cont.)

In the block, sign = -1.0, k = 3, term = -1.0*x**3/(3*2*1))

; s = x - x**3/6 (equals to computing the first two terms)

sin (x) ≈ x −
x3

3!
+

x5

5!
−

x7

7!
+ · · ·+

xN

N !

1 x = 1.2

2 N = 25

3

4 k = 1; s = x; sign = 1.0

5

6 import math

7

8 while k < N:

9 sign = - sign # update sign

10 k = k + 2 # update k

11

12 term = sign * x**k / math .factorial (k) # compute term

13

14 s = s + term # updates the sum

15

16 print ’sin (%g) = %g (approximation with %d terms)’ % (x, s, N)

Note that sign is float (always a float divided by an int)

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Summation (cont.)

sin (x) ≈ x −
x3

3!
︸ ︷︷ ︸

s(k=3)

+
x5

5!
−

x7

7!
+ · · ·+

xN

N !

1 x = 1.2 # assign some value

2 N = 25 # maximum power in sum

3

4 k = 1; s = x; sign = 1.0

5

6 import math

7

8 while k < N:

9 sign = - sign

10 k = k + 2

11

12 term = sign * x**k / math .factorial (k)

13

14 s = s + term

15 print ’sin (%g) = %g (approximation with %d terms)’ % (x, s, N)

Then we test the loop condition, 3 < 25 is True, thus we re-enter the loop

• term = + 1.0*x**5/math.factorial(5) (third term in the sum)

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Summation (cont.)

1 while k < N:

2 ...

3 k = k + 2

4 ...

5

6 print ’sin (%g) = %g (approximation with %d terms)’ % (x, s, N)

At some point, k is updated to from 23 to 25 inside the loop

• The loop condition becomes 25 < 25, False

• The program jumps out the loop block

The print statement (indented as the while statement)

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Lists
Loops and lists

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Lists

Up to now we considered variables that contained a single number

• Often numbers are naturally grouped together

• We have collections of numbers

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Lists (cont.)

Example

All degree Celsius values in the first column of the temperature table

• They could be conveniently stored together as a group

1 -20 -4.0

2 -15 5.0

3 -10 14.0

4 -5 23.0

5 0 32.0

6 5 41.0

7 10 50.0

8 15 59.0

9 20 68.0

10 25 77.0

11 30 86.0

12 35 95.0

13 40 104.0

A list can be used to represent such group of numbers (in this case)

; A list object

A list object can contain an ordered sequence of arbitrary objects

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Lists (cont.)

Consider a problem in which some variable refers to some list

; We can work with the group as a whole, at once

; We can access individual elements of the group

The difference between an int object and a list object

var1 21

var2 0 20

1 21

2 29

3 4.0

var1 refers to an int object

• Value 21

• (from statement var1 = 21)

var2 refers to a list object

• Value [20, 21, 29, 4.0]

• Three int objects, one float object

• (from var2 = [20, 21, 29, 4.0])

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Basic operations
Lists

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Basic operations

1 -20 -4.0

2 -15 5.0

3 -10 14.0

4 -5 23.0

5 0 32.0

6 5 41.0

7 10 50.0

8 15 59.0

9 20 68.0

10 25 77.0

11 30 86.0

12 35 95.0

13 40 104.0

Suppose that we are interested in creating a list object

• Numbers in the first column of a temperature table

We type each number individually between square brackets

• Inside, the elements are separated by commas

1 C = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Basic operations (cont.)

1 C = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]

Variable C is used to refer to a list object

; The object holds 13 list elements

; All list elements are int objects

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Basic operations (cont.)

1 C = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]

Each element in a list object is always associated with a list index

1 -20 # List index 0

2 -15 # List index 1

3 -10 # List index 2

4 -5 # List index 3

5 0 # List index 4

6 5 # List index 5

7 10 # List index 6

8 15 # List index 7

9 20 # List index 8

10 25 # List index 9

11 30 # List index 10

12 35 # List index 11

13 40 # List index 12

• The list index reflects the position of the elements in the list

• First element has list index 0

• The second has list index 1

• ...

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Basic operations (cont.)

Example

1 C = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]

2 # 0 1 2 3 4 5 6 7 8 9 10 11 12

In list C there are 13 list indices, starting with 0 and ending with 12

To access the list element with list index 3, we type C[3]

• (This is to the fourth element in the list)

• C[3] refers to an int object, value -5

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Basic operations (cont.)

List functionalities are built into the list object, through dot notation

• List elements can be deleted from list objects

• List elements can be inserted to list objects

Consider list C, function C.append(v) appends element v to the end of C

Example

1 >>> C = [-10, -5, 0, 5, 10, 15, 20, 25, 30] # create list C

2 # 0 1 2 3 4 5 6 7 8

3

4

5 >>> C.append (35) # add new element 35

6 # at the end

7

8

9 >>> C # show list C

10 [-10, -5, 0, 5, 10, 15, 20, 25, 30, 35]

11 # 0 1 2 3 4 5 6 7 8 9

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Basic operations (cont.)

Consider two (or more) list objects, they can be added to each other

• Addition (+) joins them back to front

Example

1 >>> C

2 [-10, -5, 0, 5, 10, 15, 20, 25, 30, 35]

3 # 0 1 2 3 4 5 6 7 8 9

4

5

6 >>> C = C + [40, 45] # extend existing list C

7 # add list [40, 45]

8 # at the end

9

10

11 >>> C

12 [-10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

13 # 0 1 2 3 4 5 6 7 8 9 10 11

The result of C + [40,45] is a new list object

• New object is assigned to C

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Basic operations (cont.)

Remark

The addition operation for list operands is defined by the list object

• The definition is ‘append the second list to the first list ’

• (Not surprising!)

The techniques of class programming allow to create own object types

; We can define (if desired) what it means to add such objects

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Basic operations (cont.)

List elements can be inserted anywhere in an existing list object

Consider list C, function C.insert(i,v) inserts element v in position i

Example

1 >>> C

2 [-10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

3 # 0 1 2 3 4 5 6 7 8 9 10 11

4

5

6 >>> C.insert(0, -15) # insert new element -15

7 # index 0

8

9 >>> C

10 [-15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

11 # 0 1 2 3 4 5 6 7 8 9 10 11 12

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Basic operations (cont.)

Command del C[i] is used to remove element with index i from list C

• After removal, original list has changed

• C[i] now refers to a different element

Example

1 >>> C

2 [-15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

3 # 0 1 2 3 4 5 6 7 8 9 10 11 12

4

5

6 >>> del C[2] # delete 3rd element

7 >>> C

8 [-15, -10, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

9 # 0 1 2 3 4 5 6 7 8 9 10 11

10

11

12 >>> del C[2] # delete what is now 3rd element

13 >>> C

14 [-15, -10, 5, 10, 15, 20, 25, 30, 35, 40, 45]

15 # 0 1 2 3 4 5 6 7 8 9 10

16

17

18 >>> len(C) # length of list

19 11

The number of elements in a list is accessed by len(C)

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Basic operations (cont.)

Command C.index(10) returns the index of the first element with value 10

Example

1 >>> C

2 [-15, -10, 5, 10, 15, 20, 25, 30, 35, 40, 45]

3 # 0 1 2 3 4 5 6 7 8 9 10

4

5

6 >>> C.index (10) # find index for an element

(10)

7 3

; (4th element in sample list, with index 3)

We want to check if an object with value 10 is present as element in list C

• It is possible to use a boolean expression (10 in C)

Example

1 >>> C

2 [-15, -10, 5, 10, 15, 20, 25, 30, 35, 40, 45]

3

4

5 >>> 10 in C # is 10 an element in C?

6 True

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Basic operations (cont.)

Python allows negative indices, this corresponds to indexing from the right

• C[-1] is the last element of list C

• C[-2] is the element before C[-1]

• C[-3] is the element before C[-2]

• ... and so forth

Example

1 >>> C

2 [-15, -10, 5, 10, 15, 20, 25, 30, 35, 40, 45]

3 #-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

4

5

6 >>> C[-1] # view the last list element

7 45

8

9

10 >>> C[-2] # view the next last list element

11 40

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Basic operations (cont.)

Building lists by typing all elements separated by commas is tedious

• Such process that can easily be automated by a loop

Example

Suppose that we are interested in building a list of Celsius degree values

• −50 to +200

• Steps of 2.5

Start with an empty list ([]), then use a WHILE-loop to append elements

1 C_value = -50

2 C_max = 200

3 C = []

4

5 while C_value <= C_max :

6 C.append(C_value)

7 C_value += 2.5 # C_value = C_value + 2.5

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Basic operations (cont.)

There is a syntax for creating variables that directly refer to list elements

• List a sequence of variables on the LHS of an assignment to a list

Example

1 >>> somelist = [’book .tex ’, ’book .log ’, ’book .pdf ’]

2

3 >>> texfile , logfile , pdf = somelist

4

5 >>> texfile

6 ’book .tex ’

7

8 >>> logfile

9 ’book .log ’

10

11 >>> pdf

12 ’book .pdf ’

The number of variables must match the number of lists’s elements

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

Basic operations (cont.)

Remark

Some list operations are directly reached only by using dot notation

; C.append(e)

Other requires the list object as argument to a function

; len(C)

Though C.append behaves like a function, it is reached thru a list object

• We say that append is a method in the list object

A functionality of an object can be reached through a method or a function

• No strict rules in Python

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

FOR loops
Lists

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

FOR loops

Consider a set of data are collected in a list object

We usually want to perform the same operation on each element in the list

• We need to go through all of the list elements

• Process them individually and sequentially

Computer languages have a special construct for doing this conveniently

• In Python and other languages this construct is called a FOR-loop

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

FOR loops (cont.)

Example

The for C in degrees construct creates a loop over elements in degrees

1 degrees = [0, 10, 20, 40, 100]

2

3 for C in degrees:

4 print ’list element:’, C

5

6 print ’The degrees list has ’, len(degrees), ’elements ’

At each pass, variable C refers to an element in the list degrees

• Starts with degrees[0], proceeds with degrees[1]

• ..., and so on

Looping ends with the last element of the list, degrees[n-1]

• n is the number of list elements, len(degrees)

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

FOR loops (cont.)

1 degrees = [0, 10, 20, 40, 100]

2

3 for C in degrees:

4 print ’list element:’, C

5

6 print ’The degrees list has ’, len(degrees), ’elements ’

The FOR-loop specification ends with a colon (:)

After the : comes a block of statements using the current element

• Each statement in the block must be indented

• (As with WHILE-loops)

The first statement with the same indentation of the for statement

• It is executed as the loop is terminated

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

FOR loops (cont.)

To get all details of the program, follow the execution flow by hand

1 degrees = [0, 10, 20, 40, 100]

2

3 for C in degrees:

4 print ’list element:’, C

5

6 print ’The degrees list has ’, len(degrees), ’elements ’

We first define a list, degrees consisting of 5 elements

; Then, we enter the FOR-loop

In the first pass, C refers to the first element of degrees

; degrees[0], an int object holding value 0

We print ‘list element:’ and the current C value (0)

No more statements in the block, proceed to next pass

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

FOR loops (cont.)

1 degrees = [0, 10, 20, 40, 100]

2

3 for C in degrees:

4 print ’list element:’, C

5

6 print ’The degrees list has ’, len(degrees), ’elements ’

In the second pass of the loop, C refers to the second element of degrees

; C now refers to degrees[1], an int object with value 10

; The output now prints 10 after the text

We proceed with C as 20, 40

• ..., until C is 100

After printing list element: with value 100, we go to the statement after
the indented loop block, which prints the number of elements in the list

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

FOR loops (cont.)

1 degrees = [0, 10, 20, 40, 100]

2

3 for C in degrees:

4 print ’list element:’, C

5 print ’The degrees list has ’, len(degrees), ’elements ’

By executing the code, we get the output

1 list element: 0

2 list element: 10

3 list element: 20

4 list element: 40

5 list element: 100

6 The degrees list has 5 elements

M
A
Y
07
,
20
19

–
F
C
–

Loops and lists

FC

CK0030

2018.1

WHILE loops

WHILE loops

Boolean expressions

Summation

Lists

Basic operations

FOR loops

FOR-loops (cont.)

Example

We write code to collect all degrees Celsius in the table in a list Cdegrees

• Use knowledge of list objects and FOR-loops over elements in lists

1 Cdegrees = [-20,-15,-10,-5,0,5,10,15,20,25,30,35,40]

2

3 print ’ C F’

4

5 for C in Cdegrees :

6 F = (9.0/5)*C + 32

7 print ’%5d %5.1 f’ % (C, F) # Print C, F would use default

8 # format , each number would be

9 # separated by a blank

; A FOR-loop is used to compute/print corresponding Fahrenheits

1 C F

2 -20 -4.0

3 -15 5.0

4

5

6

7 35 95.0

8 40 104.0

	WHILE loops
	WHILE loops
	Boolean expressions
	Summation

	Lists
	Basic operations
	FOR loops

