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T Inputs to the learner
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Statistical In the basic statistical learning framework, the learner can access to the following info
learning

Domain set

. . ' — . Ng
Brefiiareh) s This is the set of all objects that we might wish to label X ={z:2€R"}
Inductive bias Domain points are encoded as vectors of N, features

F: > b hes X g RNT
Label set
This is the set of Ny labels a domain point may take on Y CNg
(We start with a two-label label set, N, = 2) y=1{0,1}

In practice, the learner has access to a combination of the domain and the label set

Training data S = {(n, yn)}_;
Some subset of pairs in X' X ) of labeled domain points
The set of N = |S| training examples, the training set with {zﬂ eX

yn €Y
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X C RN y=1{0,1}
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(Tn,Yn)

S

Training data
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Statistical
learning

Empirical risk

The learner is asked to output a prediction rule, some function h from set X to set Y

Inductive bias

Finite hypothesis

h: X =Y

Oftentimes, the prediction rule is known as the predictor, or hypothesis, or classifier

® This is the function used to predict the label y of any (new) domain point



NPOW The learner

{h:h: X =Y}

Statistical
learning

X x)Y

Empirical risk
Inductive bias

Finite hypothesi

hs

The learner

- (A)

(0, Yn)

hs = A(S) is the hypothesis that a learning algorithm A returns, given a training set S
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Statistical It remains to define somehow the quality of a prediction rule h (how well it performs)
foaruing ® This will define the strategy used by the learner to select the predictor hg
Empirical risk

Inductive bias

Finite hypothesi

The quality of a rule should be determined with respect to the data-generating process

® (That is, it does not matter too much if a rule A fails on unlikely instances)



- The success of the learner (cont.)
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Assumptions
Training instances {z,} are assumed to be from a probability distribution D; over X’

Statistical
learning ® For our learning tasks, we allow D, to be an arbitrary distribution

Bmpirical risk Importantly, note that the learner has no information regarding the distribution D,

minimisation
Empirical risk
Inductive bias

Finite hypothesis

As for the labels, we start by assuming that there exists an exact labelling function f
f:X=>Y

That is, we assume that the label y € Y of all z € X is fully determined as y = f(z)
® Note that also the labelling function f is unknown to the learner
® (This function is precisely what the learner tries to figure out)

® (As we proceed, such a strong assumption will be relaxed)
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Statistical

learning

Empirical risk Formally, we are given a domain subset S; C X and a probability distribution D, that
minimisation . . . . . . .
T assigns a number D, (z) which determines how likely it is to observe any point z € X

Inductive bias

Finite hypothesis

® The set S; is an event that can be realised using the function p : X — {0,1}
® Sy = {zn;zn € X, p(zn) = 1}_; occurs with probability P, p, [{zn}V_,]
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The error of a classifier h is defined as the probability that the label y of an instance

z, randomly drawn from X according to Dy, is predicted wrongly, or h(z) # y = f(z)

Statistical

lepimniag ‘We can use this notion to define the error, or loss, L incurred by the predictor h : X — Y
Lp, f(h) = Peup, [z : 2 € X, h(z) # f(z)]
R Da({oiweX h(2)£f(2)})

Finite hypothesi

Thus, the error occurred by h is the probability of sampling a z for which h(z) # f(z)
® (D, [) indicates that error L of h is evaluated with respect to Dy and f
Lp,,r(h) is often denoted as generalisation error, or risk, or true error of predictor h

Graphically, Lp, ¢(h) is the volume under the portion of D, associated to errors of h

h(z) # f(x)

D,

X
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Siteiiiien] In summary, pairs in S are generated by sampling z from D, and labelling them by f

learning

® Given S, the goal of the learner is to return a predictor of smallest loss Lp, ¢

Empirical risk
Inductive bias

Finite hypothesi

In principle, a learning algorithm A is requested to return that predictor hg that, given
S, minimises the loss Lp, ¢ (with respect to distribution D, and labelling function f)

® However, Lp, s cannot be directly calculated

® (D; and f are unknown to the learner)
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Statistical
learning

Empirical risk

Inductive bias What is a reasonable strategy for the learner to practically overcome such a limitation?
Finite hypothesi

® ... knowing that the learner only has access to the sample S

We could think of looking for a predictor h that works well with sample S and that
would work well also with other points generated according to D, and labelled with f

® A predictor hs that works well also on other similar sets (say, a test set)

® More precisely, a prediction rule hg such that Lp, f(hs) is smallest
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Empirical risk

Inductive bia

Finite hypothes

Empirical risk

The algorithm A receives as input a training set S (whose z-elements are from some
distribution D; and labeled by some target function f) and outputs a rule h : X — Y

® To be calculable, we need a notion of error of h that depends on sample S

Pragmatically, it is then reasonable to search for that predictor h that works well on S

The training error or empirical risk Lg is a notion of loss which can be calculated on S

It is defined as the error that classifier h incurs over sample S with N labelled examples

{zn : h(zn) # yn}il
N

Ls(h) =

That is, Ls(h) is defined as the fraction of training examples mislabeled by the rule h
® As such, Lg(h) can be calculated without knowing anything about D, and f



N Empirical risk (cont.)
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Graphically, Ls(h) is the number of instances (zn, yn = f(zn)) mislabelled by a rule h

Kok ko k Kok * Kk *
{h(zn) # yn}
* * *
et X
Empirical risk
Inductive bias
Finite hypothesi D,
ek
A4—ﬁ—t1 M) 2 1)
—h— *
X

D,
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Empirical risk

Inductive bias

Finite hypothes

Empirical risk minimisation

A learning paradigm that returns a rule h that minimises Ls (that works well on the
training data S) is said to operate according to the Empirical Risk Minimisation (ERM)

{zn : h(zn) # yn}r_al
y N
Ls(h)

argming. x_,y is that subset {hs} of predictors that minimise the empirical error Lg

ERM(S) € arg min
h: X —

{ha(2n) # yn}

Kok ko k Kk * oK *

{hi(zn) # yn}

D,
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Empirical risk

Inductive bias

Finite hypothes

Empirical risk minimisation | What could possibly go wrong?

ERM(S) € arg N r)?iny Ls(h)
X —>

Given that the learner has access to all possible functions h € XY, why not just pick
one that has zero error on the training sample S (or, equivalently such that Ls(h) = 0)?

Since we assumed that labels are deterministically set, y = f(z), we can design such h

Yns if z € {zn}
h, - S= n X7 n 07 1
s(@) {0 (or 1), otherwise ’ {(zn € X, yn €{0,11)}

Such a predictor will always achieve a perfect empirical error, regardless of sample S
® As such, it can be chosen when using the ERM learning strategy

® (Clearly, no rule can achieve a smaller loss on S, as Ls(hs) =0

Predictor hg has an excellent performance on S, yet its true performance is very poor

® This phenomenon is the infamous overfitting
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Empirical risk
Inductive bias

Finite hypothesi

Empirical risk minimisation | Overfitting

Example
Consider the problem of labelling a set of points  uniformly distributed inside a circle

Consider some labelling function f R o °
® label y = () to points z that °
are within the inner circle ®/ o ®
® label y = (-) to other points ° ° ° °
° o o
Let the area of the outer circle be °
2 and that of the inner circle be 1 ° °
°

We are given sample S = {(zn, yn)} and now consider the following prediction rule hg

Yn, ifx € {In}
h = ~ Ls(hs) =0
s(@) {()7 otherwise s(hs)

The true error of any classifier that predicts the label (-) only on finite sample S is 1/2

Lp, r(hs) =1/2
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. hs # f(z)
X

D,

Empirical risk

Inductive bias

Finite hypothes

How to amend the ERM(S) in a way that the learner is protected against overfitting?

® ... considering that all the learner has access to is the sample S

We will discuss certain conditions under which the ERM is unlikely to overfit the data
® We ask how to find a predictor h with good performance with respect to S

® and, good performance over the (unknown) distribution D, and function f
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Empirical risk

Inductive bias

Finite hypothes

ERM | Inductive bias

One strategy to fix the ERM(S) would be to apply it over some restricted search space

Before seeing the data S, the learner picks a class of predictors, the hypothesis class H
® Each prediction rule h € H must be a function which maps X to )

HcC{h:hexV}

® We might also assume that the target function f is in the set H

By selecting H, we are including a form of prior knowledge into the learning paradigm
® The choice of H should be based on some knowledge about the learning task

® (Say, we assume that same-class instances are bounded to certain regions)

We point the learner towards a class of prediction rules (inductive bias) by restricting
it to pick only predictors from a hypothesis class H, chosen before seeing a sample S

® We have shown that without prior knowledge, ERM learners cannot learn
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Empirical risk

Inductive bias

Finite hypothes

ERM | Inductive bias (cont.)

For the chosen hypothesis class H and given some training set S, an ERMy (S) learner
uses ERM(S) strategy to pick rules {hs} in H with smallest loss Lg over that sample

[{zn : h(zn) # yn}‘leﬂ
|S|

ERMy (S i
#(5) € arg min

Ls(h)

Again, arg minycyy is the subset of rules hs € H which minimise the empirical loss Ls

In many cases (under certain assumptions), ERMy (S) is a successful learning strategy

® That is, it leads to picking hypothesis hs with small generalisation error Lp, ¢
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Empirical risk

Inductive bias

Finite hypothes

ERM | Inductive bias (cont.)
{h:h:X =Y}

E— The learner

_ (A)

S

/

(s Yn)

Notice that a fundamental question in statistical learning theory is ‘over which class
H of hypothesis functions, the learning paradigm ERMy will not lead to overfitting?’
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Empirical risk
Inductive bias

Finite hypothesis

ERM | Inductive bias | Finite hypothesis

The simplest restriction on class H is obtained by imposing an upper bound on its size
H = {hn, : by, € XY} (with N}, < co)
mp - Mg np=1 h
That is, we select a hypothesis class H whose number N}, = |H| of predictors A is finite

Theorem
It can be shown that, if H is a finite hypothesis class (|H| < oo) and a sufficiently large
training sample S (|S| > const(|#|)) is available, then ERMy,(S) is unlikely to overfit

® Assumption: The z-elements of S are independent draws from D,

® Assumption: The correct labelling function f is also in class H

We show that, without limiting H to be finite, the ERMy,(S) learner would always
have a large probability of error on new data from (D, f), regardless of how large S is
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Empirical risk
Inductive bias

Finite hypothesis

ERM | Inductive bias | Finite hypothesis (cont.)

This theorem highlights how learning refers to a different notion from hypothesis testing
® In hypothesis testing, we come up with an hypothesis before seeing the data

® Conversely, in machine learning we select an hypothesis based on the data

hs € in Ls(h
s € arg min s(h)

—
via ERMy

Learning is about theories developed from data, not about theories chosen before data

® (Though, we still picked a hypothesis class rather than a single hypothesis)
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Inductive bias

Finite hypothesis

ERM | Inductive bias | Finite hypothesis | Accuracy

For an algorithm A that has access only to sample S, any guarantee on the error with
respect to the underlying distribution must depend on the relation between D; and S

The sample S is the window through which the learner gets information about (D, f)
® Intuitively, the larger S is the more representative it is of D, and f

® We saw how a non representative sample leads the ERM to overfit

That is, we are interested in (avoiding) those samples that confuse the ERMy learner
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Finite hypothesis

Inductive bias | Finite hypothesis | Accuracy (cont.)

More precisely, for some fixed labelling function f € XY, we want to determine what is
the maximum probability to sample N instances that leads to a true failure of ERMy

We quantify failure by introducing a fixed accuracy parameter € € [0, 1] of the prediction

® Parameter € permits us to interpret the event Lp, ;(hs) > € as ERMy failure
N——

true risk

® Conversely, Lp, r(hs) < € defines an approzimately correct ERMy predictor

To identify failing samples, let S; = {z,}_; be the domain points in any training set

® For the collection of all confusing training samples S,;, we have
{Sz : Lpz’f(hs) > E}

This set of sets cannot be determined because, though we could identify for each a hg
via ERMy;, we are not able to establish what its true risk is (as D, and f are unknown)
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Statistica

learning
Empirical risk
minimisation
Empirical risk
Inductive bias

Finite hypothesis

Sy {8z} {Sz : Lp, ¢(hs) > €}

For each possible sample S, the ERMy strategy determines an optimal predictor hgs

® Yet, the true risk of these predictors is not accessible to the learner
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s We want to determine under which conditions, for the assumed mechanism for gener-
Tearnin ating samples S, the probability of observing a non-representative sample is very small

Empirical risk
minimisation
Empirical risk
Inductive bias
Finite hypothesis

For each possible sample S;, ERMy, strategy
determines the optimal prediction rule hg

We are interested in upper bounding the
probability of drawing a confusing sample

DY ({Ss : Lp, s (hs) > €})

As Dy is the probability of drawing a single
z, we let DY be that of N i.i.d. copies of =

Ps,~pn[Sz : Lp, f(hs) > €
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Empirical risk
Inductive bias

Finite hypothesis

Inductive bias | Finite hypothesis | Accuracy (cont.)

Now, we let Hp be the set of all hypothesis rules in H which are not e-correct, at least
® 7 p is the set of hypotheses which should be avoided by the learner
Hp={heH:Lp,s(h)>c¢e}
——
true risk
Because f € H and Lp, ¢(f) = 0, we have that Hp C H and thus also that |[Hpg| < |H|
® Set Hp is stated regardless of the ERMy strategy, as it only pertains {S;}

Also notice how also this set of functions cannot be established (unknown D, and f)
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The state of things, up to this point

® The set of all possible samples that can be generated

Empirical risk
Inductive bias {Sz}

Finite hypothesis
® The set of all truly bad predictors, regardless of the sample
Hp={heH:Lp, s(h)> ¢}
® The set of samples that are truly bad, if accessed by the ERMy

{8z : Lp, s(hs) > €}

How to combine all the info into something that can be practically analysed and used?

What we want to avoid are those samples that, though they lead to a good ERMy
performance (small Ls(hs)), would still perform badly in a true sense (Lp, ¢(h) > €)

Before we can proceed with such a set, we need to introduce an additional assumption
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Empirical risk
Inductive bias

Finite hypothesis

ERM | Inductive bias | Finite hypothesis | Realisability

Assumption
Let us assume (realisability assumption) there exists one h* € H such that Lp_ ;(h*) =0

Lp, s (h*) = Ponp, [h"(2) # f(2)]

true risk

=0

The assumption implies that with probability 1 over samples S, chosen according to
DY and then labeled by f, there is at least one rule h* € H such that also Ls(h*) =0

|{Zn : h*(ﬂ’f'n) # yn}ﬁ:l'
N

Ls(h™) =

empirical risk
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h*(x) # f(x)
X
Empirical risk Dz
Inductive bias
Finite hypothesis
{h*(zn) # yn}
* *dok ko k ok Fk * Kk * *
X
D,

When we assumed that f € H, we have implicitly satisfied the realisability assumption
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Because of the realisability assumption, we have that the event Lp_ ¢(hs) > € can only
occur whenever, for some h € Hp, we draw a misleading sample such that Lg(h) =0
Treyesinard) mis ® That is, for a truly bad hypothesis h which empirically performs as well as f
Inductive bias
AL Ryt Let M, denote the subset of those samples S; for which there exists a truly bad rule

(h € Hp) which would still lead to a good performance, empirically (in ERMy;-sense)

My ={S; : Ih € Hp, Ls(h) =0}
——

empirical risk

={Sz:Fhe{heH: prf(h) > e}, Ls(h) =0}
N—— N——
true risk empirical risk
is bad looks good

These samples are misleading, because they make the truly bad hypotheses look good
® Thus M is the set of samples for which there exists a truly bad hypothesis
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One way to construct set M, is to consider each truly bad predictor h € Hp and then
identify all samples S; such that, when h is given to ERMy, its empirical loss is zero

My ={Ss:3h € Hp, Ls(h) =0}  Hp
={ U {S::Ls(h) =0}}

Finite hypothesis
heHp

Does M, relate to the target
set {Sz : Lp, s(hs) > €}?

® M, is about the existence
of a bad hypothesis

® {Ss: Lp, s(hs) > e} is
about selecting it

Thus, we have

{8 : LD,f(hS) >e} C M,
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Inductive bias | Finite hypothesis | Accuracy (cont.)

{8z : Lp, ¢(hs) > €}

Remembering that we want to upper bound Pg_pn[Ss : Lp, f(hs) > €], , it suffices to
upper bound Pg__ pn [Sz : 3h € Hp, Ls(h) = 0], because {Sz : Lp s(hs) > e} C Ma

Ps,pn[Ss i Lp, s (hs) > ] <Ps, _py[Se: Ih € Hp, Ls(h) = 0]
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Empirical risk
Inductive bias

Finite hypothesis

Inductive bias | Finite hypothesis | Accuracy (cont.)

PS;N'D_Q’ [Sz : LDz,f(hS) > E] < PSINDﬁ’ [Sz :dh € HB,Ls(h) = 0]

That is, we have
DY ({Ss : Lip,p)(hs) > €}) < DY (M)
=DY( | {8 : Ls(h) = 0})

heHp

By using the usual union bound (D(A U B) < D(A) + D(B)), we have the inequality

DY ({Ss : Lp, (hs) > e}) < Y DY ({Sa: Ls(h) = 0})
heHp

The inequality allows us to bound each summand DY ({S, : Ls(h) = 0}) individually
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Empirical risk
Inductive bias

Finite hypothesis

Inductive bias | Finite hypothesis | Accuracy (cont.)

DY ({Ss : Lp, s(hs) >e}) < D> DY ({Ss: Ls(h) =0})
heHp

By fixing a h € Hp, we observe that Ls(h) = 0 corresponds to h(z,) = f(z,) for all n
DY ({Ss : Ls(h) = 0}) = DY ({Ss : h(zn) = f(xn), for all n})

As the examples are independently sampled from the same distribution (i.i.d.), we get

N
DY ({Ss : h(zn) = f(zn), for all n}) = H ({zn : h mn)_f(zn)})
N—— ne1
Yn yn

For an individual possible draw of a training sample and a tolerable failure &, we get

Dy({zn : h(zn) = yn}) =1 — Da({zn : h(zn) # yn})
=1-Lp,s(h)
<1l-—e¢
<exp(—¢)
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Empirical risk
Inductive bias

Finite hypothesis

Inductive bias | Finite hypothesis | Accuracy (cont.)

Di({an : h(zn) = yn}) < exp(*s)

DY ({Ss : h(zn) = yn, for all n}) = H De({zn : h(zn) = yn})

By combining the results relative to one h € Hp, we get

DY ({Sp: Ls(h) = 0}) < (1 — )"

< exp (—Ne)

Remembering that we have |H | such hypothesis, we have

D> DY (S:: Ls(h) = 0}) < [Hp|exp (—Ne)

hetp

For the probability of drawing a non-representative (e-wrong) sample of size N =

DY ({82 : Lp, s(hs) > ¢}) <

> DY({Ss : Ls(h) = 0})

hEHp
< [Hplexp (—|S|e)
< [H]exp (—[Sle)

IS1,
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Empirical risk
Inductive bias

Finite hypothesis

Dy ({Sz : Lp, f(hs) > €}) < [H]exp (~|Sle)

The bound decays exponentially with the number |S| of data and tolerable accuracy e

® (The larger the training set the better)

Still, the bond grows linearly with the number |H| of hypotheses in the selected class
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