
Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Probabilistic machine learning | Intro
Introduction to machine learning

Francesco Corona

Chemical and Metallurgical Engineering
School of Chemical Engineering

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

We all know curve fitting

We consider a classic regression problem and use it to introduce some central concepts

• Suppose we observe the value x ∈ X ⊆ R of some variable X that we call input

• We wish to use x to estimate the value t ∈ T ⊆ R of a variable T , the target

We are implicitly assuming that there exists some function relating variables X and T

• However, such a relation between X and T is unknown to us

• We wish to recover it, in some sense, and use it for prediction

At our disposal, we only have a collection of N pairs, {(xn , tn)}Nn=1, the training dataset

Input data Target data
x1 t1
x2 t2
..
.

..

.
xn tn
...

...
xN tN

We assume

f : X → T (f : x 7→ t)

We want
f̂ : X → T

How?

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example

Let us develop the theory using data generated from a function consisting of two parts

• Some deterministic term

• An additive noise term

We shall assume that the training data consists of N = 10 pairs (xn , tn) generated by

t = sin (2πx) + noise︸ ︷︷ ︸
f

Each of the training examples (blue circles) is a point comprising an observation xn of
the input variable X along with the associated observation tn of the target variable T

x

t

0 1

−1

0

1 The deterministic function sin(2πx) (green
curve) and a small amount of Gaussian
noise is used to generate the data {(xn , tn)}

How to estimate the value of t for some x?

• ... without knowing the green curve
and the nature of the noise term

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example (cont.)

This is an intrinsically hard problem to solve, as we have to generalise from a finite set

• Moreover, for a given x there is uncertainty as to the proper value for t

In probabilistic machine learning, we will build on probability theory to provide a mod-
elling framework for expressing such uncertainty in a precise and quantitative manner

Then, we use decision theory to produce estimates which are optimal, in some sense

However, we are not interested in rushing up the theory and we shall proceed informally

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example | Model

We consider a simple approach to curve fitting based on a certain polynomial function

y(x |w) = w0 + w1x + w2x
2 + · · ·+ wnm xnm + · · ·wNm xNm

=

Nm∑
nm=0

wnm xnm

Nm is the order of the polynomial and xnm is the value of x raised to the power of nm

The coefficients {wnm }Nm
nm=0 are collected in a parameter vector w ∈ RNm

The function y(x |w) is a modelling choice (how we choose to represent the function f)

• It is a nonlinear function of the input values x

• It is a linear function of the parameters w

Functions like y(x |w) that are linear in the parameters are linear models for regression

• The parameters w which characterise y(x |w) can be estimated from data {(xn , yn)}

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example | Model | Accuracy

y(x |w) =

Nm∑
nm=0

wnm xnm

The values of the parameters are estimated by fitting the polynomial model to the data

• We look for the set of parameters w that makes y(x |w) best matches the data

This is done by minimising an error function, a function of the unknown parameters w
that quantifies the mismatch between model outputs y(xn |w) and training outputs tn

• ... cumulatively, over the entire set {(xn , tn)}Nn=1 of training data

A common choice of error function is the sum of the squares of the errors on {(xn , tn)}

E(w) =

(
1

2

)
N∑

n=1

(
y(xn |w)− tn

)2
It is clear that E(w) is a non-negative quantity that would be equal to zero if and only
if the model function y(x |w) were to pass through each of the training data {(xn , tn)}

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example | Model | Accuracy (cont.)

Graphically, error function E(w) corresponds to (one half of) the sum of the squares of
the mismatches (vertical green bars) between each data point tn and the model y(x |w)

t

x

y(xn,w)

tn

xn

E(w) =
1

2

N∑
n=1

(
y(xn |w)− tn

)2
To solve the curve fitting task, we search
for the w for which E(w) is the smallest

Note that because the error function is a quadratic function of the parameters w , thence
its derivatives with respect to the parameters are linear functions in the elements of w

• The minimisation of E(w) has the unique analytic minimiser w⋆

• (We get the solution w⋆ by solving a set of linear equations)

The optimal (for the chosen error function) linear regression model is the polynomial

y(x |w⋆) =

Nm∑
nm=0

w⋆
nm

xnm

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example | Model | Complexity

y(x |w) = w0 + w1x + w2x
2 + · · ·+ wnm xnm + · · ·wNm xNm

=

Nm∑
nm=0

wnm xnm

For the user, there still remains the problem of choosing the order Nm of the polynomial

• This task is known as model comparison or model selection

Different orders Nm of y(x |{wnm }Nm
nm=0) on data {(xn , tn)}Nn=1 will give different results

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

Constant (Nm = 0) and first order (Nm = 1) polynomials yield a poor fit to the data

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example | Model | Complexity (cont.)

A third order (Nm = 3) polynomial gives a good fit to data, whereas the higher order
polynomial (Nm = 9) gives an excellent fit, although the fitted curve oscillates wildly

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

For Nm = 9, the polynomial passes exactly through each training point and E(w⋆) = 0

This behaviour, known as over-fitting, associates with a poor generalisation performance

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

We all know curve fitting (cont.)

The reasonable question to ask is how to make accurate predictions also for new data?

We can obtain some quantitative insight into the dependence of the generalisation
performance on the polynomial order Nm by considering a separate, unseen, test dataset

For each choice of Nm , we evaluate the error E(w⋆) for both training and test dataset

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example | Model | Complexity (cont.)

E(w) =
1

2

N∑
n=1

(
y(xn |w)− tn

)2
It is sometimes convenient to utilise the square root of the mean squared error, or ERMS

ERMS (w
⋆) =

√
(2)E(w⋆)

N

The division by N allows a consistent comparison of datasets of different sizes and the
square root ensures that ERMS (w

⋆) is on the same scale/units as the target variables

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example | Model | Complexity (cont.)

The ERMS (w
⋆) evaluated on the training and test datasets, for various values of Nm

M

E
R

M
S

0 3 6 9
0

0.5

1

Training

Test

• Small values of Nm (0, 1 and 2) yield
relatively large errors on the test set

• 3 ≤ Nm ≤ 8 yield small test errors

Low-order polynomials are rather inflexible and incapable of capturing the determinis-
tic part of the underlying function, whereas high-order polynomials are too flexible and
able of capturing also variations associated to the randomness added to that function

For Nm = 9, the training error is zero, because this polynomial has 10 degrees of
freedom corresponding to |{wnm }| and thus can be tuned exactly to the N = 10 data

• The test error has become very large

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example | Model | Complexity (cont.)

We gain insight into the issue by analysing the estimates of the model parameters w⋆

8 1. INTRODUCTION

Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
of M .

M

E
R

M
S

0 3 6 9
0

0.5

1
Training
Test

For M = 9, the training set error goes to zero, as we might expect because
this polynomial contains 10 degrees of freedom corresponding to the 10 coefficients
w0, . . . , w9, and so can be tuned exactly to the 10 data points in the training set.
However, the test set error has become very large and, as we saw in Figure 1.4, the
corresponding function y(x,w⋆) exhibits wild oscillations.

This may seem paradoxical because a polynomial of given order contains all
lower order polynomials as special cases. The M = 9 polynomial is therefore capa-
ble of generating results at least as good as the M = 3 polynomial. Furthermore, we
might suppose that the best predictor of new data would be the function sin(2πx)
from which the data was generated (and we shall see later that this is indeed the
case). We know that a power series expansion of the function sin(2πx) contains
terms of all orders, so we might expect that results should improve monotonically as
we increase M .

We can gain some insight into the problem by examining the values of the co-
efficients w⋆ obtained from polynomials of various order, as shown in Table 1.1.
We see that, as M increases, the magnitude of the coefficients typically gets larger.
In particular for the M = 9 polynomial, the coefficients have become finely tuned
to the data by developing large positive and negative values so that the correspond-

Table 1.1 Table of the coefficients w⋆ for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

M = 0 M = 1 M = 6 M = 9
w⋆

0 0.19 0.82 0.31 0.35
w⋆

1 -1.27 7.99 232.37
w⋆

2 -25.43 -5321.83
w⋆

3 17.37 48568.31
w⋆

4 -231639.30
w⋆

5 640042.26
w⋆

6 -1061800.52
w⋆

7 1042400.18
w⋆

8 -557682.99
w⋆

9 125201.43

As Nm increases, |w⋆| typically gets larger

• Large positive/negative values

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example | Model | Complexity (cont.)

We can also study the behaviour of a model of fixed complexity (Nm = 9) as N varies

x

t

M = 9

0 1

−1

0

1

x

t

N = 15

0 1

−1

0

1

x

t

N = 100

0 1

−1

0

1

Over-fitting is less severe with large N and larger N can afford us more complex models

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example | Model | Complexity (cont.)

The heuristic from heaven (hell?) recites ‘the number of data points should be no less
than some multiple (5, 10, or 100) of the number of tuning parameters in the model’
Yet, the number of parameters is not necessarily the best measure of model complexity

• Why limit the number of parameters according to the size of the training set?

• Why not choose model complexity according to the problem complexity?

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example | Model | Accuracy and complexity

We shall see that least squares minimisation for fitting model parameters is a specific
case of likelihood maximisation and that over-fitting is understood as one of its properties

• Over-fitting can be avoided by adopting a full probabilistic (Bayesian) approach

We shall also see that there is no difficulty from a Bayesian perspective in employing
models whose number of parameters greatly exceeds the size of the training data set

• The effective number of parameters adapts automatically to the data size

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example | Model | Regularisation

Before getting there, we continue with our approach and consider how we can apply it
to data sets of limited size, while still choosing to use some relatively complex model

One popular technique, known as regularisation, is used to gain control over over-fitting

• To discourage the model parameters from taking on large values, regularisation
approaches involve adding a penalty term to the standard error function (E(w))

• The simplest such penalty term takes the form of a sum of squares of all parameters

Ẽ(w |λ) =
1

2

N∑
n=1

(
y(xn |w)− tn

)2
+

λ

2
|w |2

|w |2 = wTw = w2
0 + · · ·+ w2

nm
+ · · ·+ w2

Nm
and the (hyper-) parameter λ governs the

relative importance of the regularisation term, compared with the sum-of-squares term

Notably, such a regularised error function Ẽ(w |λ) can also be minimised analytically

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example | Model | Regularisation (cont.)

Ẽ(w |λ) =
1

2

N∑
n=1

(
y(xn |w)− tn

)2
+

λ

2
|w |2

Fitting the polynomial of order Nm = 9 to the training data using a regularised error

x

t

ln λ = −18

0 1

−1

0

1

x

t

ln λ = 0

0 1

−1

0

1

• With lnλ = −18 (a small value of λ), over-fitting is suppressed

• With lnλ = 0 (a large value of λ), we obtain again a poor fit

y(x |w) = w0 + w1x + w2x
2 + · · ·+ wNm xNm=9

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example | Model | Regularisation (cont.)

The parameters w⋆ for order Nm = 9 polynomials with varying regularisation term λ1.1. Example: Polynomial Curve Fitting 11

Table 1.2 Table of the coefficients w⋆ for M =
9 polynomials with various values for
the regularization parameter λ. Note
that ln λ = −∞ corresponds to a
model with no regularization, i.e., to
the graph at the bottom right in Fig-
ure 1.4. We see that, as the value of
λ increases, the typical magnitude of
the coefficients gets smaller.

ln λ = −∞ lnλ = −18 lnλ = 0
w⋆

0 0.35 0.35 0.13
w⋆

1 232.37 4.74 -0.05
w⋆

2 -5321.83 -0.77 -0.06
w⋆

3 48568.31 -31.97 -0.05
w⋆

4 -231639.30 -3.89 -0.03
w⋆

5 640042.26 55.28 -0.02
w⋆

6 -1061800.52 41.32 -0.01
w⋆

7 1042400.18 -45.95 -0.00
w⋆

8 -557682.99 -91.53 0.00
w⋆

9 125201.43 72.68 0.01

the magnitude of the coefficients.
The impact of the regularization term on the generalization error can be seen by

plotting the value of the RMS error (1.3) for both training and test sets against lnλ,
as shown in Figure 1.8. We see that in effect λ now controls the effective complexity
of the model and hence determines the degree of over-fitting.

The issue of model complexity is an important one and will be discussed at
length in Section 1.3. Here we simply note that, if we were trying to solve a practical
application using this approach of minimizing an error function, we would have to
find a way to determine a suitable value for the model complexity. The results above
suggest a simple way of achieving this, namely by taking the available data and
partitioning it into a training set, used to determine the coefficients w, and a separate
validation set, also called a hold-out set, used to optimize the model complexity
(either M or λ). In many cases, however, this will prove to be too wasteful of
valuable training data, and we have to seek more sophisticated approaches.Section 1.3

So far our discussion of polynomial curve fitting has appealed largely to in-
tuition. We now seek a more principled approach to solving problems in pattern
recognition by turning to a discussion of probability theory. As well as providing the
foundation for nearly all of the subsequent developments in this book, it will also

Figure 1.8 Graph of the root-mean-square er-
ror (1.3) versus ln λ for the M = 9
polynomial.

E
R

M
S

ln λ−35 −30 −25 −20
0

0.5

1
Training
Test

• Un-regularised model, for lnλ = −∞
• As λ increases, |w⋆|2 gets smaller

Regularisation reduces the magnitude of the parameters at the expenses of accuracy

Impact of penalty term λ on the regularised root-mean-square error ẼRMS (w
⋆|λ)

E
R

M
S

ln λ−35 −30 −25 −20
0

0.5

1

Training

Test

ẼRMS (w
⋆|λ) =

√
2Ẽ(w⋆|λ)

N

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example | Model | Cross-validation

Before minimising an error function, the user must determine a suitable degree of model
complexity, whether this is a polynomial order Nm or the regularisation parameter λ

A way of achieving this is to take all the available data and partition it into two subsets

• A training set to determine w⋆ for various settings of model complexity, Nm or λ

• A validation set to determine a suitable value of model complexity, N ⋆
m or λ⋆

Seeing the inherent data scarcity, this may seem too wasteful of valuable training data

• A common workaround is to use a technique known as cross-validation

Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Curve fitting | Example | Model | Cross-validation (cont.)

S -fold cross-validation allows a proportion (S − 1)/S of the available data to be used
for training while making use of all of the reminder of the data to asses performance

For the S = 4 case, we partition the data into S groups

• In the simplest case blocks are of equal size

S − 1 folds (the white blocks) are used to train a set of
models and the held-out fold (the red block) is for testing

This procedure is repeated independently for all S possible choices of the held-out fold

• The performance scores from all the S runs are then averaged

When data are particularly scarce, it is appropriate to consider the extreme case S = N

• This procedure is known as leave-one-out (LOO) cross-validation

