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Probability theory

The key concept in modelling is that of accounting for uncertainty using probabilities

• It gets in the way (we introduce it) through noise on measurable quantities

• It gets in the way (we introduce it) through the finiteness size of datasets

Probability theory provides the framework for quantifying/manipulating uncertainties

• Applied probability theory is central in probabilistic machine learning
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Probability theory | Example

Let us suppose that we have two boxes, one of which is red and the other one is blue

• Red box,: 2 apples and 6 oranges

• Blue box: 3 apples and 1 orange

We randomly pick one box and, from it
we randomly select one item of fruit

• We firstly check the fruit

• Then we place it back

We repeat this process many times

In the experiment, 40% of the time we pick the red box, 60% of the time the blue one

• We are equally likely to select any of the pieces of fruit from the box
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Probability theory | Example (cont.)

The identity of the box: Random variable B

• B can take one of two values

• r (red box) or b (blue box)

The identity of the fruit Random variable F

• F can take one of two values:

• a (apple) or o (orange)

The probability of an event: Fraction of times the event occurs, out of the number trials

• In the limit that the total number of trials goes to infinity

In the experiment

• The probability of selecting the blue box is 6/10

• The probability of selecting the red box is 4/10

We write the probabilities of picking a box

• p(B = r) = 4/10

• p(B = b) = 6/10
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Probability theory | Example (cont.)

We have defined our experiment and we also have the probabilities for certain events

We can start asking (probability) questions about the system

• What is the overall probability that the selection procedure picks an apple?

• Given that we have picked an orange, what is the probability that the box
we picked was the blue one?

• ...

We can answer questions such as these and more complex ones arising in machine
learning, once we have equipped ourselves with the two elementary rules of probability

• The sum rule and the product rule
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Probability theory | Rules (cont.)

In order to derive the rules of probability, we consider the slightly more general example

1.2. Probability Theory 13

Figure 1.10 We can derive the sum and product rules of probability by
considering two random variables, X, which takes the values {xi} where
i = 1, . . . , M , and Y , which takes the values {yj} where j = 1, . . . , L.
In this illustration we have M = 5 and L = 3. If we consider a total
number N of instances of these variables, then we denote the number
of instances where X = xi and Y = yj by nij , which is the number of
points in the corresponding cell of the array. The number of points in
column i, corresponding to X = xi, is denoted by ci, and the number of
points in row j, corresponding to Y = yj , is denoted by rj .

}

}ci

rjyj

xi

nij

and the probability of selecting the blue box is 6/10. We write these probabilities
as p(B = r) = 4/10 and p(B = b) = 6/10. Note that, by definition, probabilities
must lie in the interval [0, 1]. Also, if the events are mutually exclusive and if they
include all possible outcomes (for instance, in this example the box must be either
red or blue), then we see that the probabilities for those events must sum to one.

We can now ask questions such as: “what is the overall probability that the se-
lection procedure will pick an apple?”, or “given that we have chosen an orange,
what is the probability that the box we chose was the blue one?”. We can answer
questions such as these, and indeed much more complex questions associated with
problems in pattern recognition, once we have equipped ourselves with the two el-
ementary rules of probability, known as the sum rule and the product rule. Having
obtained these rules, we shall then return to our boxes of fruit example.

In order to derive the rules of probability, consider the slightly more general ex-
ample shown in Figure 1.10 involving two random variables X and Y (which could
for instance be the Box and Fruit variables considered above). We shall suppose that
X can take any of the values xi where i = 1, . . . , M , and Y can take the values yj

where j = 1, . . . , L. Consider a total of N trials in which we sample both of the
variables X and Y , and let the number of such trials in which X = xi and Y = yj

be nij . Also, let the number of trials in which X takes the value xi (irrespective
of the value that Y takes) be denoted by ci, and similarly let the number of trials in
which Y takes the value yj be denoted by rj .

The probability that X will take the value xi and Y will take the value yj is
written p(X = xi, Y = yj) and is called the joint probability of X = xi and
Y = yj . It is given by the number of points falling in the cell i,j as a fraction of the
total number of points, and hence

p(X = xi, Y = yj) =
nij

N
. (1.5)

Here we are implicitly considering the limit N → ∞. Similarly, the probability that
X takes the value xi irrespective of the value of Y is written as p(X = xi) and is
given by the fraction of the total number of points that fall in column i, so that

p(X = xi) =
ci

N
. (1.6)

Because the number of instances in column i in Figure 1.10 is just the sum of the
number of instances in each cell of that column, we have ci =

∑
j nij and therefore,

Two random variables X and Y

• X can take any value xi , i = 1, . . . ,Ni

• Y can take any value yj , j = 1, . . . ,Nj

Here, Ni = 5 and Nj = 3

N trials in which we sample both X and Y

Let nij be the number of such trials in which X = xi and Y = yj

Let ni (ci ) be the number of trials in which X takes the value xi

• (irrespective of the value that Y takes)

Let nj (rj ) be the number of trials in which Y takes the value yj

• (irrespective of the value that X takes)
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Probability theory | Rules | Joint

The probability thatX takes value xi andY takes value yj is written p(X = xi ,Y = yj )

• This is the joint probability of both X = xi and Y = yj1.2. Probability Theory 13

Figure 1.10 We can derive the sum and product rules of probability by
considering two random variables, X, which takes the values {xi} where
i = 1, . . . , M , and Y , which takes the values {yj} where j = 1, . . . , L.
In this illustration we have M = 5 and L = 3. If we consider a total
number N of instances of these variables, then we denote the number
of instances where X = xi and Y = yj by nij , which is the number of
points in the corresponding cell of the array. The number of points in
column i, corresponding to X = xi, is denoted by ci, and the number of
points in row j, corresponding to Y = yj , is denoted by rj .

}
}ci

rjyj

xi

nij

and the probability of selecting the blue box is 6/10. We write these probabilities
as p(B = r) = 4/10 and p(B = b) = 6/10. Note that, by definition, probabilities
must lie in the interval [0, 1]. Also, if the events are mutually exclusive and if they
include all possible outcomes (for instance, in this example the box must be either
red or blue), then we see that the probabilities for those events must sum to one.

We can now ask questions such as: “what is the overall probability that the se-
lection procedure will pick an apple?”, or “given that we have chosen an orange,
what is the probability that the box we chose was the blue one?”. We can answer
questions such as these, and indeed much more complex questions associated with
problems in pattern recognition, once we have equipped ourselves with the two el-
ementary rules of probability, known as the sum rule and the product rule. Having
obtained these rules, we shall then return to our boxes of fruit example.

In order to derive the rules of probability, consider the slightly more general ex-
ample shown in Figure 1.10 involving two random variables X and Y (which could
for instance be the Box and Fruit variables considered above). We shall suppose that
X can take any of the values xi where i = 1, . . . , M , and Y can take the values yj

where j = 1, . . . , L. Consider a total of N trials in which we sample both of the
variables X and Y , and let the number of such trials in which X = xi and Y = yj

be nij . Also, let the number of trials in which X takes the value xi (irrespective
of the value that Y takes) be denoted by ci, and similarly let the number of trials in
which Y takes the value yj be denoted by rj .

The probability that X will take the value xi and Y will take the value yj is
written p(X = xi, Y = yj) and is called the joint probability of X = xi and
Y = yj . It is given by the number of points falling in the cell i,j as a fraction of the
total number of points, and hence

p(X = xi, Y = yj) =
nij

N
. (1.5)

Here we are implicitly considering the limit N → ∞. Similarly, the probability that
X takes the value xi irrespective of the value of Y is written as p(X = xi) and is
given by the fraction of the total number of points that fall in column i, so that

p(X = xi) =
ci

N
. (1.6)

Because the number of instances in column i in Figure 1.10 is just the sum of the
number of instances in each cell of that column, we have ci =

∑
j nij and therefore,

It is the number nij of points falling in cell
(i , j ) as fraction of the number N of points

p(X = xi ,Y = yj ) =
nij

N

Implicitly, we are assuming a limit N → ∞
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Probability theory | Rules | Marginals

The probability that X takes some value xi , irrespective of the value of Y , is p(X = xi )

• The fraction of number of points falling in the cells of column i
1.2. Probability Theory 13

Figure 1.10 We can derive the sum and product rules of probability by
considering two random variables, X, which takes the values {xi} where
i = 1, . . . , M , and Y , which takes the values {yj} where j = 1, . . . , L.
In this illustration we have M = 5 and L = 3. If we consider a total
number N of instances of these variables, then we denote the number
of instances where X = xi and Y = yj by nij , which is the number of
points in the corresponding cell of the array. The number of points in
column i, corresponding to X = xi, is denoted by ci, and the number of
points in row j, corresponding to Y = yj , is denoted by rj .

}

}ci

rjyj

xi

nij

and the probability of selecting the blue box is 6/10. We write these probabilities
as p(B = r) = 4/10 and p(B = b) = 6/10. Note that, by definition, probabilities
must lie in the interval [0, 1]. Also, if the events are mutually exclusive and if they
include all possible outcomes (for instance, in this example the box must be either
red or blue), then we see that the probabilities for those events must sum to one.

We can now ask questions such as: “what is the overall probability that the se-
lection procedure will pick an apple?”, or “given that we have chosen an orange,
what is the probability that the box we chose was the blue one?”. We can answer
questions such as these, and indeed much more complex questions associated with
problems in pattern recognition, once we have equipped ourselves with the two el-
ementary rules of probability, known as the sum rule and the product rule. Having
obtained these rules, we shall then return to our boxes of fruit example.

In order to derive the rules of probability, consider the slightly more general ex-
ample shown in Figure 1.10 involving two random variables X and Y (which could
for instance be the Box and Fruit variables considered above). We shall suppose that
X can take any of the values xi where i = 1, . . . , M , and Y can take the values yj

where j = 1, . . . , L. Consider a total of N trials in which we sample both of the
variables X and Y , and let the number of such trials in which X = xi and Y = yj

be nij . Also, let the number of trials in which X takes the value xi (irrespective
of the value that Y takes) be denoted by ci, and similarly let the number of trials in
which Y takes the value yj be denoted by rj .

The probability that X will take the value xi and Y will take the value yj is
written p(X = xi, Y = yj) and is called the joint probability of X = xi and
Y = yj . It is given by the number of points falling in the cell i,j as a fraction of the
total number of points, and hence

p(X = xi, Y = yj) =
nij

N
. (1.5)

Here we are implicitly considering the limit N → ∞. Similarly, the probability that
X takes the value xi irrespective of the value of Y is written as p(X = xi) and is
given by the fraction of the total number of points that fall in column i, so that

p(X = xi) =
ci

N
. (1.6)

Because the number of instances in column i in Figure 1.10 is just the sum of the
number of instances in each cell of that column, we have ci =

∑
j nij and therefore,

p(X = xi ) = ni/N

=

∑Nj

j=1 nij

N

=

Nj∑
j=1

nij /N︸ ︷︷ ︸
p(X=xi ,Y=yj )

=

Nj∑
j=1

p(X = xi ,Y = yj )

p(X = xi ) is the marginal probability because it obtained by the process of marginali-
sation, or by summing out, the probabilities of all the other variables (in this case, Y )

From marginal probability to the sum rule

p(X = xi ) =

Nj∑
j=1

p(X = xi ,Y = yj )
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Probability theory | Rules | Conditionals

The probability that Y = yj , given that X takes some value xi , is p(Y = yj |X = xi )

• This is the conditional probability that Y = yj , given that X = xi1.2. Probability Theory 13

Figure 1.10 We can derive the sum and product rules of probability by
considering two random variables, X, which takes the values {xi} where
i = 1, . . . , M , and Y , which takes the values {yj} where j = 1, . . . , L.
In this illustration we have M = 5 and L = 3. If we consider a total
number N of instances of these variables, then we denote the number
of instances where X = xi and Y = yj by nij , which is the number of
points in the corresponding cell of the array. The number of points in
column i, corresponding to X = xi, is denoted by ci, and the number of
points in row j, corresponding to Y = yj , is denoted by rj .

}

}ci

rjyj

xi

nij

and the probability of selecting the blue box is 6/10. We write these probabilities
as p(B = r) = 4/10 and p(B = b) = 6/10. Note that, by definition, probabilities
must lie in the interval [0, 1]. Also, if the events are mutually exclusive and if they
include all possible outcomes (for instance, in this example the box must be either
red or blue), then we see that the probabilities for those events must sum to one.

We can now ask questions such as: “what is the overall probability that the se-
lection procedure will pick an apple?”, or “given that we have chosen an orange,
what is the probability that the box we chose was the blue one?”. We can answer
questions such as these, and indeed much more complex questions associated with
problems in pattern recognition, once we have equipped ourselves with the two el-
ementary rules of probability, known as the sum rule and the product rule. Having
obtained these rules, we shall then return to our boxes of fruit example.

In order to derive the rules of probability, consider the slightly more general ex-
ample shown in Figure 1.10 involving two random variables X and Y (which could
for instance be the Box and Fruit variables considered above). We shall suppose that
X can take any of the values xi where i = 1, . . . , M , and Y can take the values yj

where j = 1, . . . , L. Consider a total of N trials in which we sample both of the
variables X and Y , and let the number of such trials in which X = xi and Y = yj

be nij . Also, let the number of trials in which X takes the value xi (irrespective
of the value that Y takes) be denoted by ci, and similarly let the number of trials in
which Y takes the value yj be denoted by rj .

The probability that X will take the value xi and Y will take the value yj is
written p(X = xi, Y = yj) and is called the joint probability of X = xi and
Y = yj . It is given by the number of points falling in the cell i,j as a fraction of the
total number of points, and hence

p(X = xi, Y = yj) =
nij

N
. (1.5)

Here we are implicitly considering the limit N → ∞. Similarly, the probability that
X takes the value xi irrespective of the value of Y is written as p(X = xi) and is
given by the fraction of the total number of points that fall in column i, so that

p(X = xi) =
ci

N
. (1.6)

Because the number of instances in column i in Figure 1.10 is just the sum of the
number of instances in each cell of that column, we have ci =

∑
j nij and therefore,

It is obtained by finding the fraction of
points in column i that fall in cell (i , j )

p(Y = yi |X = xi ) =
nij

ni

From the joint and conditional probability to the product rule

p(X = xi ,Y = yj ) = nij /N

=
nij

ni︸ ︷︷ ︸
p(Y=yj |X=xi )

ni

N︸ ︷︷ ︸
p(X=xi )

= p(Y = yj |X = xi )p(X = xi )
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Probability theory | Rules (cont.)

The rules of probability

• Sum rule

p(X ) =
∑
Y

p(X ,Y )

p(Y ) =
∑
X

p(X ,Y )

• Product rule

p(X ,Y ) = p(Y |X )p(X )

= p(X |Y )p(Y )

To make the notation compact, p(⋆) denotes a distribution over a random variable ⋆

• p(X ,Y ) is a joint probability, the probability of X and Y

• p(Y |X ) is a conditional probability, the probability of Y given X

• p(X ) is a marginal probability, the probability of X
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Probability theory | Rules | Bayes

From the product rule and the symmetry property p(X ,Y ) = p(Y ,X ), we obtain

p(Y |X ) =
p(X |Y )p(Y )

p(X )

This is a relationship between conditional probabilities known as the Bayes’ rule

The denominator can be expressed using quantities appearing in the numerator

p(X ) =
∑
Y

p(X |Y )p(Y )

The denominator is a normalisation constant that ensures that the sum of the condi-
tional probabilities on the left-hand side over all values of Y is one, for all values of X

If the joint distribution of two variables X and Y factorises into the product of the
marginals (that is, p(X ,Y ) = p(X )p(Y )), then X and Y are said to be independent

p(Y |X ) = p(Y )

p(X |Y ) = p(X )
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Probability theory | Rules |Recap

p(X,Y )

X

Y = 2

Y = 1

p(Y )

p(X)

X X

p(X |Y = 1)
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Probability theory | Example | Rules

Back to the example of fruit boxes, the probability of selecting either red or blue boxes

p(B = r) = 4/10

p(B = b) = 6/10

These probabilities satisfy the closure condition∑
B

p(B) = p(B = r)︸ ︷︷ ︸
4/10

+ p(B = b)︸ ︷︷ ︸
6/10

= 1

Suppose that we pick a box at random (say, the blue box) then the probability of
selecting an apple is the fraction of apples in the blue box which is 3/4, thus we have

p(F = a|B = b) = 3/4

We can write all conditional probabilities of selecting the types of fruit, given the box

p(F = a|B = r) = 1/4

p(F = a|B = b) = 3/4

p(F = o|B = r) = 3/4

p(F = o|B = b) = 1/4

These probabilities satisfy the closure conditions

p(F = a|B = r) + p(F = o|B = r) = 1

p(F = a|B = b) + p(F = o|B = b) = 1
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Probability theory | Example | Rules (cont.)

We use sum and product rules to evaluate the overall probability of picking an apple 1

p(F = a) =
∑
B

p(F = a,B)

= p(F = a,B = r) + p(F = a,B = b)

= p(F = a|B = r)︸ ︷︷ ︸
1/4

p(B = r)︸ ︷︷ ︸
4/10

+ p(F = a|B = b)︸ ︷︷ ︸
3/4

p(B = b)︸ ︷︷ ︸
6/10

= 11/20

From which (by sum rule), the probability of picking an orange is p(F = o) = 1− 11/20︸ ︷︷ ︸
9/20

1P(F) =
∑

B p(B,F), where p(B,F) = p(F |B)p(B) and p(B,F) = p(B|F)p(F)
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Probability theory | Example | Rules | Bayes
Suppose instead we are told that an item of fruit was selected and it is an orange F = o

• We would like to know which box the orange came from, P(B |F = o)

We are interested in the probability over boxes conditioned on the identity of the fruit

P(B |F )

Earlier, we evaluated the probability over fruits conditioned on the identity of the box

P(F |B)

We solve the problem of reversing the conditional probability, the Bayes’ rule

p(B = r |F = o) =

p(F = o|B = r)︸ ︷︷ ︸
3/4

p(B = r)︸ ︷︷ ︸
4/10

p(F = o)︸ ︷︷ ︸
9/20

= 2/3

From which (by sum rule), the probability that the orange is taken from the blue box

p(B = b|F = o) = 1− 2/3︸ ︷︷ ︸
1/3

■
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Probability theory | Example | Rules | Bayes (cont.)

If we had been asked which box had been chosen before being told the identity of the
selected item of fruit, then the most complete information we have is the probability

p(B)

We call this the prior probability of B

• It is the probability available before we observe the identity of the fruit

Once we know that the fruit is an orange, we use Bayes’ rule to compute the probability

p(B |F )

We call this the posterior probability of B given F

• It is the probability obtained ‘after’ we observed the identity of the fruit

The prior probability of selecting the red box was 4/10 (the blue box is more probable)

Once we observed that the picked fruit is an orange, the posterior probability of the
red box is 2/3 (the red box is more probable to be the one the orange was picked from)

■
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Probability theory | Example

A popular book in the English language (C. R. Darwin: On the origin of species, 1859)

• The probability distribution over the 27 possible letters

• The probability distribution over the 27× 27 bigrams
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Probability theory | Example (cont.)

• The conditional probability distribution of the first letter, given the second one

• The conditional probability distribution of the second letter, given the first one

■
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Probability theory | Intro (B)
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Probability densities

We also wish to consider probabilities with respect to variables which are continuous

If the probability of a certain real-valued variable X falling in the interval (x , x + δx)
is given by p(x)δx for some δx → 0, then p(x) is called the probability density over x

xδx

p(x) P (x)
The probability that x is in (a, b)

p(x ∈ (a, b)) =

∫ b

a
p(x)dx

Interpretation of density functions

p(x ∈ (a − δx

2
, a +

δx

2
)) =

∫ a+δx/2

a−δx/2
p(x)dx

≈ p(a)δx

The probability that x is in a δx -wide interval around a is approximately p(a)δx

• p(a) is a measure of how likely it is that random variable X is around a



Ja
nu
ar
y
15
, 2
02
5

–
FC

–

NPCW
2025

Probabilities

Rules

Densities

Expectations

Bayesian
probabilities

Probability densities (cont.)

Probabilities are nonnegative quantities and, because the value of x must lie somewhere
on the real axis, we have that the probability density p(x) must satisfy two conditions

xδx

p(x) P (x)

p(x) ≥ 0∫ +∞

−∞
p(x)dx = 1

The probability that x lies in (−∞, a) is given by the cumulative distribution function

P(x) =

∫ a

−∞
p(x)dx

Density p(x) is the derivative of the cumulative distribution function P(x):

d

dx
P(x) = p(x)
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Probability densities | Multivariate

Consider a collection of several continuous variables X1, . . . ,XD collected in vector X

We define a joint probability density p(x) = p(x1, . . . , xD ) such that the probability of
point x falling in an infinitesimal volume δx around x is given by the product p(x)δx

• Multivariate probability density must satisfy the usual two conditions

For two variables X and Y

p(x , y) ≥ 0∫
p(x , y)dxdy = 1

Joint distributions 287

x

y

fX,Y (x,y)

FIGURE 7.4

Joint PDF of continuous r.v.s X and Y .

Definition 7.1.13 (Marginal PDF). [Marginal PDF]For continuous r.v.s X and Y
with joint PDF fX,Y , the marginal PDF of X is

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy.

This is the PDF of X, viewing X individually rather than jointly with Y .

To simplify notation, we have mainly been looking at the joint distribution of two
r.v.s rather than n r.v.s, but marginalization works analogously with any number
of variables. For example, if we have the joint PDF of X, Y, Z, W but want the joint
PDF of X, W , we just have to integrate over all possible values of Y and Z:

fX,W (x, w) =

∫ ∞

−∞

∫ ∞

−∞
fX,Y,Z,W (x, y, z, w)dydz.

Conceptually this is very easy—just integrate over the unwanted variables to get
the joint PDF of the wanted variables—but computing the integral may or may not
be difficult.

Returning to the case of the joint distribution of two r.v.s X and Y , let’s consider
how to update our distribution for Y after observing the value of X, using the
conditional PDF.

Definition 7.1.14 (Conditional PDF). For continuous r.v.s X and Y with joint
PDF fX,Y , the conditional PDF of Y given X = x is

fY |X(y|x) =
fX,Y (x, y)

fX(x)
.

This is considered as a function of y for fixed x.

Notation 7.1.15. The subscripts that we place on all the f ’s are just to remind
us that we have three different functions on our plate. We could just as well write
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Probability densities | Multivariate (cont.)

Sum and product rules, together with the Bayes’ rule, apply to probability densities

If X and Y are two real variables, then the sum and product rules take the form

p(x) =

∫
p(x , y)dy

p(x , y) = p(y|x)p(x)

288 Introduction to Probability

g(y|x) = f(x, y)/h(x), where f is the joint PDF, h is the marginal PDF of X, and
g is the conditional PDF of Y given X = x, but that makes it more difficult to
remember which letter stands for which function.

Figure 7.5 illustrates the definition of conditional PDF. We take a vertical slice of
the joint PDF corresponding to the observed value of X; since the total area under
this slice is fX(x), we then divide by fX(x) to ensure that the conditional PDF
will have an area of 1. Therefore conditional PDFs satisfy the properties of a valid
PDF.

X = x renormalize

FIGURE 7.5

Conditional PDF of Y given X = x. The conditional PDF fY |X(y|x) is obtained by
renormalizing the slice of the joint PDF at the fixed value x.

! 7.1.16. How can we speak of conditioning on X = x for X a continuous r.v.,
considering that this event has probability 0? Rigorously speaking, we are actually
conditioning on the event that X falls within a small interval of x, say X ∈ (x−ϵ, x+
ϵ), and then taking a limit as ϵ approaches 0. We will not fuss over this technicality;
fortunately, many important results such as Bayes’ rule work in the continuous case
exactly as one would hope.

Note that we can recover the joint PDF fX,Y if we have the conditional PDF fY |X
and the corresponding marginal fX :

fX,Y (x, y) = fY |X(y|x)fX(x).

Similarly, we can recover the joint PDF if we have fX|Y and fY :

fX,Y (x, y) = fX|Y (x|y)fY (y).

This allows us to develop continuous analogs of Bayes’ rule

P (Y = y|X = x) =
P (X = x|Y = y)P (Y = y)

P (X = x)

and LOTP
P (X = x) =

∑

y

P (X = x|Y = y)P (Y = y).
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Probability densities | Multivariate (cont.)

We have joint probability distributions over discrete (I ) and continuous variables (T )

Joint distributions 297

Let T be how long the bulb lasts, and I be the indicator of it having been made by
Company 1.

(a) Find the CDF and PDF of T .

(b) Does T have the memoryless property?

(c) Find the conditional distribution of I given T = t. What happens to this as
t → ∞?

Solution:

Since T is a continuous r.v. and I is discrete, the joint distribution of T and I is a
hybrid, as illustrated in Figure 7.8. In a joint PDF of two continuous r.v.s, there are
infinitely many vertical slices of the joint PDF that we can take, each corresponding
to a different conditional PDF. Here there are only two conditional PDFs of T , one
for I = 0 and one for I = 1. As stated in the problem, the conditional distribution of
T given I = 0 is Expo(λ0) and given I = 1 is Expo(λ1). The marginal distribution
of I is Bern(p1).

I = 0
I = 1 t

FIGURE 7.8

Hybrid joint distribution of T and I.

Thus, we are given the joint distribution of T and I in terms of (1) the marginal
distribution of I and (2) the conditional distribution of T given I. The problem
then asks us to flip it around and find (1) the marginal distribution of T and (2)
the conditional distribution of I given T . Phrased in this way, it becomes clear that
LOTP and Bayes’ rule will be our friends.

(a) In this part we are asked to derive the marginal distribution of T . For the CDF,
we use the law of total probability, conditioning on I:

FT (t) = P (T ≤ t) = P (T ≤ t|I = 0)p0 + P (T ≤ t|I = 1)p1

= (1 − e−λ0t)p0 + (1 − e−λ1t)p1

= 1 − p0e
−λ0t − p1e

−λ1t
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Expectations

A commonly used operation with probabilities is finding weighted averages of a function

• The average value of some function f (x) under a probability distribution p(x)

• Such a quantity is called the expectation of f (x) and it is denoted by E[f ]

For a discrete variable X , the average is weighted by the relative probabilities of x

E[f ] =
∑
X

p(x)f (x)

For a continuous variable X , expectations are expressed in terms of an integration

E[f ] =
∫

p(x)f (x)dx

If we have a finite number N of points drawn from either a probability distribution or
density, then the expectation can be approximated as a finite sum over those N points

E[f ] ≃ 1

N

N∑
n=1

f (xn )

The empirical approximation becomes exact in the limit N → ∞
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Expectations (cont.)

Usually we are interested in determining expectations of functions f of several variables

• We can use a subscript to indicate which variable(s) f is being averaged over

EX [f (x , y)] is the average of function f (x , y) with respect to the distribution of X

• EX [f (x , y)] =
∑

X p(x)︸︷︷︸∑
Y p(x ,y)

f (x , y), it is a function of y

EY [f (x , y)] is the average of function f (x , y) with respect to the distribution of Y

• EY [f (x , y)] =
∑

Y p(y)︸︷︷︸∑
X p(x ,y)

f (x , y), it is a function of x

EXY [f (x , y)] is the average of f (x , y) with respect to the distribution of X and Y

• EXY [f (x , y)] =
∑

X

∑
Y p(x , y)f (x , y), it is a number

We can be interested conditional expectation with respect to a conditional distribution

EX |Y [f (x , y)] =
∑
X

p(x |y)f (x , y)
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Expectations | Variance and covariance

The measure of the variability of f around its expectation E[f (x)] is the variance of f

var[f ] = E
[(

f (x)− E[f (x)]
)2]

The variance can also be written in terms of the expectations of functions f and f 2

var[f ] = E[f (x)2]− E[f (x)]2

The variance of the function f (x) = x ,

var[x ] = E[x2]− E[x ]2
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Expectations | Variance and covariance (cont.)

For two variables X and Y , the extent to which they vary together is called covariance

cov[x , y] = EXY

[
(x − E[x ])(y − E[y])

]
= EXY [xy]− E[x ]E[y]

If X and Y are independent variables, then their covariance is zero

For two random vectors X and X , the covariance is a matrix

cov[x , y] = EXY

[(
x − E[x ]

)(
yT − E[yT ]

)]
= EXY [xyT ]− E[x ]E[yT ]
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Bayesian probabilities
Probability theory
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Bayesian probabilities

We viewed probabilities as frequencies of repeatable random events

• It is the frequentist interpretation of probability

In general, we can view probabilities as quantification of uncertainty

• It is the Bayesian interpretation of probability

In the example of the boxes of fruit, an observation of the identity of the fruit F yield
relevant information that allowed to update the probability of the box B it was from

• Bayes’s theorem update a prior probability (P(B = r) = 4/10) into a posterior

• This is achieved by incorporating the evidence by the observed data

p(B = r |F = o) =
p(F = o|B = r)p(B = r)

p(F = o)︸ ︷︷ ︸
2/3
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Bayesian probabilities (cont.)

The approach is general, we can adopt it when making inference about any quantities

• Say, ... the parameters w in the polynomial curve fitting example?
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Bayesian probabilities (cont.)

x

t

0 1

−1

0

1

Input data Target data
x1 t1
.
..

.

..
xn tn
...

...
xN tN

Data

D = {t1, . . . , tN }
Model

y(x |w) =

Nm∑
nm=0

wnm xnm + noise

Parameters

w = {w1, . . . ,wNm }

We encode our assumptions about w , before observing D as a prior probability p(w)

• The effect of the observed D is expressed as the conditional probability p(D|w)

• We evaluate w , after observing D, as the posterior probability p(w |D)

p(w |D) =
p(D|w)p(w)

p(D)
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Bayesian probabilities (cont.)

p(w |D) =
p(D|w)p(w)

p(D)

The quantity p(D|w) expresses how probable D is for different values of parameters w

• As such, it is (conditional) probability distribuition

p(D|w) is evaluated for D, it can be viewed as a function of the parameter vector w

• As such, it is understood as a likelihood function
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Bayesian probabilities (cont.)

Frequentist setting
w is a fixed parameter, whose value is determined by an estimator, and error bars on
its estimate w⋆ are obtained by considering the distribution of possible data sets D

• A widely used frequentist estimator is maximum likelihood

• w∗ is the maximiser of the likelihood function p(D|w)

• The w that maximises the probability of the data D

Bayesian setting
There is only a single data set D (the one that is observed), and the uncertainty in the
parameters is expressed through a probability distribution over w , given that data set

p(w |D) =
p(D|w)p(w)

p(D)

∝ likelihood× prior

Integrating both sides of the Bayes’ theorem with respect to w , we can express the
denominator p(D) in terms of prior distribution p(w) and likelihood function p(D|w)

p(D) =

∫
p(D|w)p(w)dw
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