Exercise 01.

Let $\mathcal{A} = \{0.0001, 0.001, 0.01, 0.1, 1\}$ and let $\mathcal{B} = \{0.0001, 0.001, 0.01, 0.1, 1\}$.

Write Python code that computes for N = 128 the expression

$$\sum_{n=0}^{N} \frac{1}{n!} \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} a^{m} b^{n-m}$$

for each pair (a, b), with $a \in \mathcal{A}$ and $b \in \mathcal{B}$.

Comment and explain your solution/code.

Solution:

$$\exp(a+b) \approx \sum_{n=0}^{N} \left\{ \underbrace{\frac{1}{n!} \left[\sum_{m=0}^{n} \frac{n!}{\underbrace{m!(n-m)!}} a^m b^{n-m} \right]}_{\text{t_ext}} \right\}$$

```
1 from math import factorial, exp
3 A = [0.0001, 0.001, 0.01, 0.1, 1]
                                                               # Define set A
4 B = [0.0001, 0.001, 0.01, 0.1, 1]
                                                               # Define set B
6 N = 128
                                                               # Define N
7
  for a in A:
                                                               # For each a in A
8
    for b in B:
                                                               # For each b in B
9
       s_ext = 0
                                         # Set external sum to be equal to zero
10
11
           n = 0
                                       # Set external index to be equal to zero
12
           while n <= N:
                                                     # External term, first part
13
               t_ext = 1/factorial(n)
14
15
               s_{int} = 0
                                         # Set internal sum to be equal to zero
16
               m = 0
                                       # Set internal index to be equal to zero
17
               while m <= n:
18
                    t_{int} = factorial(n) * a**m * b**(n-m) 
                                                                  # Internal term
19
                            / factorial(m) / factorial(n-m)
20
21
                                                                      # Update sum
                    s_{int} = s_{int} + t_{int}
22
                   m = m + 1
                                                          # Update internal index
23
24
                                                           # Finish external term
               t_{ext} = t_{ext} * s_{int}
25
26
               s_{ext} = s_{ext} + t_{ext}
                                                            # Update external sum
27
               n = n + 1
                                                          # Update external index
28
29
           print(a,b,s_ext,exp(a+b))
                                                              # Print and compare
```